JPH08326644A - Abnormality diagnostic device for water turbine - Google Patents

Abnormality diagnostic device for water turbine

Info

Publication number
JPH08326644A
JPH08326644A JP7155107A JP15510795A JPH08326644A JP H08326644 A JPH08326644 A JP H08326644A JP 7155107 A JP7155107 A JP 7155107A JP 15510795 A JP15510795 A JP 15510795A JP H08326644 A JPH08326644 A JP H08326644A
Authority
JP
Japan
Prior art keywords
runner
flow
water turbine
outlet
ultrasonic sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7155107A
Other languages
Japanese (ja)
Other versions
JP3642354B2 (en
Inventor
Shogo Nakamura
彰吾 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15510795A priority Critical patent/JP3642354B2/en
Publication of JPH08326644A publication Critical patent/JPH08326644A/en
Application granted granted Critical
Publication of JP3642354B2 publication Critical patent/JP3642354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE: To diagnose an abnormality of an water turbine by measuring the absolute value of the flow speed of a flow and the angle of the flow at the outlet of a runner without projecting any appliance from the tube wall of a draft tube at the outlet of the runner. CONSTITUTION: Two pairs of ultrasonic sensors PA1 , PA2 , PB1 , PB2 the measuring lines of which are arranged to cross each other on the tube wall of a dradt tube 3 at the outlet of a runner, are provided, and the flow speed in the direction from PA1 to PA2 and the flow speed in the direction from PB1 to PB2 are determined by the ultrasonic sensors. Then, the absolute value of the flow speed of a flow and the angle of the flow at the outlet of the runner are determined by vectorially shynthesizing both the flow speeds. Thus, since there is no obstruction to the flow due to appliance, an abnormality of a water turbine can be early diagnosed to prevent accidents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水車の異常診断装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality diagnosis device for a water turbine.

【0002】[0002]

【従来の技術】水車が正常な運転をしているかどうかの
判断は、通常、振動,温度を監視することによって行っ
ている。例えば、フランシス水車のランナに異物がはさ
まったり、可動羽根水車のランナベーンの駆動機構が一
部破損または変形し、ランナベーンの設定角度がばらつ
いた場合には、状態の診断は、軸受や騒音の測定結果か
ら間接的に行われる。大抵の場合明らかな異常振動や異
常騒音が確認された時点では、該当する水車の要素その
ものが、修復不能な程度に変形したり破損して、交換が
必要な状態になっている。また、水車のランナベーンの
出口形状の仕上がり形状によっては、カルマン渦による
共振現象が発生するが、どの羽根に発生しているかを特
定して、対策を施すことは困難である。
2. Description of the Related Art It is usual to judge whether a water turbine is operating normally by monitoring vibration and temperature. For example, if foreign matter is caught in the runner of the Francis turbine, or the drive mechanism of the runner vane of the movable impeller is partially damaged or deformed, and the set angle of the runner vane varies, the condition is diagnosed by measuring the bearing and noise. It is done indirectly from the result. In most cases, at the time when obvious abnormal vibration or noise is confirmed, the element of the relevant turbine itself is deformed or damaged beyond repair and needs to be replaced. Further, depending on the finished shape of the outlet of the runner vane of the water turbine, a resonance phenomenon due to the Karman vortex occurs, but it is difficult to identify the blade in which it occurs and take a countermeasure.

【0003】[0003]

【発明が解決しようとする課題】従来の診断技術では、
ランナに作用する流体力学的な力に関する異常を、水車
軸や軸受などの機械振動や騒音測定によって間接的に診
断していた。直接流れを監視できれば、異常な状況が軽
微なうちに危険性を予知,防止することが可能となる。
流れを直接測定する1手法として、動特性の高いピトー
管によってランナ出口の流れの角度,流速,圧力の測定
を行い、流体力学的な力に関わる異常の状況を直接診断
しようという技術が確立されている。流れを直接測定す
ることで水車要素の変形,破損を軽微な段階で捕捉する
ことが可能である。しかし、ピトー管は非常にわずかで
はあるが、管壁から流路に突出した構造であるため、流
木などがピトー管にぶっかって破損したり、泥がピトー
管の測定孔に詰まるなどの不具合を生ずる恐れがあるた
め、ピトー管は長時間の監視に不適切であった。
In the conventional diagnostic technique,
Abnormalities related to the hydrodynamic force acting on the runner were indirectly diagnosed by measuring mechanical vibrations and noise of the turbine shaft and bearings. If the direct flow can be monitored, the danger can be predicted and prevented while the abnormal situation is slight.
As a method to directly measure the flow, a technique has been established in which a Pitot tube with high dynamic characteristics is used to measure the flow angle, flow velocity, and pressure at the runner outlet to directly diagnose abnormal conditions related to hydrodynamic forces. ing. By directly measuring the flow, it is possible to capture the deformation and damage of the turbine element at a minor stage. However, although the pitot tube is very small, it has a structure that protrudes from the tube wall to the flow path, so there are problems such as driftwood being hit by the pitot tube and damaged, and mud clogging the measurement holes of the pitot tube. The Pitot tube was unsuitable for long-term monitoring because it could occur.

【0004】図6は超音波流速計の計測原理を説明する
図である。超音波センサP1 ,P2 を管路の中心を通る
測線上に対向させて配置し、超音波センサP1 からP2
へ、超音波センサP2 からP1 へ超音波を発信すると、
1 からP2 へは流れに従って超音波が進み、P2 から
1 へは流れに逆らって超音波が進むので、音速をC,
流体のライン流速をV,超音波の上流方向の伝播時間を
1 ,超音波の下流方向の伝播時間をT2 ,センサ間の
距離をL,超音波の伝播方向と流体の流れる方向との角
度をθとすると、
FIG. 6 is a diagram for explaining the measurement principle of the ultrasonic velocity meter. The ultrasonic sensors P 1 and P 2 are arranged so as to face each other on a survey line passing through the center of the pipeline, and the ultrasonic sensors P 1 to P 2 are arranged.
, Ultrasonic wave is transmitted from the ultrasonic sensor P 2 to P 1 ,
Ultrasonic advances along the flow from P 1 to P 2, since the P 2 ultrasonic advances against the flow to P 1, the sound velocity C,
The line velocity of the fluid is V, the propagation time of the ultrasonic wave in the upstream direction is T 1 , the propagation time of the ultrasonic wave in the downstream direction is T 2 , the distance between the sensors is L, the propagation direction of the ultrasonic wave and the flowing direction of the fluid. If the angle is θ,

【数1】T1 =L/(C−Vcosθ)## EQU1 ## T 1 = L / (C-Vcos θ)

【数2】T2 =L/(C+Vcosθ) ここで数1及び数2を音速Cについて解くと、## EQU00002 ## T.sub.2 = L / (C + Vcos.theta.) Here, solving equations (1) and ( 2 ) for sound velocity C gives

【数3】 C=L/T1 +Vcosθ=L/T2 −Vcosθ ここからライン流速VはEquation 3] C = L / T 1 + Vcosθ = L / T 2 -Vcosθ line velocity V from here

【数4】 V=(T1 −T2 )×L/(T1 ×T2 )×2cosθ
として求められる。
V = (T 1 −T 2 ) × L / (T 1 × T 2 ) × 2 cos θ
Is required.

【数5】T1 −T2 =ΔTとすれば、 ΔT=2LVcosθ/(C2 −V2 cos2 θ)
2 はV2 よりはるかに大きいので、 ΔT=2LVcosθ/C2
## EQU5 ## If T 1 -T 2 = ΔT, then ΔT = 2LV cos θ / (C 2 -V 2 cos 2 θ)
Since C 2 is much larger than V 2 , ΔT = 2LV cos θ / C 2

【数6】V=C2 ΔT/2Lcosθ[Equation 6] V = C 2 ΔT / 2L cos θ

【数7】数1及び数2から T1 +T2 =2LC/(C2 −V2 cos2 θ)
2 はV2 よりはるかに大きいので、 T1 +T2 =2L/C C=2L/T1 +T2 このCを数6に代入すると
[Equation 7] From Equation 1 and Equation 2, T 1 + T 2 = 2LC / (C 2 −V 2 cos 2 θ)
Since C 2 is much larger than V 2 , T 1 + T 2 = 2L / C C = 2L / T 1 + T 2

【数8】 V=C2 ΔT/2Lcosθ=2LΔT/(T1 +T2 )cosθ T1 +T2 /2=Tm とすれば、If Equation 8] V = C 2 ΔT / 2Lcosθ = 2LΔT / (T 1 + T 2) and cosθ T 1 + T 2/2 = T m,

【数9】 V=2LΔT/(2Tm 2 cosθ=LΔT/2Tm 2 cosθ このようにして流速Vを求めることができる。## EQU9 ## V = 2LΔT / (2T m ) 2 cos θ = LΔT / 2T m 2 cos θ The flow velocity V can be obtained in this way.

【0005】この発明はランナ出口の吸出し管またはデ
ィスチャージリングの管壁から器具を突出することな
く、ランナ出口の流れの流速の絶対値及び流れの角度を
測定し、その値から水車の異常を診断する異常診断装置
を提供することを目的とする。
According to the present invention, the absolute value of the flow velocity and the flow angle of the flow at the runner outlet are measured without protruding the instrument from the suction pipe at the runner outlet or the pipe wall of the discharge ring, and the abnormality of the water turbine is diagnosed from the measured values. It is an object of the present invention to provide an abnormality diagnosis device that operates.

【0006】[0006]

【課題を解決するための手段】水車のランナ出口の吸出
し管またはディスチャージリングの管壁に測線が交差す
るように配置された2対の超音波センサを設け、この超
音波センサによってランナ出口の流れの流速の絶対値と
角度とを求め、水車の異常を診断することによって、上
記目的を達成する。
Means for Solving the Problems Two pairs of ultrasonic sensors are arranged on the suction pipe at the runner outlet of a water turbine or the pipe wall of a discharge ring so that the survey lines intersect each other. The above object is achieved by determining the absolute value of the flow velocity and the angle and diagnosing the abnormality of the water turbine.

【0007】また、2対の超音波センサは、ランナ中心
より下流にランナ外径の2倍以内の距離に設置すれば、
水車の異常を診断する上に好適である。
If two pairs of ultrasonic sensors are installed downstream of the center of the runner within a distance of twice the outer diameter of the runner,
It is suitable for diagnosing abnormalities in water turbines.

【0008】[0008]

【作用】この発明においては、交差する2対の超音波セ
ンサを用いて1対のセンサから形成される測線上の流速
を2種類検出する。このようにして得られた2種類の流
速から水車軸中心方向の流速成分と水車軸に直角な流速
成分とに分解し、両方の流速成分を合成することによっ
て、ランナ出口の流れの流速の絶対値と角度とを求め、
これらの値から水車の異常を診断することができる。
In the present invention, two types of flow velocity on the survey line formed by one pair of sensors are detected by using two pairs of intersecting ultrasonic sensors. The two types of flow velocities thus obtained are decomposed into a flow velocity component in the direction of the center of the turbine and a flow velocity component perpendicular to the turbine, and both velocity components are combined to obtain the absolute flow velocity of the flow at the runner outlet. Find the value and angle,
Abnormality of the water turbine can be diagnosed from these values.

【0009】[0009]

【実施例】実施例1 図1はこの発明の異常診断装置をフランシス水車に取り
付けた状態を示す縦断面図である。ケーシング2から導
かれた水はランナ1を通って吸出し管3へ流れる。ラン
ナ出口の吸出し管3の管壁に測線が交差するように配置
された2対の超音波センサPA1,PA2、PB1,PB2を設
けた。2対の超音波センサPA1,PA2、PB1,PB2は、
ランナ中心より下流のランナ外径Dの2倍(2D)以内
の距離に設置する。
Embodiment 1 FIG. 1 is a longitudinal sectional view showing a state in which the abnormality diagnosis device of the present invention is attached to a Francis turbine. The water guided from the casing 2 flows through the runner 1 to the suction pipe 3. Two pairs of ultrasonic sensors P A1 , P A2 , P B1 and P B2 are arranged on the pipe wall of the suction pipe 3 at the runner outlet so that the measurement lines intersect. The two pairs of ultrasonic sensors P A1 , P A2 , P B1 and P B2 are
Install at a distance within 2 times (2D) the outside diameter D of the runner downstream from the center of the runner.

【0010】図5(A)はこの発明の超音波センサによ
る計測原理を説明する図、(B)は(A)における流れ
のベクトル合成を示す図である。PA1,PA2、PB1,P
B2はそれぞれ対をなすセンサである。PA1,PA2の距離
をLA 、PB1,PB2の距離をLB 、PA1からPA2方向の
音波の進む時間をTA1、PA2からPA1方向の音波の進む
時間をTA2、PB1からPB2方向の音波の進む時間を
B1、PB2からPB1方向の音波の進む時間をTB2とす
る。PA1,PA2方向の流速をVA 、PB1,PB2方向の流
速をVB とすればVA ,VB は下記の式から求められ
る。
FIG. 5 (A) is a diagram for explaining the measurement principle of the ultrasonic sensor of the present invention, and FIG. 5 (B) is a diagram showing flow vector composition in FIG. 5 (A). P A1 , P A2 , P B1 , P
B2 is a pair of sensors. The distance between P A1 and P A2 is L A , the distance between P B1 and P B2 is L B , the traveling time of the sound wave in the P A1 to P A2 direction is T A1 , and the traveling time of the sound wave in the P A2 to P A1 direction is T A2, and from P B1 P B2 direction sound wave advances time T B1, P B2 from P B1 direction sound wave advances time to T B2. If the flow velocities in the P A1 and P A2 directions are V A and the flow velocities in the P B1 and P B2 directions are V B , V A and V B can be obtained from the following equations.

【数10】 VA =(TA1−TA2)LA /(TA1×TA2)×2 VB =(TB1−TB2)LB /(TB1×TB2)×2 水車の軸中心と測線PA1,PA2とのなす角度をθA 、水
車の軸中心と測線PB1,PB2とのなす角度をθB とすれ
ば、水車軸中心方向の流速成分Vax及びこれと直角方向
の流速成分VO は下記の式から求められる。
Equation 10] V A = (T A1 -T A2 ) L A / (T A1 × T A2) × 2 V B = (T B1 -T B2) L B / (T B1 × T B2) × 2 water mill If the angle between the axis center and the survey lines P A1 and P A2 is θ A and the angle between the axis of the turbine and the survey lines P B1 and P B2 is θ B , the flow velocity component V ax in the turbine shaft center direction and this The flow velocity component V O in the direction perpendicular to is calculated from the following equation.

【数11】Vax=VA cosθA +VB cosθBO =VA sinθA +VB sinθB 両者をベクトル合成することにより流速の絶対値Vが求
められ、流速の絶対値Vと流速成分Vaxとの成す角度α
が求められる。
Equation 11] V ax = V A cosθ A + V B cosθ B V O = V A sinθ A + V B sinθ B both absolute value V of the flow velocity by vector synthesis is determined to, the absolute value V and velocity component of the flow velocity Angle α with V ax
Is required.

【数12】V=√(Vax 2 +VO 2 ) α=tan-1(VO /Vax) この異常診断装置によれば、流水力学的異常を早期に検
出できて、フランシス水車ではランナ羽根の破損または
流木等の詰まりを検出できる。超音波センサPA1,PA2
と超音波センサPB1,PB2との測線がなす角度は10°
ないし170°とすれば、流れの状態を検出する上に好
適である。
[Equation 12] V = √ (V ax 2 + V o 2 ) α = tan −1 (V o / V ax ) According to this anomaly diagnosis device, a hydrodynamic anomaly can be detected at an early stage, and the Francis turbine is a runner. It can detect blade damage or clogging of driftwood. Ultrasonic sensors P A1 , P A2
And the ultrasonic sensor P B1 and P B2 make a line of 10 °
The angle of 170 to 170 ° is suitable for detecting the flow state.

【0011】実施例2 図2はこの発明の異常診断装置をカプラン水車に取り付
けた状態を示す縦断面図である。図2において図1と同
じ部位は同じ符号を付してある。図2においてケーシン
グ2から導かれた水は、ランナ羽根1aを通って吸出し
管3へ流れる。ランナ羽根出口の吸出し管3の管壁に測
線が交差するように配置された2対の超音波センサ
A1,PA2、PB1,PB2を設けた。2対の超音波センサ
A1,PA2、PB1,PB2は、ランナ中心より下流のラン
ナ外径Dの2倍(2D)以内の距離に設置する。この場
合も測定原理は図5(A),(B)に示す図により同様
に説明できる。超音波センサPA1,PA2と超音波センサ
B1,PB2との測線がなす角度は10°ないし170°
とすれば、流れの状態を検出する上に好適である。この
異常診断装置によれば、流水力学的異常を早期に検出で
きて、カプラン水車ではランナベーン駆動機構の経年変
化による緩みまたは流木などの詰まりを早期に検出でき
る。また、この発明による超音波センサは、可動羽根水
車の制御センサとしても使用できる。
Embodiment 2 FIG. 2 is a longitudinal sectional view showing a state in which the abnormality diagnosis device of the present invention is attached to a Kaplan turbine. 2, the same parts as those in FIG. 1 are designated by the same reference numerals. In FIG. 2, the water guided from the casing 2 flows to the suction pipe 3 through the runner blade 1a. Two pairs of ultrasonic sensors P A1 , P A2 , P B1 and P B2 are arranged on the pipe wall of the suction pipe 3 at the outlet of the runner blade so as to intersect the survey lines. The two pairs of ultrasonic sensors P A1 , P A2 , P B1 and P B2 are installed at a distance within twice (2D) the outer diameter D of the runner downstream from the center of the runner. In this case as well, the measurement principle can be similarly explained with reference to FIGS. 5 (A) and 5 (B). The angle formed by the survey lines between the ultrasonic sensors P A1 and P A2 and the ultrasonic sensors P B1 and P B2 is 10 ° to 170 °.
This is suitable for detecting the flow state. According to this abnormality diagnosis device, a hydrodynamic abnormality can be detected at an early stage, and in the Kaplan turbine, loosening or clogging of driftwood due to secular change of the runner vane drive mechanism can be detected at an early stage. The ultrasonic sensor according to the present invention can also be used as a control sensor for a movable impeller turbine.

【0012】実施例3 図3はこの発明の異常診断装置をバルブ水車に取り付け
た状態を示す縦断面図である。図3において水路4によ
って導かれバルブの外側を流れる水は、バルブ水車のラ
ンナ羽根1aを通って吸出し管3へ流れる。ディスチャ
ージリング5の管壁に測線が交差するように配置された
2対の超音波センサPA1,PA2、PB1,PB2を設けた。
2対の超音波センサPA1,PA2、PB1,PB2は、ランナ
中心より下流のランナ外径Dの2倍(2D)以内の距離
に設置する。この場合も測定原理は図5(A),(B)
に示す図により同様に説明できる。
Embodiment 3 FIG. 3 is a vertical sectional view showing a state in which the abnormality diagnosis device of the present invention is attached to a valve turbine. In FIG. 3, the water guided by the water channel 4 and flowing outside the valve flows into the suction pipe 3 through the runner blade 1 a of the valve turbine. Two pairs of ultrasonic sensors P A1 , P A2 , P B1 and P B2 are arranged on the tube wall of the discharge ring 5 so that the lines intersect each other.
The two pairs of ultrasonic sensors P A1 , P A2 , P B1 and P B2 are installed at a distance within twice (2D) the outer diameter D of the runner downstream from the center of the runner. In this case as well, the measurement principle is as shown in FIGS.
The same can be explained with reference to the drawing shown in FIG.

【0013】図4(A)は図3のランナ下流側の拡大
図、(B)は(A)のB方向矢視図である。図4の例は
超音波センサPA1,PA2、PB1,PB2をバルブ水車の出
口のデイスチャージリング5へ測線が交差するように配
置した。超音波センサPA1,PA2と超音波センサPB1
B2との測線がなす角度は10°ないし170°とすれ
ば、流れの状態を検出する上に好適である。
FIG. 4A is an enlarged view of the runner downstream side of FIG. 3, and FIG. 4B is a view in the direction B of FIG. In the example of FIG. 4, the ultrasonic sensors P A1 , P A2 , P B1 and P B2 are arranged so that the lines intersect with the discharge ring 5 at the outlet of the valve turbine. Ultrasonic sensors P A1 , P A2 and ultrasonic sensors P B1 ,
It is suitable for detecting the flow state that the angle formed by the measuring line with P B2 is 10 ° to 170 °.

【0014】[0014]

【発明の効果】この発明によれば、水車のランナ出口の
吸出し管またはディスチャージリングの管壁に測線が交
差するように配置された2対の超音波センサを設け、こ
の超音波センサによってランナ出口の流れの流速の絶対
値と流れの角度とを求め、これらの値からフランシス水
車ではランナ羽根の破損または流木などの詰まりを検出
でき、可動羽根水車ではランナベーン駆動機構の経年変
化による緩みまたは流木などの詰まりを早期に発見し、
重大事故を未然に防ぐことができる。また、この発明に
よる超音波センサは、可動羽根水車の制御センサとして
も使用できる。
According to the present invention, two pairs of ultrasonic sensors are arranged on the suction pipe of the runner outlet of the water turbine or the pipe wall of the discharge ring so that the survey lines intersect, and the ultrasonic sensor is used to provide the runner outlet. The absolute value of the flow velocity and the flow angle are calculated, and from these values, the Francis turbine can detect damage to the runner blade or clogging of driftwood, and the movable vane turbine loosens or driftwood due to secular change of the runner vane drive mechanism. The clogging of
It is possible to prevent serious accidents. The ultrasonic sensor according to the present invention can also be used as a control sensor for a movable impeller turbine.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の異常診断装置の取り付け
状態を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an attached state of an abnormality diagnosis device according to a first embodiment of the present invention.

【図2】この発明の実施例2の異常診断装置の取り付け
状態を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing an attached state of an abnormality diagnosis device according to a second embodiment of the present invention.

【図3】この発明の実施例3の異常診断装置の取り付け
状態を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing an attached state of an abnormality diagnosis device according to a third embodiment of the present invention.

【図4】(A)は図3のランナ出口の拡大図、(B)は
(A)のB方向矢視図である。
4A is an enlarged view of the runner outlet of FIG. 3, and FIG. 4B is a view in the direction B of FIG.

【図5】(A)はこの発明の実施例による超音波センサ
による計測原理を示す図、(B)は(A)のベクトル合
成を示す図である。
5A is a diagram showing a measurement principle by an ultrasonic sensor according to an embodiment of the present invention, and FIG. 5B is a diagram showing vector composition of FIG. 5A.

【図6】超音波センサによる計測原理を示す図である。FIG. 6 is a diagram showing a principle of measurement by an ultrasonic sensor.

【符号の説明】[Explanation of symbols]

1 ランナ 1a ランナ羽根 2 ケーシング 3 吸出し管 4 水路 5 ディスチャージリング P1 超音波センサ P2 超音波センサ PA1 超音波センサ PA2 超音波センサ PB1 超音波センサ PB2 超音波センサ1 runner 1a runner blade 2 casing 3 suction pipe 4 water channel 5 discharge ring P 1 ultrasonic sensor P 2 ultrasonic sensor P A1 ultrasonic sensor P A2 ultrasonic sensor P B1 ultrasonic sensor P B2 ultrasonic sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水車のランナ出口の吸出し管またはディス
チャージリングの管壁に測線が交差するように配置され
た2対の超音波センサを設け、この超音波センサによっ
てランナ出口の流れの流速の絶対値と角度とを求め、水
車の異常を診断することを特徴とする水車の異常診断装
置。
1. A pair of ultrasonic sensors arranged so that the measuring lines intersect on the suction pipe at the runner outlet of the water turbine or the pipe wall of the discharge ring, and the absolute flow velocity of the flow at the runner outlet is provided by the ultrasonic sensors. An abnormality diagnosis device for a water turbine, which obtains a value and an angle to diagnose an abnormality in the water turbine.
【請求項2】請求項1記載の水車の異常診断装置におい
て、2対の超音波センサは、ランナ中心より下流にラン
ナ外径の2倍以内の距離に設置することを特徴とする水
車の異常診断装置。
2. The abnormality diagnosis apparatus for a water turbine according to claim 1, wherein the two pairs of ultrasonic sensors are installed downstream of the center of the runner at a distance within twice the outer diameter of the runner. Diagnostic device.
JP15510795A 1995-05-30 1995-05-30 Turbine abnormality diagnosis device Expired - Fee Related JP3642354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15510795A JP3642354B2 (en) 1995-05-30 1995-05-30 Turbine abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15510795A JP3642354B2 (en) 1995-05-30 1995-05-30 Turbine abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JPH08326644A true JPH08326644A (en) 1996-12-10
JP3642354B2 JP3642354B2 (en) 2005-04-27

Family

ID=15598767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15510795A Expired - Fee Related JP3642354B2 (en) 1995-05-30 1995-05-30 Turbine abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP3642354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291752B2 (en) 2006-06-13 2012-10-23 Continental Automotive Gmbh Method and device for monitoring an exhaust-gas turbocharger
GB2494138A (en) * 2011-08-31 2013-03-06 Rolls Royce Plc Exit swirl sensor arrangement for a tidal generator
CN115370522A (en) * 2022-09-09 2022-11-22 中国长江电力股份有限公司 Test method for simulating real machine fault on model water turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291752B2 (en) 2006-06-13 2012-10-23 Continental Automotive Gmbh Method and device for monitoring an exhaust-gas turbocharger
GB2494138A (en) * 2011-08-31 2013-03-06 Rolls Royce Plc Exit swirl sensor arrangement for a tidal generator
CN115370522A (en) * 2022-09-09 2022-11-22 中国长江电力股份有限公司 Test method for simulating real machine fault on model water turbine
CN115370522B (en) * 2022-09-09 2024-03-29 中国长江电力股份有限公司 Test method for simulating true machine fault on model water turbine

Also Published As

Publication number Publication date
JP3642354B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP4624351B2 (en) Process diagnosis
US5123433A (en) Ultrasonic flow nozzle cleaning apparatus
Parrondo et al. Development of a predictive maintenance system for a centrifugal pump
Al-Obaidi Experimental investigation of the effect of suction valve opening on the performance and detection of cavitation in the centrifugal pump based on acoustic analysis technique
US20180224344A1 (en) Differential pressure transducer
RU2469276C1 (en) Vortex flow meter housing with groove on back surface
JP3642354B2 (en) Turbine abnormality diagnosis device
JP2007071120A (en) Cavitation diagnostic device and method of hydraulic machine
JPS6183457A (en) Method and apparatus for monitoring air leakage
JP2008180092A (en) Vertical shaft valve type hydraulic turbine power generation facility, and its operation control method
JP4273519B2 (en) Ultrasonic flow meter
JP4877602B2 (en) Vortex flow meter
JP3813358B2 (en) Reactor coolant flow measurement device
KR100412335B1 (en) A turbine flow meter
JPH0988797A (en) Abnormality diagnosing device for water turbine
KR102106056B1 (en) Venturi flowmeter
RU222980U1 (en) HOUSING OF THE FLOW PART OF A VORTEX FLOWMETER WITH TWO ELECTRONIC UNITS
US20230084695A1 (en) Stress estimation method for machine structure and monitoring method for machine structure
KR100394345B1 (en) segmental wedge DP flow meter
RU2678210C1 (en) Turbine consumption converter
CN117191160A (en) Self-detection method of turbine flowmeter
JP2782026B2 (en) Vortex flow meter
USRE26621E (en) High etal velocity sensor
JPH09196715A (en) Flow rate sensor
CN115452070A (en) Flowmeter suitable for detecting fluid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees