JPH08321494A - Plasma treatment equipment - Google Patents

Plasma treatment equipment

Info

Publication number
JPH08321494A
JPH08321494A JP8156581A JP15658196A JPH08321494A JP H08321494 A JPH08321494 A JP H08321494A JP 8156581 A JP8156581 A JP 8156581A JP 15658196 A JP15658196 A JP 15658196A JP H08321494 A JPH08321494 A JP H08321494A
Authority
JP
Japan
Prior art keywords
electrode
plasma
sample
airtight container
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8156581A
Other languages
Japanese (ja)
Other versions
JP3212253B2 (en
Inventor
Tetsunori Kaji
哲徳 加治
Takashi Fujii
敬 藤井
Motohiko Kikkai
元彦 吉開
Yoshinao Kawasaki
義直 川崎
Masaharu Saikai
正治 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP15658196A priority Critical patent/JP3212253B2/en
Publication of JPH08321494A publication Critical patent/JPH08321494A/en
Application granted granted Critical
Publication of JP3212253B2 publication Critical patent/JP3212253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To prevent transfer of a shadow formed by a meshy metal by a method wherein a part of a second electrode is provided in a part surrounded by an insulator, while the meshy metal is provided on a sample, and an alternating current is superimposed on a coil. CONSTITUTION: A strong ECR plasma is generated in a part being closer to a microwave introducing part 2 than a sample 9 by an introduced microwave, a coil 8 and gas. A high-frequency wave is impressed between a first electrode 10 and a second electrode 11 by a high-frequency power source 12 and a matching unit 14 attached. Moreover, ions are moved in a lateral direction by superimposing an alternating current on the coil 8, so as to avoids transferring a shadow formed by a meshy metal provided in a part on the sample 9 onto the sample 9. According to this constitution, an AC voltage is impressed stably, effectively and without fluctuation and anisotropic plasma treatment is executed stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ処理装置
に係り、特に半導体素子等の製造時の各種膜の成膜やエ
ッチング等に使用されるマイクロ波と交流バイアスを併
用したプラズマ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, and more particularly to a plasma apparatus which uses microwaves and AC bias in combination for forming and etching various films during manufacturing of semiconductor elements and the like. is there.

【0002】[0002]

【従来の技術】半導体素子の微細化、高集積化に伴って
微細化が進められている。従来の成膜やエッチング技術
に比べ、マイクロ波プラズマを用いた薄膜処理法は、微
細加工に適した方法としてすでに定評があるが、試料に
交流バイアスを印加すると、膜質の改善、成膜やエッチ
ング処理形状の改善ができる点などが注目されている。
2. Description of the Related Art The miniaturization of semiconductor devices is being advanced with the miniaturization and high integration of semiconductor devices. Compared with conventional film formation and etching techniques, the thin film processing method using microwave plasma is already well-established as a method suitable for microfabrication, but when an AC bias is applied to the sample, film quality is improved and film formation and etching are performed. Attention has been paid to the fact that the processing shape can be improved.

【0003】図11は、マイクロ波と高周波バイアスを
併用し、かつ磁場を用いてECRプラズマを発生させ
る、例えば、特開平2−127029号公報に記載のよ
うな従来例の概略を示す。1はマイクロ波発生器、2は
マイクロ波導入手段、3は石英ベルジャ、4は金属容
器、5はガス導入手段、6はバルブ、7は排気手段、8
はコイル、9は試料、10は試料を支持する第1の電
極、11はプラズマに電位を加えるために設置された第
2の電極、12は交流発生器である。
FIG. 11 schematically shows a conventional example in which microwave and high frequency bias are used in combination and a magnetic field is used to generate ECR plasma, for example, as described in Japanese Patent Application Laid-Open No. 2-127029. 1 is a microwave generator, 2 is microwave introduction means, 3 is a quartz bell jar, 4 is a metal container, 5 is gas introduction means, 6 is a valve, 7 is exhaust means, 8
Is a coil, 9 is a sample, 10 is a first electrode for supporting the sample, 11 is a second electrode installed for applying an electric potential to plasma, and 12 is an AC generator.

【0004】石英ベルジャ3と金属容器4により気密容
器が構成され、ガス導入手段5、バルブ6および排気手
段7とにより所定のガスを所定の圧力に設定しながらガ
スを流す。マイクロ発生器1から発生したマイクロ波
は、導波管や同軸線路等のマイクロ波導入手段2と、石
英ベルジャ3を経由して気密容器内に入力される。コイ
ル8の磁界とマイクロ波との相互作用である電子サイク
ロン共鳴(Electron Cyclotron Resonance, ECRと略す)
現象により、気密容器内のガスは効率よくプラズマ化さ
れる。プラズマ化されたイオン類は、第1の電極10と
第2の電極11間に加えられた交流により引きつけられ
試料面に方向性よく印加される。
An airtight container is constituted by the quartz bell jar 3 and the metal container 4, and the gas is supplied while the predetermined gas is set to a predetermined pressure by the gas introduction means 5, the valve 6 and the exhaust means 7. The microwave generated from the microwave generator 1 is input into the airtight container via the microwave introducing means 2 such as a waveguide or a coaxial line and the quartz bell jar 3. Electron Cyclotron Resonance (ECR), which is the interaction between the magnetic field of the coil 8 and the microwave.
Due to the phenomenon, the gas in the airtight container is efficiently turned into plasma. The plasmatized ions are attracted by the alternating current applied between the first electrode 10 and the second electrode 11 and applied to the sample surface with good directionality.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の装
置では、第2の電極は、絶縁物である石英ベルジャよ
り、マイクロ波入射部に対して遠い方に設置されてい
る。通常、金属汚染等をさけるため、周囲が石英ベルジ
ャで囲まれた内部において、主にマイクロ波が吸収され
プラズマ強度が強くなる様にコイルの強度の調整がなさ
れ、効率良く試料にラジカルやイオン等の入射がなされ
る様に構成される。この場合、第2の電極の周辺には拡
散されて来た弱いプラズマしか存在しない。このため、
強いプラズマと第2の電極間の電位差が増大し、プラズ
マと第1の電極もしくは試料との間の電位差が減じてし
まう。また、強いプラズマと第2の電極間の電圧差は処
理条件やプラズマの拡散状態により変動する欠点があ
り、従って強いプラズマと第1の電極もしくは試料との
間の電位差も変動する欠点があった。
In the conventional device as described above, the second electrode is installed farther from the microwave incident part than the quartz bell jar which is an insulator. Usually, in order to avoid metal contamination, the coil strength is adjusted so that the microwave is mainly absorbed and the plasma strength is increased in the interior surrounded by the quartz bell jar, and radicals, ions, etc. are efficiently added to the sample. Is configured to be incident. In this case, there is only weak plasma diffused around the second electrode. For this reason,
The potential difference between the strong plasma and the second electrode increases, and the potential difference between the plasma and the first electrode or sample decreases. Further, the voltage difference between the strong plasma and the second electrode has a drawback that it varies depending on the processing conditions and the diffusion state of the plasma, and therefore the potential difference between the strong plasma and the first electrode or the sample also has a drawback. .

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、本発明は、低圧のガス又はガス状混合物を
内部に蓄える気密容器と、前記気密容器内にガスを導入
する手段及び気密容器から絶縁されて該気密容器の内部
に設置され、かつ試料を支持する第1の電極と、前記気
密容器に接続され該気密容器内でプラズマを生成するた
めのマイクロ波を発生するマイクロ波発生器と、磁場を
発生させるコイルと、前記プラズマに電位を加えるため
に前記気密容器内に設置された第2の電極と、周波数が
マイクロ波の周波数より低く、その振幅が調整可能で、
かつ前記第1の電極と前記第2の電極間に加える交流発
生器と、前記気密容器の一部もしくは該気密容器の内部
の一部に絶縁体を有し、該絶縁体より内側にて前記プラ
ズマが生成される様構成されたプラズマ処理装置におい
て、前記絶縁体により周囲を囲まれた部分に前記第2の
電極の少なくとも一部を設け、試料上にメッシュ状金属
を設け、前記コイルに交流電流を重畳させることにより
メッシュ状金属による影の転写を防ぐことを特徴とする
プラズマ処理装置にある。
In order to achieve the above object, the present invention relates to an airtight container for storing a low-pressure gas or a gaseous mixture therein, a means for introducing the gas into the airtight container, and A first electrode that is insulated from the airtight container and is installed inside the airtight container and that supports a sample; and a microwave that is connected to the airtight container and that generates microwaves to generate plasma in the airtight container. A generator, a coil for generating a magnetic field, a second electrode installed in the airtight container for applying an electric potential to the plasma, the frequency is lower than the frequency of the microwave, and its amplitude is adjustable,
And an AC generator applied between the first electrode and the second electrode, and an insulator in a part of the airtight container or a part of the inside of the airtight container, and the insulator is provided inside the insulator. In a plasma processing apparatus configured to generate plasma, at least a part of the second electrode is provided in a portion surrounded by the insulator, a mesh metal is provided on a sample, and an alternating current is applied to the coil. The plasma processing apparatus is characterized by preventing shadow transfer due to mesh metal by superimposing an electric current.

【0007】第2の電極の表面を絶縁物により覆うこと
により金属汚染の影響を少なくすることが出来る。この
場合、第2の電極の表面を覆った絶縁物の厚さは、第2
の電極の周囲に設置された石英ベルジャ等の絶縁物の厚
さに比べ薄くすることにより、プラズマに電位を加える
機能を保有することが出来る。
By covering the surface of the second electrode with an insulator, the influence of metal contamination can be reduced. In this case, the thickness of the insulator covering the surface of the second electrode is
By making it thinner than the thickness of an insulating material such as a quartz bell jar installed around the electrode, it is possible to retain the function of applying an electric potential to the plasma.

【0008】周囲が石英ベルジャ等の絶縁物で囲まれた
部分、すなわち強いプラズマが生じている部分もしくは
強いプラズマにより近い部分に、第2の電極の少なくと
も一部を設置することにより、強いプラズマと第2の電
極間の電位差を少なく出来、強いプラズマと第1の電極
もしくは試料との間に有効にかつ変動することなしに交
流電圧を印加することが出来る。
By providing at least a part of the second electrode at a portion surrounded by an insulator such as quartz bell jar, that is, a portion where strong plasma is generated or a portion closer to the strong plasma, a strong plasma can be obtained. The potential difference between the second electrodes can be reduced, and an AC voltage can be applied between the strong plasma and the first electrode or the sample effectively and without fluctuation.

【0009】[0009]

【発明の実施の形態】以下、本発明の第1の実施例を図
1により説明する。マイクロ波発生器1にて発生した
2.45GHzのマイクロ波電力は、導波管や同軸線路
等のマイクロ波導入手段2、石英ベルジャ3を経由して
気密容器内15に導入される。気密容器は、石英ベルジ
ャ3と金属容器4で構成され、ガス導入手段5、バルブ
6および排気手段7が接続されている。気密容器内15
には、試料9、金属容器4とは絶縁された、試料を支持
する第1の電極10、および第2の電極11が設置され
ている。マイクロ波の導入、コイル8およびガスによ
り、試料9より、マイクロ波導入部に近い部分で強いE
CRプラズマが発生する。第1の電極10と第2の電極
11間に高周波電源12および整合器14を介して、数
+KHz〜数+MHzの高周波を印加する。第2の電極
11は、周囲が石英ベルジャ3に囲まれた部分のプラズ
マが強い部分に設置されているため、強いプラズマと第
2の電極11間の電位差が低くなり、効率よくかつ変動
することなしに、プラズマと試料間に高周波を印加する
ことができる。この高周波の印加により、イオンの方向
性をそろえて、異方性でかつ高レートのエツチングが可
能となる。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIG. The microwave power of 2.45 GHz generated by the microwave generator 1 is introduced into the airtight container 15 via the microwave introduction means 2 such as a waveguide or a coaxial line and the quartz bell jar 3. The airtight container is composed of a quartz bell jar 3 and a metal container 4, to which a gas introducing means 5, a valve 6 and an exhausting means 7 are connected. In an airtight container 15
A sample 9, a first electrode 10 that supports the sample and is insulated from the metal container 4, and a second electrode 11 are installed. Due to the introduction of microwaves, the coil 8 and the gas, the sample 9 has a stronger E near the microwave introduction part.
CR plasma is generated. A high frequency of several + KHz to several + MHz is applied between the first electrode 10 and the second electrode 11 via the high-frequency power source 12 and the matching device 14. Since the second electrode 11 is installed in a portion where the plasma is strong in the portion surrounded by the quartz bell jar 3, the potential difference between the strong plasma and the second electrode 11 is reduced, and the second electrode 11 can be efficiently and varied. Without, high frequency can be applied between the plasma and the sample. By applying this high frequency, it is possible to align the directionality of ions and perform anisotropic and high-rate etching.

【0010】図2,図3は、本発明の第2の実施例を示
すもので、第2の電極の構造例を示す。アルミ等の金属
の円環を用いる例である。電極11の表面積は試料9の
表面積に比べて大きい方が好ましい。なお、第2の電極
11としては、図3の断面図に示す様にアルミ等の金属
11−1の外側に数+〜数百マイクロメータの厚みの絶
縁物11−2(例えばアルミナ)で覆ったものを用いる
と、金属汚染を少なくしたり、プラズマによる金属の消
耗を少なくすることができる。
2 and 3 show a second embodiment of the present invention, which shows an example of the structure of the second electrode. This is an example of using a metal ring such as aluminum. The surface area of the electrode 11 is preferably larger than that of the sample 9. As the second electrode 11, as shown in the cross-sectional view of FIG. 3, a metal 11-1 such as aluminum is covered with an insulator 11-2 (for example, alumina) having a thickness of several + to several hundreds of micrometers. If the metal is used, the metal contamination can be reduced and the metal consumption by plasma can be reduced.

【0011】なお、図1のマイクロ波導入手段2には、
アイソレータや方向性結合器による入反射波のモニタ手
段等を含んでいる。
The microwave introducing means 2 shown in FIG.
It includes means for monitoring incident and reflected waves by an isolator and a directional coupler.

【0012】図4は、本発明の第3の実施例であり、ガ
ス導入手段5から出たガスは、ガスバッファ部13で均
一な圧力にした後、金属容器4に明けられた微小穴を通
過し、第2の電極11と石英ベルジャ3の内面で作られ
た空間を経由して気密容器内15に導入される。すなわ
ち第2の電極11の一部がガス導入路の1部を形成し、
第2の電極11の上部からガスが導入される様に構成し
ている。このようにすることにより強いプラズマの近く
にガスを供給することが出来る。
FIG. 4 shows a third embodiment of the present invention, in which the gas discharged from the gas introducing means 5 is made to have a uniform pressure in the gas buffer portion 13, and then the fine holes formed in the metal container 4 are formed. It passes through and is introduced into the airtight container 15 through the space formed by the second electrode 11 and the inner surface of the quartz bell jar 3. That is, a part of the second electrode 11 forms a part of the gas introduction path,
The gas is introduced from the upper part of the second electrode 11. By doing so, the gas can be supplied near the strong plasma.

【0013】図5は、本発明の第4の実施例であり、第
2の電極の内部をガス導入路として用いる例を示す。図
4と同様の効果が得られる。なお、図4、図5共に、第
2の内部電極11を金属容器4と接して構成したもので
ある。図3で説明した様に、第2の電極11を絶縁物1
1−2で覆った場合には、金属容器4と第2の電極11
との接合部は金属同志の接合が形成される様に絶縁体を
一部除去する必要がある。
FIG. 5 shows a fourth embodiment of the present invention, showing an example in which the inside of the second electrode is used as a gas introducing passage. The same effect as in FIG. 4 is obtained. 4 and 5, both the second internal electrode 11 and the metal container 4 are in contact with each other. As described with reference to FIG. 3, the second electrode 11 is connected to the insulator 1
When covered with 1-2, the metal container 4 and the second electrode 11
It is necessary to remove a part of the insulating material so that a metal-metal joint is formed.

【0014】図6は、本発明の第5の実施例を示す。強
いプラズマと第2の内部電極11との間の電位差を更に
小さくするため、図7に概略図を示す様に試料9の上の
部分にメッシュ状金属を設置した例である。この場合電
子サイクロトロン共鳴を生じる磁場強度の部分(ECR
ポイント)の近くから避けて、試料9に近い側に第2の
電極11を設置すると共に、メッシュのピッチは、イオ
ンや粒子等の阻害にならない様10ミリメートル以上の
大きい値とした方が良い。
FIG. 6 shows a fifth embodiment of the present invention. In order to further reduce the potential difference between the strong plasma and the second internal electrode 11, as shown in the schematic view of FIG. In this case, the portion of the magnetic field strength that causes electron cyclotron resonance (ECR
It is preferable that the second electrode 11 is installed on the side close to the sample 9 and the mesh pitch is set to a large value of 10 mm or more so as not to interfere with ions and particles while avoiding the vicinity of (point).

【0015】メッシュの形状としては、図7に示した矩
形状のものに限定されず、例えば、円周方向と半径方向
に金属を有するメッシュ等を用いることができる。図
6,図7ではECRポイントより試料9に近い場所にメ
ッシュを設置する場合を述べたが、マイクロ波の電磁界
に沿って金属、もしくは絶縁物を被覆した金属を設置す
れば、マイクロ波電磁界をあまり乱すことなく、ECR
ポイントに対して試料9より遠い部分にも第2の電極1
1の一部を設置することができる。なお、試料9の上の
部分に金属を設置すると、この金属による影が試料上に
転写される場合がある。この場合にはコイル8に交流電
流を重畳させてイオンを横方向にも移動させることによ
り回避できる。図6,図7の説明およびそれ以降に述べ
た内容の事項は、強い放電の生じる部分の周囲が絶縁体
で囲まれた装置に限らず、強い放電が生じる部分の周囲
が金属で囲まれた装置に対しても、同様に交流電力を効
率よくプラズマに印加することができる利点がある。
The shape of the mesh is not limited to the rectangular shape shown in FIG. 7, and for example, a mesh having metal in the circumferential direction and the radial direction can be used. Although FIGS. 6 and 7 describe the case where the mesh is installed at a position closer to the sample 9 than the ECR point, if a metal or a metal coated with an insulator is installed along the electromagnetic field of the microwave, the microwave electromagnetic ECR without disturbing the world
The second electrode 1 is also provided in the part farther from the sample 9 with respect to the point.
A part of 1 can be installed. When a metal is placed on the sample 9, the shadow of the metal may be transferred onto the sample. In this case, it can be avoided by superimposing an alternating current on the coil 8 to move the ions laterally. The description of FIGS. 6 and 7 and the matters described below are not limited to the device in which the periphery of the portion where the strong discharge is generated is surrounded by the insulator, and the periphery of the portion where the strong discharge is generated is surrounded by the metal. Similarly, for the device, there is an advantage that AC power can be efficiently applied to plasma.

【0016】図8は、本発明の第6の実施例を示す。気
密容器は金属容器4と金属容器の一部の表面に設置され
た絶縁体3−1、マイクロ波導入のための石英板3−2
により構成される。周囲が絶縁体3−1に囲まれた気密
容器内の位置まで第2の電極11を挿入することによ
り、図1に示した効果と同様な効果が得られる。
FIG. 8 shows a sixth embodiment of the present invention. The airtight container is a metal container 4, an insulator 3-1 installed on a part of the surface of the metal container, and a quartz plate 3-2 for introducing microwaves.
It consists of. By inserting the second electrode 11 to a position inside the airtight container surrounded by the insulator 3-1, the same effect as that shown in FIG. 1 can be obtained.

【0017】図9は、本発明の第7の実施例を示す。第
1の電極10と試料9との間に絶縁物もしくは半導体に
よりなる誘電体16を設置し、試料9を静電気的に誘電
体16に吸引させる。いわゆる静電チャック状態を具備
させる場合の第1の電極10近傍の構成について示す。
誘電体16は高い誘電率のものが好ましい。第1の電極
10および誘電体16は、絶縁体17により、金属容器
4もしくはこれと同電位の部分と絶縁されている。誘電
体11の表面には図10のように凸凹を設け、ガス源1
8からヘリウム等のガスを導入し、誘電体16と試料9
との間の熱伝達を良くしている。第1の電極10もしく
は絶縁体17には、加熱もしくは冷却用の流体を通す管
を設けて、試料9の温度の制御を行なう。交流発生器1
2で発生した交流は整合器14及び整合器14中のコン
デンサ14−1を介して第1の電極10に加えられると
共に、静電チャック用高圧電源19も整合器14内に設
置されたインダクタンスや抵抗よりなる回路素子14−
2を介して同様に第1の電極10に加えられる。第2の
電極11は金属11−1とこれを覆った絶縁物11−2
で構成され、金属11−1は金属容器4に接している。
誘電体16や絶縁物11−2の部位で、交流に対して電
位差が発生するが、誘電体16や絶縁物11−2の構成
材料の比誘電率ξγとその厚さd(mm) をd/ξγ<<
1mmを満たす様にすることにより、交流の周波数が10
0kHz程度以上においては、その電位差を小さな値に
することができる。
FIG. 9 shows a seventh embodiment of the present invention. A dielectric 16 made of an insulator or a semiconductor is installed between the first electrode 10 and the sample 9, and the sample 9 is electrostatically attracted to the dielectric 16. A configuration in the vicinity of the first electrode 10 when a so-called electrostatic chuck state is provided will be shown.
The dielectric 16 preferably has a high dielectric constant. The first electrode 10 and the dielectric 16 are insulated from the metal container 4 or a portion having the same potential as the metal container 4 by the insulator 17. As shown in FIG. 10, the surface of the dielectric 11 is provided with irregularities so that the gas source 1
A gas such as helium is introduced from 8 and the dielectric 16 and the sample 9
Improves heat transfer between and. The first electrode 10 or the insulator 17 is provided with a tube through which a heating or cooling fluid is passed to control the temperature of the sample 9. AC generator 1
The alternating current generated in 2 is applied to the first electrode 10 via the matching unit 14 and the capacitor 14-1 in the matching unit 14, and the electrostatic chuck high-voltage power supply 19 also acts on the inductance installed in the matching unit 14. Circuit element consisting of resistor 14-
It is likewise applied to the first electrode 10 via 2. The second electrode 11 includes a metal 11-1 and an insulator 11-2 covering the metal 11-1.
The metal 11-1 is in contact with the metal container 4.
A potential difference with respect to an alternating current is generated at the site of the dielectric 16 or the insulator 11-2, but the relative permittivity ξγ of the constituent material of the dielectric 16 or the insulator 11-2 and its thickness d (mm) are / Ξγ <<
By filling 1 mm, the frequency of AC is 10
Above about 0 kHz, the potential difference can be small.

【0018】これまでエッチング装置用に実施例を述べ
たが、スパッタ装置やCVD装置等の成膜装置にも同様
に適用出来る。
Although the embodiment has been described so far for the etching apparatus, the invention can be similarly applied to a film forming apparatus such as a sputtering apparatus or a CVD apparatus.

【0019】[0019]

【発明の効果】本発明によれば、強いプラズマと第2の
電極間の電位差を少なくでき、強いプラズマと第1の電
極もしくは試料間に有効かつ変動することなく安定に交
流電圧を印加することができるため、異方性プラズマ処
理が安定に行うことができる効果がある。更に、試料上
にメッシュ状金属を設けているが、コイルに交流電流を
重畳させることによりメッシュ状金属による影の転写を
防げる効果がある。
According to the present invention, the potential difference between the strong plasma and the second electrode can be reduced, and the alternating voltage can be applied stably and effectively between the strong plasma and the first electrode or the sample without fluctuation. Therefore, there is an effect that the anisotropic plasma treatment can be stably performed. Further, although the mesh-shaped metal is provided on the sample, the effect of preventing the transfer of the shadow by the mesh-shaped metal can be obtained by superimposing an alternating current on the coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のプラズマ処理装置の処
理室部縦断面構成図である。
FIG. 1 is a vertical cross-sectional configuration diagram of a processing chamber portion of a plasma processing apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例のプラズマ処理装置の第
2の電極の斜視外観図である。
FIG. 2 is a perspective external view of a second electrode of the plasma processing apparatus of the second embodiment of the present invention.

【図3】図2の第2の電極の縦断面図である。3 is a vertical cross-sectional view of the second electrode of FIG.

【図4】本発明の第3の実施例のプラズマ処理装置の処
理室部縦断面構成図である。
FIG. 4 is a vertical cross-sectional configuration diagram of a processing chamber portion of a plasma processing apparatus according to a third embodiment of the present invention.

【図5】本発明の第4の実施例のプラズマ処理装置の処
理室部部分縦断面構成図である。
FIG. 5 is a vertical cross-sectional view of a processing chamber portion of a plasma processing apparatus according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施例のプラズマ処理装置の処
理室部縦断面構成図である。
FIG. 6 is a vertical cross-sectional configuration diagram of a processing chamber portion of a plasma processing apparatus according to a fifth embodiment of the present invention.

【図7】図6の第2の電極の斜視外観図である。FIG. 7 is a perspective external view of the second electrode of FIG.

【図8】本発明の第6の実施例のプラズマ処理装置の処
理室部縦断面構成図である。
FIG. 8 is a vertical cross-sectional configuration diagram of a processing chamber portion of a plasma processing apparatus according to a sixth embodiment of the present invention.

【図9】本発明の第7の実施例のプラズマ処理装置の処
理室部縦断面構成図である。
FIG. 9 is a vertical cross sectional view of a processing chamber portion of a plasma processing apparatus according to a seventh embodiment of the present invention.

【図10】図9の誘電体の平面図である。FIG. 10 is a plan view of the dielectric of FIG.

【図11】プラズマ処理装置従来例の処理室部縦断面構
成図である。
FIG. 11 is a vertical cross-sectional configuration diagram of a processing chamber portion of a conventional example of a plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1…マイクロ波発生器、2…マイクロ波導入手段、3…
石英ベルジャ、3−1…絶縁体、3−2…石英板、4…
金属容器、5…ガス導入手段、6…バルブ、7…排気手
段、8…コイル、9…試料、10…第1の電極、11…
第2の電極、12・・・交流発生器、13・・・ガスバッフ
ァ、14・・・整合器。
1 ... Microwave generator, 2 ... Microwave introducing means, 3 ...
Quartz bell jar, 3-1 ... Insulator, 3-2 ... Quartz plate, 4 ...
Metal container, 5 ... Gas introducing means, 6 ... Valve, 7 ... Exhausting means, 8 ... Coil, 9 ... Sample, 10 ... First electrode, 11 ...
2nd electrode, 12 ... AC generator, 13 ... Gas buffer, 14 ... Matching device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 25/02 C30B 25/02 P H01L 21/203 H01L 21/203 S 21/205 21/205 21/28 21/28 F 21/285 21/285 C 21/31 21/31 C H05H 1/46 9216−2G H05H 1/46 C (72)発明者 吉開 元彦 山口県下松市大字東豊井794番地 日立テ クノエンジニアリング株式会社笠戸事業所 内 (72)発明者 川崎 義直 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 西海 正治 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C30B 25/02 C30B 25/02 P H01L 21/203 H01L 21/203 S 21/205 21/205 21 / 28 21/28 F 21/285 21/285 C 21/31 21/31 C H05H 1/46 9216-2G H05H 1/46 C (72) Inventor Motohiko Yoshikai 794 Higashitoyo, Higashitoyo, Yamaguchi Prefecture Hitachi Te Kuno Engineering Co., Ltd., Kasado Plant (72) Inventor Yoshinao Kawasaki, 794, Higashi-Toyoi, Kudamatsu City, Yamaguchi Prefecture Stock company Hitachi Ltd., Kasado Plant, (72) Shoji Saikai, 794, Higashi-Toyoi, Shimomatsu, Yamaguchi Prefecture Stock company Hitachi Ltd. Kasado factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低圧のガス又はガス状混合物を内部に蓄え
る気密容器と、前記気密容器内にガスを導入する手段及
び気密容器から絶縁されて該気密容器の内部に設置さ
れ、かつ試料を支持する第1の電極と、前記気密容器に
接続され該気密容器内でプラズマを生成するためのマイ
クロ波を発生するマイクロ波発生器と、磁場を発生させ
るコイルと、前記プラズマに電位を加えるために前記気
密容器内に設置された第2の電極と、周波数がマイクロ
波の周波数より低く、その振幅が調整可能で、かつ前記
第1の電極と前記第2の電極間に加える交流発生器と、
前記気密容器の一部もしくは該気密容器の内部の一部に
絶縁体を有し、該絶縁体より内側にて前記プラズマが生
成される様構成されたプラズマ処理装置において、前記
絶縁体により周囲を囲まれた部分に前記第2の電極の少
なくとも一部を設け、試料上にメッシュ状金属を設け、
前記コイルに交流電流を重畳させることによりメッシュ
状金属による影の転写を防ぐことを特徴とするプラズマ
処理装置。
1. An airtight container for storing a low-pressure gas or a gaseous mixture therein, a means for introducing the gas into the airtight container, and an inside of the airtight container insulated from the airtight container and supporting a sample. A first electrode, a microwave generator that is connected to the airtight container and that generates a microwave for generating plasma in the airtight container, a coil that generates a magnetic field, and a potential for applying the plasma to the plasma. A second electrode installed in the airtight container, an alternating current generator whose frequency is lower than the frequency of the microwave and whose amplitude can be adjusted, and which is applied between the first electrode and the second electrode,
In a plasma processing apparatus having an insulator in a part of the airtight container or a part of the inside of the airtight container and configured so that the plasma is generated inside the insulator, the periphery is surrounded by the insulator. Providing at least a part of the second electrode in the surrounded portion, providing a mesh-shaped metal on the sample,
A plasma processing apparatus, characterized in that transfer of a shadow due to a mesh-shaped metal is prevented by superimposing an alternating current on the coil.
JP15658196A 1996-06-18 1996-06-18 Plasma processing equipment Expired - Lifetime JP3212253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15658196A JP3212253B2 (en) 1996-06-18 1996-06-18 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15658196A JP3212253B2 (en) 1996-06-18 1996-06-18 Plasma processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12906491A Division JP3375646B2 (en) 1991-05-31 1991-05-31 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH08321494A true JPH08321494A (en) 1996-12-03
JP3212253B2 JP3212253B2 (en) 2001-09-25

Family

ID=15630898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15658196A Expired - Lifetime JP3212253B2 (en) 1996-06-18 1996-06-18 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3212253B2 (en)

Also Published As

Publication number Publication date
JP3212253B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3375646B2 (en) Plasma processing equipment
US6756737B2 (en) Plasma processing apparatus and method
US7190119B2 (en) Methods and apparatus for optimizing a substrate in a plasma processing system
US5944902A (en) Plasma source for HDP-CVD chamber
US6481370B2 (en) Plasma processsing apparatus
JP3224529B2 (en) Plasma processing system
US5759280A (en) Inductively coupled source for deriving substantially uniform plasma flux
US6172321B1 (en) Method and apparatus for plasma processing apparatus
JP4004083B2 (en) Inductively coupled RF plasma reactor with floating coil antenna for capacitive coupling reduction
JP2000323298A (en) Plasma treatment device and method
US6262538B1 (en) High density plasma tool with adjustable uniformity and stochastic electron heating for reduced gas cracking
US6439154B2 (en) Plasma processing apparatus for semiconductors
JPH08339897A (en) Guidance plasma generator and method of giving capacitive coupling
JP3254069B2 (en) Plasma equipment
JPH1174098A (en) Plasma treatment device
JP2000331996A (en) Plasma processing device
KR20180125432A (en) Plasma processing equipment
WO2019229784A1 (en) Plasma treatment apparatus
JP3077009B2 (en) Plasma processing equipment
JP3040073B2 (en) Plasma processing equipment
JP3043215B2 (en) Plasma generator
JPH08321493A (en) Plasma treatment equipment
JPH08321494A (en) Plasma treatment equipment
JP2001284333A (en) Plasma processing apparatus
JP3112610B2 (en) Plasma generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

EXPY Cancellation because of completion of term