JPH0832165A - Variable-wavelength/self-harmonic laser medium - Google Patents

Variable-wavelength/self-harmonic laser medium

Info

Publication number
JPH0832165A
JPH0832165A JP16566594A JP16566594A JPH0832165A JP H0832165 A JPH0832165 A JP H0832165A JP 16566594 A JP16566594 A JP 16566594A JP 16566594 A JP16566594 A JP 16566594A JP H0832165 A JPH0832165 A JP H0832165A
Authority
JP
Japan
Prior art keywords
laser
crystal
self
wavelength
laser medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16566594A
Other languages
Japanese (ja)
Inventor
Takatomo Sasaki
孝友 佐々木
Yusuke Mori
勇介 森
Sadao Nakai
貞雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP16566594A priority Critical patent/JPH0832165A/en
Publication of JPH0832165A publication Critical patent/JPH0832165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable a laser medium to oscillate variable-wavelength laser or self-harmonic laser by using a Cr-doped YAB crystal or YGAB crystal added with Cr and Ga. CONSTITUTION:A Cr<3+>:YAB single crystal is grown from 99.9-% pure Y2O3, Al2O3, Cr2O3, B3O3, K2CO3, and MoO3 by using the top seed solution method. The synthesization is performed based on a reaction formula, Y2O3(1-x)Al2O3 +xCr2O3+4B2O3 2Y(Al1-xCrx)3(BO2)4K2CO3 +3MoO3 K2Mo3O10+CO2 (where, x=0.005) by dropping the temperature from the saturation point of about 1050 deg.C to 990 deg.C at the rate of 0-2 deg.C/day. Therefore, a laser medium which can oscillate laser in a wide band range from red color to near red color in a variable-wavelength state and can generate ultraviolet laser light by self-generating harmonics can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、波長可変/自己高調
波レーザー媒体に関するものである。さらに詳しくは、
この発明は、分光用波長可変光源や光情報処理および医
療用レーザー光源等に特に有用な波長可変/自己高調波
レーザー媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength tunable / self-harmonic laser medium. For more information,
The present invention relates to a wavelength tunable / self-harmonic laser medium particularly useful as a wavelength tunable light source for spectroscopy, optical information processing, and a medical laser light source.

【0002】[0002]

【従来の技術と課題】従来より、YAB結晶にNdをド
ープしたNd:YAB(NdX 1-X Al3(B03
4 )結晶は、レーザー発振と波長変換の二つの機能を持
つ、いわゆる多機能性結晶として知られている。この結
晶を用いて得られるレーザーは、531nmのグリーン
光である。一方、近年、これよりさらに短波長のレーザ
ーの実現が求められており、そこでNdの代わりにCr
3+をドープしたレーザー媒体の開発が考えられている。
2. Description of the Related Art Conventionally, Nd: YAB (Nd X Y 1-X Al 3 (B0 3 )) obtained by doping a YAB crystal with Nd is conventionally used.
4 ) The crystal is known as a so-called multifunctional crystal that has two functions of laser oscillation and wavelength conversion. The laser obtained using this crystal is 531 nm green light. On the other hand, in recent years, it has been required to realize a laser having a shorter wavelength than this, and therefore, Cr is used instead of Nd.
The development of laser media doped with 3+ has been considered.

【0003】しかしながら、良質なCr3+:YAB単結
晶の育成は、Crが均一にドープできないことや、成長
縞が生じる等の理由から、現在のところかなり難しく、
育成技術は実際上は確立されていない。また、従来か
ら、Cr3+:YAB(Yttrium Aluminum Borate) 結晶が
蛍光を持つことは知られていたが、レーザー媒体として
の光学特性についての評価はほとんどなされておらず、
実用的有用性は具体的に検討されてこなかった。
However, the growth of a good quality Cr 3+ : YAB single crystal is quite difficult at present because of the fact that Cr cannot be uniformly doped and growth fringes occur.
Nurturing technology has not been established in practice. Further, it has been conventionally known that a Cr 3+ : YAB (Yttrium Aluminum Borate) crystal has fluorescence, but evaluation of optical characteristics as a laser medium has hardly been made,
Practical utility has not been specifically examined.

【0004】この発明は、以上の通りの事情に鑑みてな
されたものであって、より短波長レーザーの実現ととも
に、その光学特性に大きな関心が持たれるCrドープY
AB結晶、またその近似結晶について、その新しい利用
方策を提供することを目的としている。
The present invention has been made in view of the circumstances as described above, and Cr-doped Y, which has a great interest in its optical characteristics as well as the realization of a shorter wavelength laser.
The purpose of the present invention is to provide a new utilization method for the AB crystal and its approximate crystal.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、CrがドープされたYAB結晶
またはYGAB結晶からなる波長可変/自己高調波レー
ザー媒体を提供する。
In order to solve the above problems, the present invention provides a wavelength tunable / self-harmonic laser medium made of Cr-doped YAB crystal or YGAB crystal.

【0006】[0006]

【作用】この発明においては、上記の通りCrドープの
YABまたはGaとともに添加したYGABの結晶を用
いることにより、波長可変レーザーもしくは自己高調波
レーザー発振に使用する。このことにより、この発明で
は、赤色から近赤外までの広い領域において波長可変で
レーザー発振でき、また一つの結晶材料でレーザー発振
と同時に第2高調波を発生させることができる等の特徴
が実現される。
In the present invention, the crystal of YGAB doped with Cr-doped YAB or Ga as described above is used for tunable laser or self-harmonic laser oscillation. As a result, according to the present invention, the laser oscillation can be tuned in a wide range from red to near infrared, and the second harmonic can be generated simultaneously with the laser oscillation with one crystal material. To be done.

【0007】以下実施例を示し、この発明についてさら
に詳しく説明する。
The present invention will be described in more detail with reference to the following examples.

【0008】[0008]

【実施例】実施例1 この実施例において、Cr3+:YAB単結晶を、K2
3 10フラックスを用いたトップ・シード溶液法によ
り育成した。炉は抵抗加熱型の円筒炉で、コントローラ
ーの精度は1℃である。坩堝は白金製で50φ×65
〔mm3 〕のものを用いた。原料はY2 3 、Al2
3 、Cr2 3 、B3 3 、K2 CO3 、MoO3 で純
度はすべて99.9%のものを用いた。
Example 1 In this example, a Cr 3+ : YAB single crystal was mixed with K 2 M.
It was grown by the top seed solution method using o 3 O 10 flux. The furnace is a resistance heating type cylindrical furnace, and the accuracy of the controller is 1 ° C. The crucible is made of platinum 50φ x 65
The one of [mm 3 ] was used. Raw materials are Y 2 O 3 and Al 2 O
3 , Cr 2 O 3 , B 3 O 3 , K 2 CO 3 , and MoO 3 having a purity of 99.9% were used.

【0009】Cr:YABとK2 Mo3 10の合成は次
の反応式により行った。
The synthesis of Cr: YAB and K 2 Mo 3 O 10 was carried out by the following reaction formula.

【0010】[0010]

【化1】 Embedded image

【0011】この実施例においては、x=0.005と
し、約1050℃の飽和点から0〜2℃/dayで99
0℃まで降下させた。結晶の育成期間は42日である。
この結晶の蛍光スペクトルおよび蛍光寿命と吸収スペク
トルは、分光光度計(日本分光工業SS−25型高分解
能蛍光分光装置および島津分光光度計UV−3100
S)を用いて測定した。
In this embodiment, x = 0.005, and 0 to 2 ° C./day from the saturation point of about 1050 ° C. is 99.
The temperature was lowered to 0 ° C. The crystal growing period is 42 days.
The fluorescence spectrum and the fluorescence lifetime and absorption spectrum of this crystal were measured by a spectrophotometer (Nippon Bunko Kogyo SS-25 high-resolution fluorescence spectrometer and Shimadzu spectrophotometer UV-3100).
S) was used for the measurement.

【0012】図1は吸収スペクトルを示したものであ
る。この図1より、420nm帯と600nm帯にブロ
ードな吸収があり、350nm近辺が透明であることが
わかる。図2は蛍光スペクトルを示したものである。約
560nm〜600nmの2つのピークは励起光のスペ
クトルである。約640nm〜860nmにわたるブロ
ードな蛍光があり、約710nm〜740nmに蛍光の
ピークがあることがわかる。蛍光寿命は170μsec
であった。また、誘導放電断面積は、1.3×10-19
cm2 であり、他のCrLiSAF等のCr系レーザー
に比べて大きいことがわかった。
FIG. 1 shows an absorption spectrum. From FIG. 1, it can be seen that there is broad absorption in the 420 nm band and the 600 nm band, and the transparent region around 350 nm is transparent. FIG. 2 shows the fluorescence spectrum. The two peaks at about 560 nm to 600 nm are the spectrum of the excitation light. It can be seen that there is broad fluorescence over about 640 nm to 860 nm and there is a fluorescence peak at about 710 nm to 740 nm. Fluorescence lifetime is 170 μsec
Met. In addition, the induction discharge cross section is 1.3 × 10 -19
cm 2, and was found to be greater than the Cr-based laser such as another CrLiSAF.

【0013】またさらに、この結晶にチタン・サファイ
ア・レーザーの720nmを入射したところ、SHG
(360nm)を確認した。この結果から、この結晶は
350nm付近に吸収がないことから、前記の波長帯の
レーザー発振およびセルフ・ダブリングによる紫外光発
生が可能であることがわかる。これらの結晶は700n
m帯でレーザー発振すればSHG(第2高調波発生)に
よる350nm帯の紫外レーザー光を単一素子で得るこ
とが可能である。
Further, when 720 nm of a titanium sapphire laser was incident on this crystal, SHG
(360 nm) was confirmed. From this result, it is understood that this crystal has no absorption around 350 nm, and thus it is possible to generate the ultraviolet light by the laser oscillation in the above wavelength band and the self-doubling. These crystals are 700n
If laser oscillation is performed in the m band, it is possible to obtain a 350 nm band ultraviolet laser beam by SHG (second harmonic generation) with a single element.

【0014】また、厚さ2.5mmの結晶を用いて、光
増幅率を測定したところ、波長820nm近辺で約2倍
の利得が得られ、700〜900nmの領域で波長可変
でレーザー発振の可能性が確認された。図3は、この時
のシングルパス利得の測定結果を示したものである。実施例2 実施例1と同様にして、Cr0.2%、Ga25%のC
3+:YGAB結晶を育成した。995.8℃、16日
間の育成とした。
When the optical amplification factor was measured using a crystal having a thickness of 2.5 mm, a gain of about twice was obtained near the wavelength of 820 nm, and laser oscillation was possible with the wavelength variable in the range of 700 to 900 nm. The sex was confirmed. FIG. 3 shows the measurement result of the single path gain at this time. Example 2 As in Example 1, C containing 0.2% of Cr and 25% of Ga
A r 3+ : YGAB crystal was grown. It was grown at 995.8 ° C. for 16 days.

【0015】図4は、その結果の吸収スペクトルを示し
たものであり、図5は蛍光スペクトルを示したものであ
る。Cr3+:YGAB結晶の場合、Cr3+:YAB結晶
と同様の性質がCr3+:YAB結晶のときよりもさらに
長波長側にみられることがわかった。
FIG. 4 shows the resulting absorption spectrum, and FIG. 5 shows the fluorescence spectrum. Cr 3+: If YGAB crystals, Cr 3+: YAB crystal similar properties cr 3+: than when YAB crystals was found that further seen in the long wavelength side.

【0016】[0016]

【発明の効果】以上詳しく説明した通り、この発明によ
り、赤色から近赤色の広い領域で波長可変に発振でき、
さらに自己高調波発生による紫外レーザー光発生をも可
能とするレーザー媒体が実現される。
As described in detail above, according to the present invention, it is possible to oscillate wavelength tunably in a wide range from red to near red,
Furthermore, a laser medium that can also generate ultraviolet laser light by self-harmonic generation is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例においてCr:YAB結晶の
吸収スペクトル図である。
FIG. 1 is an absorption spectrum diagram of a Cr: YAB crystal in an example of the present invention.

【図2】図1に対応するCr:YAB結晶の蛍光スペク
トル図である。
FIG. 2 is a fluorescence spectrum diagram of a Cr: YAB crystal corresponding to FIG.

【図3】別の実施例におけるCr:YGAB結晶の吸収
スペクトル図である。
FIG. 3 is an absorption spectrum diagram of a Cr: YGAB crystal in another example.

【図4】シングルパス時の利得の測定図である。FIG. 4 is a measurement diagram of a gain during a single pass.

【図5】図3に対応するCr:YGAB結晶の蛍光スペ
クトル図である。
5 is a fluorescence spectrum diagram of a Cr: YGAB crystal corresponding to FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CrがドープされたYAB結晶またはY
GAB結晶からなる波長可変/自己高調波レーザー媒
体。
1. Cr-doped YAB crystal or Y
Tunable / self-harmonic laser medium made of GAB crystal.
【請求項2】 赤色から近赤外領域において波長可変レ
ーザー発振する請求項1のレーザー媒体。
2. The laser medium according to claim 1, which oscillates a wavelength tunable laser in the red to near infrared region.
【請求項3】 自己高調波発生により青ないし紫外レー
ザー光を発生する請求項1のレーザー媒体。
3. The laser medium according to claim 1, wherein blue or ultraviolet laser light is generated by self-harmonic generation.
JP16566594A 1994-07-18 1994-07-18 Variable-wavelength/self-harmonic laser medium Pending JPH0832165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16566594A JPH0832165A (en) 1994-07-18 1994-07-18 Variable-wavelength/self-harmonic laser medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16566594A JPH0832165A (en) 1994-07-18 1994-07-18 Variable-wavelength/self-harmonic laser medium

Publications (1)

Publication Number Publication Date
JPH0832165A true JPH0832165A (en) 1996-02-02

Family

ID=15816694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16566594A Pending JPH0832165A (en) 1994-07-18 1994-07-18 Variable-wavelength/self-harmonic laser medium

Country Status (1)

Country Link
JP (1) JPH0832165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437729A (en) * 2006-05-05 2007-11-07 Univ Graz Tech Ultraviolet excited white phosphor and light emitting devices thereof
CN101831706A (en) * 2009-03-13 2010-09-15 中国科学院福建物质结构研究所 Growth method of low ultraviolet absorption YA13(BO3)4 crystal
US9461542B2 (en) 2013-09-20 2016-10-04 Fujitsu Limited Power supply apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437729A (en) * 2006-05-05 2007-11-07 Univ Graz Tech Ultraviolet excited white phosphor and light emitting devices thereof
CN101831706A (en) * 2009-03-13 2010-09-15 中国科学院福建物质结构研究所 Growth method of low ultraviolet absorption YA13(BO3)4 crystal
US9461542B2 (en) 2013-09-20 2016-10-04 Fujitsu Limited Power supply apparatus

Similar Documents

Publication Publication Date Title
US7588743B2 (en) Cesium-rubidium-borate nonlinear optical crystal and its growth method and applications
US8597544B2 (en) Method and structure for non-linear optics
Jia et al. Study on crystal growth of large size Nd3+: Gd3Ga5O12 (Nd3+: GGG) by Czochralski method
US6673330B1 (en) Single crystal of lithium niobate or tantalate and its optical element, and process and apparatus for producing an oxide single crystal
JP2007532763A (en) Methods and compounds for nonlinear optics
US6391229B1 (en) Borate crystal, growth method of the same and laser equipment using the same
Brenier et al. Spectroscopic properties, self-frequency doubling, and self-sum frequency mixing in GdAl 3 (BO 3) 4: Nd 3+
Badikov et al. Growth and optical properties of mercury thiogallate
CN110396721A (en) Fluorine boron aluminic acid cesium compound, fluorine boron aluminic acid caesium nonlinear optical crystal and its preparation method and application
JPH0854656A (en) Nonlinear optical crystal
US4935934A (en) Mixed lanthanide-magnesium gallates and laser using monocrystals of these gallates
JPH0832165A (en) Variable-wavelength/self-harmonic laser medium
Okazaki et al. Deuterated Derivatives of 3, 5-Dimethyl-1-(4-nitrophenyl) pyrazole for Nonlinear Optical Materials.
CN114134575B (en) Chalcopyrite type compound containing alkaline earth metal defects, infrared nonlinear optical crystal, preparation method and application
US7006539B1 (en) Nonlinear optical crystal
Brenier et al. Evaluation of GdCOB: Nd3+ for self-frequency doubling in the optimum phase matching direction
JP4729698B2 (en) Lithium tantalate single crystal and its optical functional device
JP3368753B2 (en) Wavelength conversion method
JPH0618949A (en) Cerium-doped optical device
CN109056064A (en) A kind of Rb2Ba(PO3)5The fluxing agent of crystal growth and the growing method for utilizing the fluxing agent
US6264858B1 (en) Method for radiation conversion with bismuth borate crystals
JP2003114454A (en) Wavelength conversion element and wavelength conversion method and laser apparatus
JPH09258283A (en) Optical wavelength conversion method and optical wavelength conversion device
CN110791812B (en) BaHgSnSe4Nonlinear optical crystal and preparation method and application thereof
JPH0826892A (en) Production of ktp crystal by atmospheric control growth