JPH08320407A - Lens sheet, diffusion panel and transmission type screen - Google Patents

Lens sheet, diffusion panel and transmission type screen

Info

Publication number
JPH08320407A
JPH08320407A JP7151551A JP15155195A JPH08320407A JP H08320407 A JPH08320407 A JP H08320407A JP 7151551 A JP7151551 A JP 7151551A JP 15155195 A JP15155195 A JP 15155195A JP H08320407 A JPH08320407 A JP H08320407A
Authority
JP
Japan
Prior art keywords
lens sheet
film thickness
antireflection coating
lenticular lens
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7151551A
Other languages
Japanese (ja)
Other versions
JP3484827B2 (en
Inventor
Katsuaki Mitani
勝昭 三谷
Satoshi Aoki
聡 青木
Koichi Sakaguchi
広一 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15155195A priority Critical patent/JP3484827B2/en
Publication of JPH08320407A publication Critical patent/JPH08320407A/en
Application granted granted Critical
Publication of JP3484827B2 publication Critical patent/JP3484827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a bright and sharp image with little reflection of external light by forming an anti-reflection film of thickness different from an optical interference theory on a lens sheet member provided with a definite or indefinite shape. CONSTITUTION: An anti-reflection film 5 is provided on the front surface of a lenticular lens 4 with a prescribed thickness. The anti-reflection film 5 is composed of by applying a member having refractive index lower than that of a material composing a lenticular lens sheet 7, e.g. a resin member made of polymer on the surface so that the film thickness becomes 2λ/4n-5λ/4n. Consequently, a lens sheet for a transmission type screen or a diffusion panel exhibits the anti-reflection effect larger than before. Namely, the anti-reflection effect is larger compared with the film thickness based on the optical interference theory, the performance of high transmissivity is obtained and they are easily and cheaply worked/produced by means of a conventional device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は所定膜厚の反射防止被膜
を配設したレンズシートや液晶装置用拡散パネルに関
し、詳しくは投写型テレビジョン受像機の透過型スクリ
ーンを構成するレンチキュラーレンズシート,フレネル
レンズシート,拡散パネル等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens sheet provided with an antireflection coating having a predetermined film thickness and a diffusing panel for a liquid crystal device. More specifically, the present invention relates to a lenticular lens sheet which constitutes a transmission screen of a projection television receiver. Fresnel lens sheet, diffuser panel, etc.

【0002】[0002]

【従来の技術】従来、透過型スクリーンや液晶パネルの
反射防止被膜を所定膜厚に構成する場合、透過型スクリ
ーンや液晶パネルのに基材より低い屈折率を備えた高分
子材料を用い、光干渉理論(λ/4n)に基づいて実施
していた。光干渉による反射防止膜の基本理論を図8に
示す。平面基板107の屈折率をn 2 ,薄膜106の屈
折率をn,そして入射光側媒質(ほとんどの場合空気)
の屈折率をn1 と定義する。垂直入射光100が空気1
05と薄膜106の界面で起こる薄膜106の上面反射
101による上面反射光の強度103と薄膜106と平
面基板107の界面で起こる薄膜106の下面反射10
2による下面反射光の強度104が完全に打ち消し合う
には、上面反射光の強度103と下面反射光の強度10
4の強度が相等しくなければならない。このためには各
境界面における屈折率が等しい。すなわち、n1 /n=
n/n2(n2 =n1 ×n2 )の関係式が成立する必要
がある。この関係式より、反射防止膜の屈折率nは、通
常屈折率1とみなせる空気n1 と基板の屈折率n2 の間
の値、(n2 =1×n2 つまりn2 =n2 となり)、基
板の屈折率n2 の平方根の値となる。また、入射光10
0の一部は反射防止膜の上面および下面で反射される
が、共に反射は隣接する媒質より低い屈折率の媒質中で
生じる。従って、反射2光束が打ち消し合う干渉効果に
するには、相対的な位相シフトが180゜になるように
すれば良く、二つの光束の間の全位相差が1/4波長の
2倍,すなわち、180゜に対応するとき、膜の光学薄
膜が1/4波長の膜厚(式1)になるようにすれば良
い。 膜厚(d) = (λ×1)/(4×n)・・・・・(式1) これらのことから、最も簡単な反射防止膜は基板の屈折
率の平方根に等しい屈折率をもち、かつその光学薄膜が
使用する際の光の波長の1/4に等しい値をもつ単層膜
となる。しかし、現存する薄膜材料として、基板の屈折
率の平方根に等しい屈折率を有した材料がないため、最
も理論値に近い屈折率の材料を選択して使用している。
前記光干渉理論(λ/4n)による低反射樹脂被膜の従
来の実施例としては、特開平5−265095号や特開
平5−289176号及び特開平5−289179号が
提案知されている。これらの実施例はいずれも光干渉理
論膜厚(λ/4n)を基にして被膜の膜厚を形成したも
のである。例えば、前記特開平5−265095号では
レンズシ−トの表面に形成する低屈折率樹脂の被膜の膜
厚の中心が上記(式1)の関係が満たされるように12
5nm〜150nmの範囲内に限定している。
2. Description of the Related Art Conventionally, transmission type screens and liquid crystal panels
If the anti-reflection coating has a predetermined thickness, a transmission screen
High refractive index with a lower refractive index than that of the base material for LCDs and LCD panels
Implemented based on the theory of optical interference (λ / 4n) using a child material
Was. Figure 8 shows the basic theory of anti-reflection film by optical interference.
Show. Let the refractive index of the flat substrate 107 be n 2, Bending of thin film 106
Folding factor is n, and incident light medium (air in most cases)
The refractive index of n1Is defined. Vertically incident light 100 is air 1
Reflection of the thin film 106 that occurs at the interface between 05 and the thin film 106
Intensity 103 of light reflected from the upper surface by 101 and thin film 106
Lower surface reflection 10 of the thin film 106 occurring at the interface of the surface substrate 107
The intensity 104 of the light reflected from the bottom surface due to 2 completely cancels each other out.
Includes the intensity 103 of the upper surface reflected light and the intensity 10 of the lower surface reflected light.
The intensities of 4 must be equal. For this each
The indices of refraction at the interface are equal. That is, n1/ N =
n / n2(N2= N1× n2) Must be satisfied
There is. From this relational expression, the refractive index n of the antireflection film is
Air n that can be regarded as ordinary refractive index 11And substrate refractive index n2Between
Value of, (n2= 1 × n2That is n2= N2Next),
Refractive index n of plate2Is the square root of. In addition, the incident light 10
Part of 0 is reflected on the upper and lower surfaces of the antireflection film.
However, both reflections are in a medium with a lower refractive index than the adjacent medium.
Occurs. Therefore, in the interference effect that the two reflected light beams cancel each other out,
To make the relative phase shift 180 degrees,
The total phase difference between the two light beams is 1/4 wavelength
The optical thinness of the film when it corresponds to 2 times, that is, 180 °
It suffices if the film has a film thickness of 1/4 wavelength (Equation 1).
Yes. Film thickness (d) = (λ × 1) / (4 × n) (Equation 1) From these, the simplest antireflection film is the substrate refraction.
Has a refractive index equal to the square root of the index, and its optical thin film
Single layer film having a value equal to 1/4 of the wavelength of light when used
Becomes However, as an existing thin film material, substrate refraction
Since no material has an index of refraction equal to the square root of the index,
Also selects and uses a material having a refractive index close to the theoretical value.
According to the light interference theory (λ / 4n)
Examples of the conventional examples are Japanese Patent Laid-Open No. 5-265095 and Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open No. 5-289176 and Japanese Patent Application Laid-Open No. 5-289179
The proposal is known. In all of these examples, optical interference
When the film thickness of the film is formed based on the theoretical film thickness (λ / 4n)
Of. For example, in JP-A-5-265095,
Film of low refractive index resin film formed on the surface of lens sheet
The center of thickness should be 12 so that the relation of (Equation 1) above is satisfied.
It is limited to the range of 5 nm to 150 nm.

【0003】また、特開平5−289176号及び特開
平5−289179号でもレンズシートの表面に形成す
る低屈折率樹脂の被膜の膜厚が光干渉理論膜厚(λ/4
n)を基にしたものとなっている。
Further, in JP-A-5-289176 and JP-A-5-289179, the film thickness of the low refractive index resin film formed on the surface of the lens sheet is the theoretical film thickness of optical interference (λ / 4).
It is based on n).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の透過型スクリーンを構成するフレネルレンズシートや
レンチキュラーレンズシートは表面に複数のレンズを配
設してなる。
However, the Fresnel lens sheet and the lenticular lens sheet constituting the above-mentioned conventional transmission screen have a plurality of lenses arranged on the surface thereof.

【0005】例えば、図1に示すレンチキュラーレンズ
の場合、最も強度の強い垂直入射光線がレンチキュラー
レンズ面において反射防止被膜を垂直透過するのはレン
チキュラーレンズの中央部のみで、それ以外は全て斜め
透過光線となる。
For example, in the case of the lenticular lens shown in FIG. 1, it is only the central portion of the lenticular lens that the strongest vertically incident light vertically passes through the antireflection coating on the surface of the lenticular lens. Becomes

【0006】平面板における光干渉理論による膜厚(λ
/4n)で反射防止膜を形成した場合、実際に光干渉理
論に基づいた膜厚dを透過する光線はレンチキュラーレ
ンズの中央部のみで、それ以外のレンチキュラーレンズ
面では光干渉理論と異なった膜厚d1,d2を透過する
光となる。
The film thickness (λ
/ 4n) when the antireflection film is formed, the light beam that actually transmits the film thickness d based on the optical interference theory is only the central part of the lenticular lens, and the other lenticular lens surface is different from the optical interference theory. The light is transmitted through the thicknesses d1 and d2.

【0007】その結果、光干渉理論による膜厚の透過光
は極めて少なく、十分な反射防止効果が得られないこと
が判明した。
As a result, it has been found that the amount of transmitted light having a film thickness according to the theory of light interference is extremely small and a sufficient antireflection effect cannot be obtained.

【0008】また、図6に示すフレネルレンズの場合に
おいても、同様に平面板における光の反射と異なり、垂
直入射光線が光干渉理論による膜厚dの透過光となら
ず、光干渉理論と異なる膜厚d3の透過光となる量が非
常に多くなる。
Also, in the case of the Fresnel lens shown in FIG. 6, similarly to the reflection of light on the plane plate, the vertically incident light ray does not become the transmitted light of the film thickness d according to the light interference theory, which is different from the light interference theory. The amount of transmitted light having a film thickness d3 becomes very large.

【0009】その結果、平面板における光干渉理論によ
る膜厚(λ/4n)が成立せず、低反射樹脂被膜の効果
が光干渉理論と異なり、十分な反射防止効果が得られな
いという問題点があった。
As a result, the film thickness (λ / 4n) according to the light interference theory on the plane plate is not established, the effect of the low reflection resin coating is different from the light interference theory, and a sufficient antireflection effect cannot be obtained. was there.

【0010】本発明は上記問題に鑑み、反射防止効果に
優れた被膜寸法を、光干渉理論に基づかずに構成した透
過型スクリーン用レンズシートまたは拡散パネル等を提
供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a lens sheet for a transmissive screen, a diffusion panel, or the like, which has a coating size excellent in antireflection effect and is not based on the theory of light interference.

【0011】[0011]

【課題を解決するための手段】本発明は上記の問題点を
解決するため、複数のレンズを備えたフレネルレンズシ
ートやレンチキュラーレンズシートまたは凹凸のある拡
散パネルの表面に、低屈折率部材たとえば高分子からな
る樹脂部材を所定膜厚寸法に配設してなる。
In order to solve the above problems, the present invention solves the above problems by forming a low refractive index member such as a high refractive index member on the surface of a Fresnel lens sheet or a lenticular lens sheet having a plurality of lenses or an uneven diffusion panel. A resin member made of molecules is arranged to have a predetermined thickness.

【0012】レンズシート部材に塗布する反射防止被膜
の膜厚寸法は、光干渉理論と異なる膜厚寸法を形成して
なる。
The thickness of the antireflection coating applied to the lens sheet member is different from that of the theory of light interference.

【0013】[0013]

【作用】本発明は上記した構成によって、透過型スクリ
ーン用レンズシートまたは拡散パネルにおいて、従来に
ない反射防止効果を発揮できる。すなわち、光干渉理論
に基づく膜厚寸法に比べ反射防止効果が大きく、透過率
の高い性能が得られる。また、従来装置により容易にか
つ安価に加工、生産できる。
With the above-mentioned structure, the present invention can exert an antireflection effect which has not been obtained in the past in a lens sheet for a transmission type screen or a diffusion panel. That is, the antireflection effect is greater than the film thickness dimension based on the light interference theory, and the performance with high transmittance can be obtained. Further, it can be easily and inexpensively processed and produced by the conventional device.

【0014】[0014]

【実施例】以下、本発明の実施例におけるレンズシート
を図面を参照しながら説明する。図1は本発明の一実施
例におけるレンチキュラーレンズシートの要部構成断面
図を示す。図1において、レンチキュラーレンズ4の表
面には反射防止被膜5が所定の膜厚に配設されている。
前記反射防止被膜は該レンチキュラーレンズシート7を
構成する材料より低い屈折率の部材たとえば高分子から
なる樹脂部材を膜厚寸法が1.2λ/4n〜5λ/4n
となるよう塗布してなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lens sheet according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the essential parts of a lenticular lens sheet according to an embodiment of the present invention. In FIG. 1, an antireflection coating 5 is provided on the surface of the lenticular lens 4 to have a predetermined film thickness.
The antireflection coating is a member having a refractive index lower than that of the material forming the lenticular lens sheet 7, for example, a resin member made of a polymer and having a film thickness of 1.2λ / 4n to 5λ / 4n.
It is applied so that

【0015】図2は、図1のレンチキュラーレンズシー
トに低屈折率樹脂の反射防止被膜を各種の膜厚で形成
し、異なる膜厚の可視光線領域内での反射率を実測した
実測反射率曲線を示す。図3は図2の反射率曲線の55
0nmの波長での反射防止被膜の膜厚による反射率の差
を示した反射率効果曲線を示す。図4は前記低屈折率樹
脂を使用し、理論計算に従って各種の膜厚に形成した時
の可視光線領域内での反射率曲線を示す。図5は、平面
基板に前記低屈折率樹脂の反射防止被膜を各種膜厚に形
成した時の可視光線領域内での実測反射率曲線を示す。
図6はフレネルレンズシートに低屈折率樹脂を最適膜厚
として形成した本発明の反射防止被膜の要部構成断面図
を示す。
FIG. 2 is a measured reflectance curve obtained by actually measuring reflectance in the visible light region having different thicknesses by forming an antireflection coating of low refractive index resin on the lenticular lens sheet of FIG. 1 with various thicknesses. Indicates. FIG. 3 shows the reflectance curve 55 of FIG.
The reflectance effect curve which shows the difference of the reflectance with the film thickness of an antireflection coating in the wavelength of 0 nm is shown. FIG. 4 shows reflectance curves in the visible light region when the low refractive index resin is used and various thicknesses are formed according to theoretical calculation. FIG. 5 shows measured reflectance curves in the visible light region when the antireflection coating of the low refractive index resin is formed in various thicknesses on the flat substrate.
FIG. 6 shows a cross-sectional view of the essential parts of an antireflection coating of the present invention in which a Fresnel lens sheet is formed of a low refractive index resin with an optimum film thickness.

【0016】図1に示されるように、レンチキュラーレ
ンズ4の表面に反射防止被膜5が形成された場合、垂直
入射光1は透過光2と反射光3となる。この時、反射光
3は反射防止被膜5によりレンチキュラーレンズシート
の屈折率より低い屈折率の部材が使用されており、光干
渉効果により非常に低い反射光となる。従来、光干渉効
果による反射防止被膜の最適膜厚寸法は、平面板におけ
る光干渉理論による膜厚(λ/4n)とされていた。
As shown in FIG. 1, when the antireflection coating 5 is formed on the surface of the lenticular lens 4, the vertically incident light 1 becomes transmitted light 2 and reflected light 3. At this time, the reflected light 3 uses a member having a refractive index lower than that of the lenticular lens sheet due to the antireflection coating 5, and becomes a very low reflected light due to the optical interference effect. Conventionally, the optimum film thickness dimension of the antireflection coating due to the light interference effect has been set to the film thickness (λ / 4n) according to the light interference theory in the plane plate.

【0017】しかし、レンチキュラーレンズシートにお
いては光干渉理論による膜厚(λ/4n)が必ずしも最
適膜厚とならない。以下に、表面が定形または不定形な
形状においての反射防止薄膜の最適膜厚について述べ
る。図1において、レンチキュラーレンズ4の表面に、
例えば光干渉理論による膜厚(λ/4n)で反射防止薄
膜を形成した場合、垂直入射光1の内レンチキュラーレ
ンズの中央部に入射したAとブラックストライプ6の平
面部に入射したEの入射光線のみが理論に合致した光干
渉理論膜厚dを透過する透過光となる。レンズ形状部に
入射したB,Cの入射光線は光干渉理論による膜厚を透
過する透過光とならず、実際には膜厚を斜めに透過す
る。
However, in the lenticular lens sheet, the film thickness (λ / 4n) according to the theory of light interference is not always the optimum film thickness. The optimum film thickness of the antireflection thin film when the surface has a regular or irregular shape will be described below. In FIG. 1, on the surface of the lenticular lens 4,
For example, when an antireflection thin film is formed with a film thickness (λ / 4n) according to the theory of light interference, an incident light ray A incident on the central portion of the lenticular lens of the vertically incident light 1 and an incident light ray E incident on the flat portion of the black stripe 6 Only the transmitted light is transmitted through the theoretical optical interference film thickness d that matches the theory. The incident light of B and C incident on the lens-shaped portion does not become the transmitted light that transmits the film thickness according to the theory of optical interference, but actually transmits the film diagonally.

【0018】その結果、光干渉理論と異なる膜厚d1,
d2の領域を透過することになり、最大に反射防止効果
が得られないことになる。
As a result, the film thickness d1, which is different from the optical interference theory,
The light is transmitted through the area of d2, and the maximum antireflection effect cannot be obtained.

【0019】本発明は光干渉理論と異なる膜厚寸法の反
射防止被膜を形成することにより最適な反射防止効果を
得るもので、以下その膜厚寸法について述べる。図4は
本発明に使用した低屈折率樹脂の反射防止被膜を、理論
計算式で各種の膜厚寸法に形成した場合の、可視光線領
域内での反射率曲線を示す。アクリル樹脂の平面基板反
射率曲線F0は可視波長領域(400nm〜700n
m)でほぼ一様に約3.9%の反射率曲線をしている。
また、反射防止被膜の膜厚寸法を0.05μm(F1)
〜0.07μm(F2)〜0.1μm(F)〜0.12
5μm(F3)〜0.15μm(F4)〜0.21μm
(F5)〜0.25μm(F6)と変化させた場合、理
論計算膜厚0.1μm(F)が可視波長領域で全域に最
も低い反射率を示している。図5は、本発明の構成にお
ける低屈折率樹脂を、平面基板に各種の膜厚寸法に形成
した場合の反射率特性を示す。
The present invention obtains an optimum antireflection effect by forming an antireflection film having a film thickness dimension different from the theory of optical interference. The film thickness dimension will be described below. FIG. 4 shows reflectance curves in the visible light region when the antireflection coating of the low refractive index resin used in the present invention is formed into various film thickness dimensions by a theoretical calculation formula. The plane substrate reflectance curve F0 of the acrylic resin is in the visible wavelength region (400 nm to 700 n
The reflectance curve of about 3.9% is almost uniform in m).
Further, the thickness of the antireflection coating is 0.05 μm (F1)
~ 0.07 μm (F2) ~ 0.1 μm (F) ~ 0.12
5 μm (F3) to 0.15 μm (F4) to 0.21 μm
When changed from (F5) to 0.25 μm (F6), the theoretical calculated film thickness of 0.1 μm (F) shows the lowest reflectance in the entire visible wavelength region. FIG. 5 shows the reflectance characteristics when the low-refractive index resin in the constitution of the present invention is formed on a flat substrate with various film thickness dimensions.

【0020】すなわち、アクリル樹脂の平面基板反射率
曲線G0,以下平面基板に形成した膜厚0.05μm
(G1)〜0.07μm(G2)〜0.125μm(G
3)〜0.15μm(G4)〜0.21μm(G5)〜
0.25μm(G6)となり、理論とほぼ近似した反射
率曲線を示す。最適な理論膜厚λ/4nは0.550÷
(4×1.34=0.1026μmとなり、図4のF,
図5のGで示す。
That is, the reflectance curve G0 of the flat substrate of acrylic resin, the film thickness formed on the flat substrate hereinafter is 0.05 μm.
(G1) to 0.07 μm (G2) to 0.125 μm (G
3) to 0.15 μm (G4) to 0.21 μm (G5)
It is 0.25 μm (G6), which is a reflectance curve almost similar to the theory. The optimum theoretical film thickness λ / 4n is 0.550 ÷
(4 × 1.34 = 0.1026 μm, and F,
This is indicated by G in FIG.

【0021】しかし、表面に定形または不定形のレンチ
キュラーレンズを備えたレンチキュラーレンズシートの
場合、前述のごとく光干渉理論による膜厚(λ/4n)
が最適膜厚とならない。反射率がχ0のレンチキュラー
レンズにおいて、反射防止被膜の膜厚寸法を0.05μ
m(χ1)〜0.07μm(χ2)〜0.1μm(χ)
〜0.125μm(χ3)〜0.15μm(χ4)〜
0.21μm(χ5)〜0.25μm(χ6)と変化さ
せた場合の反射率特性を図2に示す。実測値における最
適膜厚寸法は、光干渉理論における最適膜厚寸法の1.
2倍〜3倍となった。図3は可視波長領域の中心波長の
550nmの反射率特性を示し、反射防止効果曲線yは
所定膜厚に近づくと大きな変化を示さない。
However, in the case of a lenticular lens sheet having a regular or irregular lenticular lens on the surface, the film thickness (λ / 4n) according to the theory of optical interference as described above.
Is not the optimum film thickness. In a lenticular lens with a reflectance of χ0, the thickness of the antireflection coating is 0.05μ
m (χ1) to 0.07 μm (χ2) to 0.1 μm (χ)
~ 0.125 µm (χ3) ~ 0.15 µm (χ4) ~
FIG. 2 shows the reflectance characteristics when changing from 0.21 μm (χ5) to 0.25 μm (χ6). The optimum film thickness dimension in the measured value is 1. of the optimum film thickness dimension in the optical interference theory.
It became 2 to 3 times. FIG. 3 shows the reflectance characteristic of the central wavelength of 550 nm in the visible wavelength region, and the antireflection effect curve y does not show a large change when approaching the predetermined film thickness.

【0022】また、各種レンズ性能(レンズ集光特性,
光拡散特性,その他輝度ムラ,色ムラ,色変化等)を測
定、評価した結果、本発明における反射防止被膜の膜厚
寸法が2μm以下の場合はレンズ性能の劣化が無いこと
が判明した。即ち、本発明における反射防止被膜の有効
膜厚寸法は、光干渉理論における膜厚寸法の約20倍と
なる。しかし、最適膜厚寸法は製造コストと品質の安定
性にも依存することは言うまでもない。
Various lens performances (lens condensing characteristics,
As a result of measuring and evaluating light diffusion characteristics, other brightness unevenness, color unevenness, color change, etc., it was found that the lens performance did not deteriorate when the film thickness dimension of the antireflection coating in the present invention was 2 μm or less. That is, the effective film thickness dimension of the antireflection coating in the present invention is about 20 times the film thickness dimension in the theory of optical interference. However, it goes without saying that the optimum film thickness dimension also depends on the manufacturing cost and quality stability.

【0023】本実施例の場合、望ましい膜厚寸法範囲を
0.12μm〜0.50μmとした。但し、本発明はレ
ンチキュラーレンズシート材料がアクリル樹脂(屈折率
1.49)と反射防止被膜材料(屈折率1.34)を使
用した例であり、基板材料がポリカーボネート樹脂(屈
折率1.59)やMS樹脂(屈折率1.53〜1.5
7),その他屈折率の異なる材料と反射防止膜の材料
(屈折率)が異なる場合には、各種の組合せによる最適
膜厚寸法の範囲が重要となる。従って、本発明は、前記
実測値より、望ましい膜厚寸法範囲を1.2λ/4n〜
5λ/4nとする。
In the case of this embodiment, the desired film thickness dimension range was set to 0.12 μm to 0.50 μm. However, the present invention is an example in which the lenticular lens sheet material uses an acrylic resin (refractive index 1.49) and an antireflection coating material (refractive index 1.34), and the substrate material is a polycarbonate resin (refractive index 1.59). And MS resin (refractive index 1.53 to 1.5
7) In addition, when the material (refractive index) of the antireflection film is different from the material of different refractive index, the range of the optimum film thickness dimension by various combinations is important. Therefore, in the present invention, the desirable film thickness dimension range is 1.2λ / 4n to
It is set to 5λ / 4n.

【0024】なお、フレネルレンズシートや拡散パネル
においても反射防止被膜を1.2λ/4n〜5λ/4n
の膜厚寸法範囲に塗布することは有効である。その理由
は図6に示すように、フレネルレンズシートにおいても
斜め透過光11となる光が多い。その結果、光干渉理論
と異なる膜厚d3での反射となり光干渉理論膜厚が成り
立たない。拡散パネルにおいても同様である。
Even in a Fresnel lens sheet or a diffusion panel, an antireflection coating is used in the range of 1.2λ / 4n to 5λ / 4n.
It is effective to apply in the range of the film thickness dimension. The reason for this is that, as shown in FIG. 6, even in the Fresnel lens sheet, there is a large amount of obliquely transmitted light 11. As a result, reflection occurs at a film thickness d3 different from the optical interference theory, and the optical interference theory film thickness does not hold. The same applies to the diffusion panel.

【0025】次に、本発明の実施例における透過型スク
リーンについて説明する。図7は、本発明の実施例にお
ける透過型スクリーンの要部構成断面図を示す この場合の透過型スクリーンは、レンチキュラーレンズ
シートとフレネルレンズシートとの2枚で構成してな
る。さらに、反射防止被膜27を入射光側レンズ24と
出射光側レンズ25とブラックストライプ23の表面に
所定膜厚寸法に配設してなる。
Next, the transmissive screen according to the embodiment of the present invention will be described. FIG. 7 shows a cross-sectional view of the essential parts of a transmissive screen according to an embodiment of the present invention. In this case, the transmissive screen is composed of two lenticular lens sheets and Fresnel lens sheets. Further, an antireflection coating 27 is provided on the surfaces of the incident light side lens 24, the outgoing light side lens 25 and the black stripe 23 so as to have a predetermined film thickness.

【0026】この場合の反射防止被膜27の膜厚寸法は
1.2λ/4n〜5λ/4nの範囲に塗布している。塗
布方法は任意の手段たとえばディップ法,スプレー法,
蒸着法などを用いてよい。本発明の実施例ではディップ
法を用いた。
In this case, the thickness of the antireflection coating 27 is 1.2 λ / 4n to 5λ / 4n. The application method may be any method such as dipping method, spraying method,
A vapor deposition method or the like may be used. The dipping method was used in the examples of the present invention.

【0027】さらに、反射防止被膜を構成する部材とし
て、旭硝子(株)製「サイトップ(屈折率n=1.3
4)」(商品名)を用いている。膜厚寸法はサイトップ
の濃度とディップ槽からの引き上げ速度とに依存する。
本発明の実施例においては膜厚寸法を前記1.2λ/4
n〜5λ/4nの範囲となる0.12μm〜0.5μm
の範囲となるよう、望ましくは0.2μm±0.05μ
mに形成した。
Further, as a member constituting the antireflection coating, "CYTOP (refractive index n = 1.3) manufactured by Asahi Glass Co., Ltd.
4) ”(trade name) is used. The film thickness dimension depends on the concentration of Cytop and the pulling rate from the dip tank.
In the embodiment of the present invention, the film thickness is 1.2λ / 4.
0.12 μm to 0.5 μm in the range of n to 5λ / 4n
0.2 μm ± 0.05 μ
formed to m.

【0028】一般に、透過型スクリーンにおいては、C
RTからの入射光線28がフレネルレンズシート21に
入射し、フレネルレンズ26で並行光線になり、レンチ
キュラーレンズシ−ト22の入射側レンズ24に入射す
ると出射側レンズ25の表面近傍に集光され、出射光線
29となって観察者に届く。この時、レンチキュラーレ
ンズシート22の入射側レンズ24と出射側レンズ25
の表面で反射光線32が起こる。該記反射光を低減する
ため反射防止被膜27がレンチキュラーレンズシート2
2の入射側レンズ24と出射側レンズ25の表面に形成
される。可視波長550nmにおけるレンチキュラーレ
ンズシート22の反射率が4.5%(図3のχ0点、反
射防止被膜無し)となるのに対し、従来の光干渉理論に
基づく膜厚寸法で反射防止被膜を形成した場合は3.6
%(図3のχ),本発明の構成に基づく反射防止被膜寸
法の反射率はさらに低い3.1%(図3のχ5)とな
る。
Generally, in a transmissive screen, C
An incident light ray 28 from RT enters the Fresnel lens sheet 21, becomes a parallel light ray by the Fresnel lens 26, and enters the incident side lens 24 of the lenticular lens sheet 22 and is condensed near the surface of the emitting side lens 25. The emitted light ray 29 reaches the observer. At this time, the entrance side lens 24 and the exit side lens 25 of the lenticular lens sheet 22
A reflected ray 32 occurs at the surface of the. In order to reduce the reflected light, the antireflection coating 27 is provided with the lenticular lens sheet 2
It is formed on the surfaces of the second incident side lens 24 and the outgoing side lens 25. While the reflectance of the lenticular lens sheet 22 at a visible wavelength of 550 nm is 4.5% (point χ0 in FIG. 3, no antireflection coating), an antireflection coating is formed with a film thickness dimension based on the conventional theory of optical interference. If you do 3.6
% (Χ in FIG. 3), the reflectance of the dimension of the antireflection coating based on the constitution of the present invention is 3.1% (χ5 in FIG. 3) which is lower.

【0029】すなわち、従来法に比べ特性が約16%
(3.6/3.1)改善され、光の透過率が高くなる。
その結果、CRTの入射光線28が出射光線29となる
とき約16%向上されてスクリーン性能の明るさの向上
となる。
That is, the characteristic is about 16% as compared with the conventional method.
(3.6 / 3.1) is improved, and the light transmittance is increased.
As a result, when the incident light ray 28 of the CRT becomes the outgoing light ray 29, it is improved by about 16%, and the brightness of the screen performance is improved.

【0030】さらに、外光の入射光線30が入射する場
合にも外光の反射光線31を生じるが、外光の反射にお
いても本発明構成の反射防止被膜の効果は同様となる。
即ち、スクリーン性能において、対外光コントラストが
16%改善された。
Further, when the incident light ray 30 of the external light is incident, the reflected light ray 31 of the external light is generated, but the effect of the antireflection coating of the present invention is the same in the reflection of the external light.
That is, the contrast of external light was improved by 16% in the screen performance.

【0031】なお、本実施例ではレンチキュラーレンズ
シートに本発明の反射防止被膜を形成する場合の例を述
べたが、フレネルレンズシートに本発明の反射防止被膜
を形成するようにしてもよい。勿論、レンチキュラーレ
ンズシートとフレネルレンズシートの両方に反射防止被
膜を形成する構成としてよい。両方に反射防止被膜を構
成した場合は更にスクリーン特性を改善できる。
In this embodiment, an example of forming the antireflection coating of the present invention on the lenticular lens sheet has been described, but the antireflection coating of the present invention may be formed on the Fresnel lens sheet. Of course, the antireflection coating may be formed on both the lenticular lens sheet and the Fresnel lens sheet. When the antireflection coating is formed on both of them, the screen characteristics can be further improved.

【0032】さらに、レンチキュラーレンズシートとフ
レネルレンズシートに加えて、レンチキュラーレンズシ
ートの前面に拡散パネルを備えた透過型スクリーンとし
てよいことも同様である。反射防止被膜を各々のレンズ
シートに配設する構成の組合せは任意に実施してよい。
Furthermore, in addition to the lenticular lens sheet and the Fresnel lens sheet, a transmissive screen having a diffusion panel on the front surface of the lenticular lens sheet may also be used. The combination of the configurations in which the antireflection coating is provided on each lens sheet may be arbitrarily implemented.

【0033】また、本実施例では投写型テレビジョン受
像機の定形のレンズを使用したスクリーンに実施した例
を述べたが、本発明の構成は不定形のレンズ集団や、表
面が凹凸形状になっている場合にも有効であることは言
うまでもない。
In this embodiment, an example in which the screen of the projection type television receiver using a fixed lens is used is described. However, the structure of the present invention has an irregular lens group or an uneven surface. It goes without saying that it is also effective when

【0034】[0034]

【発明の効果】以上説明したように、定形または不定形
の形状を備えたレンズシート部材または凹凸を備えた拡
散パネル等に反射防止被膜を光干渉理論と異なった膜厚
に形成することにより、光干渉理論に基づく膜厚で形成
した反射防止被膜の場合より性能のよい反射防止効果が
得られる。
As described above, by forming an antireflection coating on a lens sheet member having a regular shape or an irregular shape or a diffusion panel having unevenness to have a film thickness different from the optical interference theory, An antireflection effect with better performance can be obtained than in the case of an antireflection coating formed with a film thickness based on the theory of light interference.

【0035】その結果、投写型テレビジョン受像機のス
クリーンや液晶パネルその他のフィルターや拡散板等に
使用した場合に、明るさと外光反射の少ない鮮明な画像
が得られる。
As a result, when it is used for a screen of a projection television receiver, a liquid crystal panel, other filters, a diffusion plate, etc., a clear image with little brightness and external light reflection can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるレンチキュラーレン
ズシ−トの要部断面図
FIG. 1 is a sectional view of an essential part of a lenticular lens sheet according to an embodiment of the present invention.

【図2】本発明の構成における反射防止被膜の膜厚と反
射率の関係特性図
FIG. 2 is a characteristic diagram showing the relationship between the film thickness and the reflectance of the antireflection coating in the constitution of the present invention.

【図3】本発明の構成における可視波長550nmでの
反射防止効果曲線図
FIG. 3 is a curve diagram of an antireflection effect at a visible wavelength of 550 nm in the constitution of the present invention.

【図4】平面板に反射防止被膜厚を形成した場合の理論
値の反射率曲線図
FIG. 4 is a reflectance curve diagram of theoretical values when an antireflection coating film is formed on a flat plate.

【図5】平面板に反射防止被膜厚を形成した場合の実測
値の反射率曲線図
FIG. 5 is a reflectance curve diagram of actual measurement values when an antireflection film thickness is formed on a flat plate.

【図6】本発明の一実施例におけるフレネルレンズシー
トの要部断面図
FIG. 6 is a cross-sectional view of essential parts of a Fresnel lens sheet according to an embodiment of the present invention.

【図7】本発明の一実施例における透過型スクリーンの
要部断面図
FIG. 7 is a cross-sectional view of a main part of a transmissive screen according to an embodiment of the present invention.

【図8】光干渉理論に基づく反射防止被膜を平板に形成
した場合の光線の挙動を説明する要部断面図
FIG. 8 is a sectional view of an essential part for explaining the behavior of light rays when an antireflection coating based on the theory of light interference is formed on a flat plate.

【符号の説明】[Explanation of symbols]

1 垂直入射光 2 透過光 3 反射光 4 レンチキュラーレンズ 5 反射防止被膜 6 ブラックストライプ 7 レンチキュラーレンズシート 10 垂直入射光 11 透過光 21 フレネルレンズシート 22 レンチキュラーレンズシート 23 ブラックストライプ 24 入射側レンズ 25 出射側レンズ 26 フレネルレンズ 27 反射防止被膜 28 CRTからの入射光線 29 出射光線 30 外光の入射光線 31 外光の反射光線 32 CRT光の入射光線の反射光線 100 垂直入射光 101 薄膜の上面反射 102 薄膜の下面反射 103 薄膜の上面反射光の強度 104 薄膜の下面反射光の強度 105 入射光側媒質(通常は空気) 106 薄膜 107 平面基板 d 光干渉理論膜厚 d1 光干渉理論と異なる膜厚 d2 光干渉理論と異なる膜厚 d3 光干渉理論と異なる膜厚 χ0 レンチキュラーレンズの実測反射率 χ レンチキュラーレンズに形成した光干渉理論膜厚
0.1μmの反射率 χ1 レンチキュラーレンズに形成した膜厚0.05μ
mの反射率 χ2 レンチキュラーレンズに形成した膜厚0.07μ
mの反射率 χ3 レンチキュラーレンズに形成した膜厚0.125
μmの反射率 χ4 レンチキュラーレンズに形成した膜厚0.15μ
mの反射率 χ5 レンチキュラーレンズに形成した膜厚0.21μ
mの反射率 χ6 レンチキュラ−レンズに形成した膜厚0.25μ
mの反射率 χ7 レンチキュラーレンズに形成した膜厚0.30μ
mの反射率 y 可視波長中央部550nmの反射率による反射防止
効果曲線 F0 アクリル樹脂の平面基板反射率 F 理論計算膜厚0.1μmの反射率 F1 理論計算膜厚0.05μmの反射率 F2 理論計算膜厚0.07μmの反射率 F3 理論計算膜厚0.125μmの反射率 F4 理論計算膜厚0.150μmの反射率 F5 理論計算膜厚0.21μmの反射率 F6 理論計算膜厚0.25μmの反射率 G0 アクリル樹脂平面基板の実測反射率 G アクリル樹脂平面基板に形成した理論膜厚0.1μ
mの実測反射率 G1 アクリル樹脂平面基板に形成した膜厚0.05μ
mの実測反射率 G2 アクリル樹脂平面基板に形成した膜厚0.07μ
mの実測反射率 G3 アクリル樹脂平面基板に形成した膜厚0.125
μmの実測反射率 G4 アクリル樹脂平面基板に形成した膜厚0.15μ
mの実測反射率 G5 アクリル樹脂平面基板に形成した膜厚0.21μ
mの実測反射率 G6 アクリル樹脂平面基板に形成した膜厚0.25μ
mの実測反射率
1 Vertical Incident Light 2 Transmitted Light 3 Reflected Light 4 Lenticular Lens 5 Anti-Reflection Coating 6 Black Stripe 7 Lenticular Lens Sheet 10 Vertical Incident Light 11 Transmitted Light 21 Fresnel Lens Sheet 22 Lenticular Lens Sheet 23 Black Stripe 24 Incident Side Lens 25 Outgoing Side Lens 26 Fresnel lens 27 Antireflection coating 28 Incident light from CRT 29 Emission light 30 External light incident light 31 External light reflected light 32 CRT light incident light reflected light 100 Normal incident light 101 Thin film top surface reflection 102 Thin film bottom surface Reflection 103 Intensity of light reflected from upper surface of thin film 104 Intensity of light reflected from lower surface of thin film 105 Incident light side medium (usually air) 106 Thin film 107 Flat substrate d Optical interference theory film thickness d1 Film thickness different from optical interference theory d2 Optical interference theory Different film thickness d3 Interference theory and different thicknesses χ0 thickness was formed on the reflectance χ1 lenticular lens of the optical interference theory thickness 0.1μm was formed on the measured reflectance χ lenticular lens of the lenticular lens 0.05μ
m reflectance χ2 film thickness formed on lenticular lens 0.07μ
m reflectance χ3 film thickness 0.125 formed on lenticular lens
μm reflectance χ4 Film thickness 0.15μ formed on lenticular lens
m reflectance χ5 film thickness 0.21μ formed on lenticular lens
m reflectance χ6 film thickness formed on lenticular lens 0.25μ
m reflectance χ7 film thickness 0.30μ formed on lenticular lens
Reflectivity of m y Antireflection effect curve due to reflectance of 550 nm in the central portion of visible wavelength F0 Reflectance of flat substrate of acrylic resin F Theoretical calculation Reflectance of 0.1 μm film thickness F1 Theoretical calculation Reflectance of 0.05 μm film thickness F2 Theory Calculated film thickness 0.07 μm reflectance F3 Theoretical calculated film thickness 0.125 μm reflectance F4 Theoretical calculated film thickness 0.150 μm reflectance F5 Theoretical calculated film thickness 0.21 μm reflectance F6 Theoretical calculated film thickness 0.25 μm Reflectance G0 Actually measured reflectance of acrylic resin flat substrate G Theoretical film thickness 0.1 μ formed on acrylic resin flat substrate
Measured reflectance of m G1 Thickness of film formed on acrylic resin flat substrate 0.05μ
Measured reflectance of m G2 0.07μ film thickness formed on acrylic resin flat substrate
m actually measured reflectance G3 film thickness 0.125 formed on acrylic resin flat substrate
Measured reflectance of μm G4 0.15μ film thickness formed on acrylic resin flat substrate
m actually measured reflectance G5 film thickness 0.21μ formed on acrylic resin flat substrate
Measured reflectance of m G6 Film thickness formed on acrylic resin flat substrate 0.25μ
Actual reflectance of m

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 レンズまたは凹凸を備えてなるシートの
表面に、該シートを形成する材料より低い屈折率を備え
た部材を光干渉理論薄膜λ/4nと異なる膜厚寸法に配
設し反射防止被膜を形成したことを特徴とするレンズシ
ート。
1. A member having a refractive index lower than that of a material forming the sheet is arranged on the surface of a sheet having lenses or irregularities in a film thickness different from the optical interference theoretical thin film λ / 4n to prevent reflection. A lens sheet having a film formed thereon.
【請求項2】 反射防止被膜を高分子材料としたことを
特徴とする請求項1記載のレンズシート。
2. The lens sheet according to claim 1, wherein the antireflection coating is a polymer material.
【請求項3】 反射防止被膜の膜厚寸法を1.2λ/4
n〜5λ/4nの範囲としたことを特徴とする請求項2
記載のレンズシート。
3. The thickness dimension of the antireflection coating is 1.2λ / 4.
The range from n to 5λ / 4n is set.
The lens sheet described.
【請求項4】 レンチキュラーレンズシートの表面に、
該レンチキュラーレンズシートを形成する材料より低い
屈折率を備えた部材を光干渉理論薄膜λ/4nと異なる
膜厚寸法に配設し反射防止被膜を形成したことを特徴と
するレンチキュラーレンズシート。
4. The surface of the lenticular lens sheet,
A lenticular lens sheet, characterized in that an antireflection coating is formed by arranging a member having a refractive index lower than that of the material forming the lenticular lens sheet in a film thickness dimension different from the optical interference theoretical thin film λ / 4n.
【請求項5】 反射防止被膜を高分子材料としたことを
特徴とする請求項4記載のレンチキュラーレンズシー
ト。
5. The lenticular lens sheet according to claim 4, wherein the antireflection coating is a polymer material.
【請求項6】 反射防止被膜の膜厚寸法を1.2λ/4
n〜5λ/4nの範囲としたことを特徴とする請求項5
記載のレンチキュラーレンズシート。
6. The thickness dimension of the antireflection coating is 1.2λ / 4.
6. A range from n to 5λ / 4n is set.
Lenticular lens sheet described.
【請求項7】 フレネルレンズシートの表面に、該フレ
ネルレンズシートを形成する材料より低い屈折率を備え
た部材を光干渉理論薄膜λ/4nと異なる膜厚寸法に配
設し反射防止被膜を形成したことを特徴とするフレネル
レンズシート。
7. An antireflection coating is formed on the surface of a Fresnel lens sheet by arranging a member having a refractive index lower than that of the material forming the Fresnel lens sheet in a film thickness different from the theoretical thin film of optical interference λ / 4n. Fresnel lens sheet characterized by doing.
【請求項8】 反射防止被膜を高分子材料としたことを
特徴とする請求項7記載のフレネルレンズシート。
8. The Fresnel lens sheet according to claim 7, wherein the antireflection coating is made of a polymer material.
【請求項9】 反射防止被膜の膜厚寸法を1.2λ/4
n〜5λ/4nの範囲としたことを特徴とする請求項8
記載のフレネルレンズシート。
9. The thickness dimension of the antireflection coating is 1.2λ / 4.
The range from n to 5λ / 4n is set.
Fresnel lens sheet described.
【請求項10】 基板の表面に、該基板を形成する材料
より低い屈折率を備えた部材を光干渉理論薄膜λ/4n
と異なる膜厚寸法に配設し反射防止被膜を形成したこと
を特徴とする拡散パネル。
10. An optical interference theory thin film λ / 4n is provided on the surface of a substrate with a member having a refractive index lower than that of a material forming the substrate.
A diffusion panel characterized in that the antireflection coating is formed by arranging it in a different film thickness dimension.
【請求項11】 反射防止被膜を高分子材料としたこと
を特徴とする請求項10記載の拡散パネル。
11. The diffusion panel according to claim 10, wherein the antireflection coating is made of a polymer material.
【請求項12】 反射防止被膜の膜厚寸法を1.2λ/
4n〜5λ/4nの範囲としたことを特徴とする請求項
11記載の拡散パネル。
12. The film thickness dimension of the antireflection coating is 1.2λ /
The diffusion panel according to claim 11, wherein the diffusion panel has a range of 4n to 5λ / 4n.
【請求項13】 請求項4記載のレンチキュラーレンズ
シートと、フレネルレンズシートとを備えたことを特徴
とする透過型スクリーン。
13. A transmissive screen comprising the lenticular lens sheet according to claim 4 and a Fresnel lens sheet.
【請求項14】 請求項4記載のレンチキュラーレンズ
シートと、請求項7記載のフレネルレンズシートとを備
えたことを特徴とする透過型スクリーン。
14. A transmissive screen comprising the lenticular lens sheet according to claim 4 and the Fresnel lens sheet according to claim 7.
【請求項15】 請求項10記載の拡散パネルと、レン
チキュラーレンズシートと、フレネルレンズシートとを
備えたことを特徴とする透過型スクリーン。
15. A transmissive screen comprising the diffusion panel according to claim 10, a lenticular lens sheet, and a Fresnel lens sheet.
【請求項16】 基板の表面に、該基板を形成する材料
より低い屈折率を備えた部材を光干渉理論薄膜λ/4n
と異なる膜厚寸法に配設し反射防止被膜を形成した拡散
パネルと、レンチキュラーレンズシートの表面に,該レ
ンチキュラーレンズシートを形成する材料より低い屈折
率を備えた部材を光干渉理論薄膜λ/4nと異なる膜厚
寸法に配設し反射防止被膜を形成したレンチキュラーレ
ンズシートと、フレネルレンズシートとを備えたことを
特徴とする透過型スクリーン。
16. An optical interference theory thin film λ / 4n is provided on the surface of a substrate with a member having a refractive index lower than that of a material forming the substrate.
A light diffusion theoretical thin film λ / 4n is provided on the surface of the lenticular lens sheet having a refractive index lower than that of the material forming the lenticular lens sheet, and a diffusion panel having an antireflection coating formed in a different film thickness. A transmissive screen comprising: a lenticular lens sheet having an antireflection coating formed in a film thickness different from the above, and a Fresnel lens sheet.
【請求項17】 基板の表面に、該基板を形成する材料
より低い屈折率を備えた部材を光干渉理論薄膜λ/4n
と異なる膜厚寸法に配設し反射防止被膜を形成した拡散
パネルと、レンチキュラーレンズシートの表面に,該レ
ンチキュラーレンズシートを形成する材料より低い屈折
率を備えた部材を光干渉理論薄膜λ/4nと異なる膜厚
寸法に配設し反射防止被膜を形成したレンチキュラーレ
ンズシートと、フレネルレンズシートの表面に,該フレ
ネルレンズシートを形成する材料より低い屈折率を備え
た部材を光干渉理論薄膜λ/4nと異なる膜厚寸法に配
設し反射防止被膜を形成したことを特徴とするフレネル
レンズシートとを備えたことを特徴とする透過型スクリ
ーン。
17. A light interference theoretical thin film λ / 4n provided on the surface of a substrate with a member having a refractive index lower than that of a material forming the substrate.
A light diffusion theoretical thin film λ / 4n is provided on the surface of the lenticular lens sheet having a refractive index lower than that of the material forming the lenticular lens sheet, and a diffusion panel having an antireflection coating formed in a different film thickness. A lenticular lens sheet provided with an antireflection coating and having a different film thickness, and a member having a refractive index lower than that of the material forming the Fresnel lens sheet on the surface of the Fresnel lens sheet. A transmissive screen comprising: a Fresnel lens sheet having a film thickness different from 4n and having an antireflection coating formed thereon.
JP15155195A 1995-03-23 1995-06-19 Lenticular lens sheet and transmission screen Expired - Fee Related JP3484827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15155195A JP3484827B2 (en) 1995-03-23 1995-06-19 Lenticular lens sheet and transmission screen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-64044 1995-03-23
JP6404495 1995-03-23
JP15155195A JP3484827B2 (en) 1995-03-23 1995-06-19 Lenticular lens sheet and transmission screen

Publications (2)

Publication Number Publication Date
JPH08320407A true JPH08320407A (en) 1996-12-03
JP3484827B2 JP3484827B2 (en) 2004-01-06

Family

ID=26405178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15155195A Expired - Fee Related JP3484827B2 (en) 1995-03-23 1995-06-19 Lenticular lens sheet and transmission screen

Country Status (1)

Country Link
JP (1) JP3484827B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032049A1 (en) * 1997-01-20 1998-07-23 Dai Nippon Printing Co., Ltd. Rear projection screen
EP0911654A1 (en) * 1997-10-22 1999-04-28 Dai Nippon Printing Co., Ltd. Lenticular lens sheet and process for producing the same
US6556347B1 (en) 1998-12-18 2003-04-29 Mitsubisi Rayon Co., Ltd. Rear projection screen
JP2005017920A (en) * 2003-06-27 2005-01-20 Dainippon Printing Co Ltd Light diffusion agent and sheet, and non-glare sheet
JP2005107046A (en) * 2003-09-29 2005-04-21 Konica Minolta Holdings Inc Lenticular lens for display
JP2005266252A (en) * 2004-03-18 2005-09-29 Fujimori Kogyo Co Ltd Optical element and manufacturing method of the optical element
JP2006018072A (en) * 2004-07-02 2006-01-19 Toppan Printing Co Ltd Fresnel lens, transmission type screen, and rear projection type display device
WO2018116954A1 (en) * 2016-12-22 2018-06-28 株式会社エンプラス Marker

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032049A1 (en) * 1997-01-20 1998-07-23 Dai Nippon Printing Co., Ltd. Rear projection screen
US6295162B1 (en) 1997-01-20 2001-09-25 Dai Nippon Printing Co., Ltd. Rear projection screen with optical sheet having irregularities caused by diffusing material smoothed with a transparent control layer
EP0911654A1 (en) * 1997-10-22 1999-04-28 Dai Nippon Printing Co., Ltd. Lenticular lens sheet and process for producing the same
US6046855A (en) * 1997-10-22 2000-04-04 Dai Nippon Printing Co., Ltd. Lenticular lens sheet and process for producing the same
US6556347B1 (en) 1998-12-18 2003-04-29 Mitsubisi Rayon Co., Ltd. Rear projection screen
US6760155B2 (en) 1998-12-18 2004-07-06 Mitsubishi Rayon Co., Ltd Rear projection screen
JP2005017920A (en) * 2003-06-27 2005-01-20 Dainippon Printing Co Ltd Light diffusion agent and sheet, and non-glare sheet
JP2005107046A (en) * 2003-09-29 2005-04-21 Konica Minolta Holdings Inc Lenticular lens for display
JP2005266252A (en) * 2004-03-18 2005-09-29 Fujimori Kogyo Co Ltd Optical element and manufacturing method of the optical element
JP4606758B2 (en) * 2004-03-18 2011-01-05 藤森工業株式会社 Optical functional film
JP2006018072A (en) * 2004-07-02 2006-01-19 Toppan Printing Co Ltd Fresnel lens, transmission type screen, and rear projection type display device
WO2018116954A1 (en) * 2016-12-22 2018-06-28 株式会社エンプラス Marker

Also Published As

Publication number Publication date
JP3484827B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
KR100248248B1 (en) An optical sheet and a light transmission screen using the same
US10732329B2 (en) Image projecting structure and image projecting method
KR0140051B1 (en) Transparent screen and its manufacturing method
US7408709B2 (en) Screen and method for manufacturing the same
US6307675B1 (en) Rear-projection screen for use with a liquid crystal panel as a video source
US7327517B2 (en) Optical multilayer film and reflective screen
KR20050007125A (en) Screen
JP3933053B2 (en) Screen, optical film, and optical film manufacturing method
CN101089726A (en) Reflecting screen
JP3484827B2 (en) Lenticular lens sheet and transmission screen
JP2004086187A (en) Projection screen and projection display system
EP1577706A1 (en) Screen and method for manufacturing the same
JP2006208610A (en) Light-transmissive substrate and transmission type optical member
US6961176B2 (en) Fresnel lens sheet, rear projection screen and rear projection display
JPH06160982A (en) Transmission screen
JPH0131601B2 (en)
WO2020017591A1 (en) Reflective screen and image display device
US7403334B2 (en) Optical member and process of producing the same
JPH09211729A (en) Reflection type screen
JP2018013634A (en) Transmission type screen, and rear surface projection type display device
JP2005165252A (en) Optical functionality diffusion board, reflection screen and its manufacturing method
JP4056917B2 (en) Projection screen and projection display device
JP7001132B2 (en) Transmissive screen, rear projection display device
JPH05265095A (en) Rear projection screen
JP2006145881A (en) Reflection type projection screen

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees