JPH08320179A - Vacuum heat insulation material and refrigerator - Google Patents

Vacuum heat insulation material and refrigerator

Info

Publication number
JPH08320179A
JPH08320179A JP12798895A JP12798895A JPH08320179A JP H08320179 A JPH08320179 A JP H08320179A JP 12798895 A JP12798895 A JP 12798895A JP 12798895 A JP12798895 A JP 12798895A JP H08320179 A JPH08320179 A JP H08320179A
Authority
JP
Japan
Prior art keywords
urethane foam
core material
heat insulating
vacuum heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12798895A
Other languages
Japanese (ja)
Inventor
Takumi Fujinami
匠 藤波
Takayoshi Iwai
隆賀 岩井
Hironobu Okada
大信 岡田
Kumiko Takeshima
久美子 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12798895A priority Critical patent/JPH08320179A/en
Publication of JPH08320179A publication Critical patent/JPH08320179A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To increase strength and restrict an increase of heat conductivity due to secular deterioration and hence ensure a heat insulation state stable over a long period of time by forming a core material inserted into an airtight container with urethane foam subjected to a high temperature high humidity processing. CONSTITUTION: In a vacuum heat insulation material wherein a core material is inserted into an airtight container and the inside of the container is reduced in its pressure and the container is sealed, the core material is formed with urethane foam subjected to a high temperature high humidity processing. Urethane foam used as the core material is desirably hard open cell urethane foam. With the high temperature high humidity processing, a non-reaction isocyanate group remaining in the hard open cell urethane foam is inactivated and hence it does not produce carbon dioxide gas even it reacts with water. Hereby, strength is increased, and increased heat conductivity due to secular deterioration is restricted, and hence a heat insulation state stable over a long period of time is ensured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空断熱材およびそれを
用いた冷蔵庫に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating material and a refrigerator using the same.

【0002】[0002]

【従来の技術】従来の冷蔵庫はプラスチック成型体から
なる内箱と金属板からなる外箱とを組み合わせてできる
空間部に発泡ポリウレタン断熱材を充填して断熱箱体と
していたが、近年断熱厚さを薄くして冷蔵庫内空間の確
保や、初期および経時的な断熱性能の向上を図るため、
気密性容器内にコア材を挿入し内部を減圧した後封止す
る真空断熱材が冷蔵庫に使用されるようになってきた。
一般的な真空断熱材は、例えば沈降シリカ、微粉末パー
ライト、連通ウレタンフォーム等のコア材を、金属箔と
プラスチックフィルム等を積層したラミネートフィルム
からなる高ガスバリア性を有する容器で全体を取り囲
み、内部を減圧した後、周縁部を熱融着により封止した
形状を有している。
2. Description of the Related Art In a conventional refrigerator, a space formed by combining an inner box made of a plastic molded body and an outer box made of a metal plate is filled with a polyurethane foam insulating material to form a heat insulating box body. In order to secure the space inside the refrigerator by improving the thickness of the refrigerator, and to improve the initial and temporal insulation performance,
A vacuum heat insulating material, which inserts a core material into an airtight container, decompresses the inside, and then seals it, has come to be used in refrigerators.
A general vacuum heat insulating material is, for example, a core material such as precipitated silica, fine powder perlite, continuous urethane foam, etc., which is surrounded by a container having a high gas barrier property made of a laminated film in which a metal foil and a plastic film are laminated, After being decompressed, it has a shape in which the peripheral portion is sealed by heat fusion.

【0003】このような真空断熱材において、真空断熱
材としての性能を示す熱伝導率は、コア材内部の空隙の
気体の熱伝導、コア材を構成する物質間の接触熱伝導、
輻射伝達、対流に起因する熱伝導の 4要素の和で表わさ
れる。とくに気体の熱伝導率が支配的で、理論的にはコ
ア材を構成する物質間の空隙が小さいほど、ガスバリア
容器内圧力が低いほど熱伝導率が小さくなることが証明
されている。例えば、沈降シリカ微粉末(空隙の大きさ
が10μm 以下)をコア材とする場合、比較的高い内圧
で、低い熱伝導率が得られることが知られている。沈降
シリカ微粉末より粒径の大きなパーライトや連通ウレタ
ンフォームでは更に低い内圧を必要とする。
In such a vacuum heat insulating material, the thermal conductivity showing the performance as a vacuum heat insulating material is as follows: heat conduction of gas in voids inside the core material, contact heat conduction between substances constituting the core material,
It is expressed as the sum of the four elements of heat transfer due to radiation transfer and convection. In particular, it has been proved that the thermal conductivity of gas is dominant, and theoretically, the smaller the gap between the substances constituting the core material and the lower the pressure inside the gas barrier container, the smaller the thermal conductivity. For example, it is known that when a precipitated silica fine powder (having a void size of 10 μm or less) is used as a core material, a low thermal conductivity can be obtained at a relatively high internal pressure. A lower internal pressure is required for perlite and continuous urethane foam, which have a larger particle size than the precipitated silica fine powder.

【0004】このように、真空断熱材の熱伝導率は内圧
によって決まるため、断熱性能を維持するためには、そ
の内圧を一定値以下にする必要がある。真空断熱材の内
圧が上昇する要因としては、1)真空断熱材外部からの
ガスリーク、2)真空断熱材内部からの発生ガスなどが
考えられ、これらの要因に基づくガスリークや発生ガス
などを抑えることが重要となっている。
As described above, since the thermal conductivity of the vacuum heat insulating material is determined by the internal pressure, it is necessary to keep the internal pressure below a certain value in order to maintain the heat insulating performance. Factors that increase the internal pressure of the vacuum heat insulating material are 1) gas leakage from the outside of the vacuum heat insulating material, 2) generated gas from the inside of the vacuum heat insulating material, and suppressing gas leaks and generated gas based on these factors. Is important.

【0005】[0005]

【発明が解決しようとする課題】しかし、1)の要因は
気密性容器の構成を変更することで除くことが可能であ
るが、2)の要因は、とくに空隙が大きくかつ低沸点残
留物が内包または分解・反応の可能性のあるウレタンフ
ォームをコア材とする場合困難であった。ウレタンフォ
ームは、通常ポリオールとポリイソシアネートとを主原
料として作製される。すなわち、複数の水酸基(-OH)を
有するポリオールおよび複数のイソシアネート基(-NC
O)を有するポリイソシアネートに、発泡剤や触媒を配
合して混合すると、水酸基とイソシアネート基とが化学
反応を起こしてウレタン結合(-NHCOO- )を生じ発泡し
ながら硬化してウレタンフォームを形成する。
However, the factor 1) can be eliminated by changing the structure of the airtight container, but the factor 2) has a large void and a low boiling point residue. It was difficult to use the internal material or the urethane foam which may decompose / react as the core material. Urethane foam is usually produced by using polyol and polyisocyanate as main raw materials. That is, a polyol having a plurality of hydroxyl groups (-OH) and a plurality of isocyanate groups (-NC
When a foaming agent or a catalyst is added to and mixed with polyisocyanate having O), a hydroxyl group and an isocyanate group undergo a chemical reaction to form a urethane bond (-NHCOO-), which is cured while foaming to form a urethane foam. .

【0006】一方、このようにして形成されるウレタン
フォームの強度はポリオール中の水酸基(-OH)とポリイ
ソシアネート中のイソシアネート基(-NCO)との混合比
によって影響される。この混合比はインデックスとして
定義される。インデックスが90 のときはイソシアネー
ト基を水酸基の 90 %の量で混合したウレタンフォーム
であることを示している。インデックスとウレタンフォ
ームの圧縮強度との関係を図1に示す。図1に示すよう
に、ウレタンフォームの圧縮強度はインデックスと密接
な関係にあり、真空断熱材のコア材として望ましい圧縮
強度を 100とした場合、 100以上のインデックスを有す
る硬質連通ウレタンフォームが望ましいことになる。そ
のため、強度がより要求される硬質連通ウレタンフォー
ムにあっては高インデックスとなる場合が多く、その場
合、ウレタンフォームに残存するイソシアネート基(-N
CO)が多くなるので後述するように真空断熱材内部から
の発生ガスが時間の経過とともに多くなり、その結果、
経年劣化による熱伝導率が増加するという問題があっ
た。
On the other hand, the strength of the urethane foam thus formed is influenced by the mixing ratio of the hydroxyl group (-OH) in the polyol and the isocyanate group (-NCO) in the polyisocyanate. This mixing ratio is defined as an index. When the index is 90, it indicates that the urethane foam is a mixture of isocyanate groups in an amount of 90% of hydroxyl groups. The relationship between the index and the compressive strength of urethane foam is shown in FIG. As shown in Fig. 1, the compressive strength of urethane foam is closely related to the index, and if the desirable compressive strength for the core material of the vacuum heat insulating material is 100, a rigid continuous urethane foam with an index of 100 or more is desirable. become. Therefore, in the case of rigid continuous urethane foam, which requires more strength, it often has a high index, in which case the isocyanate group (-N
Since CO) increases, the amount of gas generated from the inside of the vacuum heat insulating material increases with time, as will be described later, and as a result,
There is a problem that the thermal conductivity increases due to deterioration over time.

【0007】本発明はこのような課題に対処するために
なされたもので、強度を高め、かつ維持するとともに、
経年劣化による熱伝導率の増大を小さく抑え、長期間に
わたり安定した断熱状態が得られる真空断熱材およびそ
れを用いた冷蔵庫を提供することを目的とする。
[0007] The present invention has been made to address such a problem, and enhances and maintains the strength, and
An object of the present invention is to provide a vacuum heat insulating material capable of suppressing an increase in heat conductivity due to aging deterioration to a small extent and obtaining a stable heat insulating state for a long time, and a refrigerator using the same.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、気密
性容器内にコア材を挿入し内部を減圧した後封止する真
空断熱材において、コア材は高温高湿処理を行ったウレ
タンフォームからなることを特徴とする。
According to a first aspect of the present invention, in a vacuum heat insulating material in which a core material is inserted into an airtight container, the inside of the container is depressurized and then sealed, the core material is a urethane subjected to high temperature and high humidity treatment. It is characterized by consisting of a form.

【0009】請求項2の発明は、外箱に断熱材を配設し
てなる冷蔵庫において、断熱材は気密性容器内に高温高
湿処理を行ったウレタンフォームからなるコア材を挿入
し内部を減圧した後封止する真空断熱材であることを特
徴とする。
According to a second aspect of the present invention, in a refrigerator in which a heat insulating material is provided in an outer box, the heat insulating material is formed by inserting a core material made of urethane foam that has been subjected to high temperature and high humidity treatment into an airtight container, It is a vacuum heat insulating material that is sealed after depressurization.

【0010】請求項1および2に係るコア材として使用
されるウレタンフォームは、硬質連通ウレタンフォーム
であることが望ましい。この硬質連通ウレタンフォーム
は、その中に残存するイソシアネート基(-NCO)が多く
なると、真空封止後、次式に示すように、水分と反応し
て二酸化炭素ガスが発生しやすくなる。
The urethane foam used as the core material according to claims 1 and 2 is preferably a rigid continuous urethane foam. When the amount of isocyanate groups (-NCO) remaining in the rigid continuous urethane foam increases, it becomes easy to generate carbon dioxide gas by reacting with water as shown in the following formula after vacuum sealing.

【0011】[0011]

【化1】 とくにインデックスが 100を越えるようなウレタンフォ
ームの場合、未反応イソシアネート基が多くなるので、
真空封止後の内圧上昇は上記の反応による二酸化炭素ガ
スの発生が支配的となる。請求項1および2に係る発明
は、真空封止後水分と反応して二酸化炭素ガスの発生原
因となる未反応イソシアネート基を、真空封止前にあら
かじめ高温高湿処理により低減もしくは消滅させる。
Embedded image Especially in the case of urethane foam with an index exceeding 100, the unreacted isocyanate group increases, so
The increase in internal pressure after vacuum sealing is dominated by the generation of carbon dioxide gas due to the above reaction. In the inventions according to claims 1 and 2, unreacted isocyanate groups that react with moisture after vacuum sealing and cause generation of carbon dioxide gas are reduced or eliminated in advance by high temperature and high humidity treatment before vacuum sealing.

【0012】請求項1および2に係る発明において、高
温高湿処理とは、この未反応イソシアネート基を不活性
化する処理をいい、具体的には水分と反応しても二酸化
炭素ガスを発生させなくすることをいう。未反応イソシ
アネート基を不活性化する条件であれば処理条件は任意
に選択することができるが、実用的な処理条件として
は、 40 ℃〜 100℃、相対湿度 50 %〜 90 %、処理時
間 10 時間〜 100時間の範囲が好ましい。
In the inventions according to claims 1 and 2, the high-temperature and high-humidity treatment means a treatment for inactivating the unreacted isocyanate group. Specifically, carbon dioxide gas is generated even when it reacts with water. It means to lose. Although the treatment conditions can be arbitrarily selected as long as they are the conditions for inactivating unreacted isocyanate groups, practical treatment conditions include 40 ° C to 100 ° C, relative humidity 50% to 90%, and treatment time 10 The range of hours to 100 hours is preferred.

【0013】なお、ウレタンフォーム原料としては、ウ
レタン結合を形成し得る公知のポリオール成分とポリイ
ソシアネート成分を用いることができる。ポリオール成
分としては、ポリエーテル、ポリエステル、グリコール
類等が例示され、ポリイソシアネート成分としては、ト
リレンジイソシアネート(TDI) やジフェニルメタンジイ
ソシアネート(MDI) 、またはこれらの誘導体等が例示さ
れる。また、上記ポリウレタンフォーム原料には、発泡
助剤とともに必要に応じて発泡助剤、整泡剤、反応触
媒、難燃剤、帯電防止剤、着色剤等の添加剤を配合する
ことができる。
As the urethane foam raw material, known polyol components and polyisocyanate components capable of forming urethane bonds can be used. Examples of the polyol component include polyethers, polyesters and glycols, and examples of the polyisocyanate component include tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI), and derivatives thereof. In addition to the foaming aid, additives such as a foaming aid, a foam stabilizer, a reaction catalyst, a flame retardant, an antistatic agent, and a colorant may be added to the above-mentioned polyurethane foam raw material, if necessary.

【0014】請求項1および2に係る気密性容器は、高
いガスバリア性を有する材料で形成された容器であり、
例えばプラスチックフィルムと金属箔との積層膜から構
成された容器を使用することができる。
The airtight container according to claims 1 and 2 is a container formed of a material having a high gas barrier property,
For example, a container composed of a laminated film of a plastic film and a metal foil can be used.

【0015】[0015]

【作用】あらかじめ高温高湿処理を施し、残存イソシア
ネート基の量を低減もしくは消滅させたコア材を用いた
真空断熱材であれば、内部からの発生ガスを抑えること
が可能となり、経年劣化による熱伝導率の悪化が防止で
きる。また断熱性能が低下しないので、このような真空
断熱材を使用した冷蔵庫は耐久性に優れる。
[Function] A vacuum heat insulating material that uses a core material that has been subjected to a high temperature and high humidity treatment in advance to reduce or eliminate the amount of residual isocyanate groups makes it possible to suppress the gas generated from the inside and reduce the heat due to deterioration over time. The deterioration of conductivity can be prevented. In addition, since the heat insulation performance does not deteriorate, a refrigerator using such a vacuum heat insulating material has excellent durability.

【0016】[0016]

【実施例】【Example】

実施例1〜6および比較例1〜3 異なるインデックスの硬質連通ウレタンフォームに高温
高湿処理を施しコア材を作製した。一方、ポリエチレン
テレフタレートフィルム、アルミ箔およびポリプロピレ
ンフィルムからなる積層膜の 3辺をポリプロピレンフィ
ルム層をシール層としてシールした気密性容器内に上述
のコア材を挿入し、真空排気して減圧状態下で残りの一
辺をシールすることにより真空断熱材を作製した。
Examples 1 to 6 and Comparative Examples 1 to 3 Hard communicating urethane foams having different indexes were subjected to high temperature and high humidity treatment to prepare core materials. On the other hand, insert the above core material into an airtight container in which a polypropylene film layer is used as a sealing layer on three sides of a laminated film made of polyethylene terephthalate film, aluminum foil and polypropylene film, and evacuate and leave under reduced pressure. A vacuum heat insulating material was produced by sealing one side.

【0017】得られた真空断熱材について熱伝導率の経
時評価を行った。インデックスは85, 100, 110の 3種
類、高温高湿処理は温度70℃相対湿度95%で4日間、温
度60℃相対湿度90%4日間の 2種類および比較例として
高温高湿未処理の条件で行った。ウレタンフォームの処
方はすべて同一で、高温高湿処理後十分乾燥させてから
真空断熱材のコア材として用いた。真空断熱材の経時評
価の条件は常温放置である。
With respect to the obtained vacuum heat insulating material, the thermal conductivity was evaluated over time. There are 3 types of index, 85, 100 and 110, 2 types of high temperature and high humidity treatment at a temperature of 70 ° C and 95% relative humidity for 4 days, and a temperature of 60 ° C and 90% relative humidity for 4 days. I went there. All urethane foams had the same formulation, and were used as a core material of a vacuum heat insulating material after being sufficiently dried after being subjected to high temperature and high humidity treatment. The condition for evaluating the vacuum heat insulating material over time is to leave it at room temperature.

【0018】表1にインデックスと処理条件を、表2に
熱伝導率の評価結果を示す。
Table 1 shows the indexes and processing conditions, and Table 2 shows the evaluation results of the thermal conductivity.

【表1】 [Table 1]

【表2】 表1および表2に示すように、高温高湿処理を行った硬
質連通ウレタンフォームを真空断熱材のコア材として用
いることで、真空断熱材の熱伝導率の経時劣化を低減す
ることができる。
[Table 2] As shown in Tables 1 and 2, by using the hard continuous urethane foam subjected to the high temperature and high humidity treatment as the core material of the vacuum heat insulating material, deterioration of the thermal conductivity of the vacuum heat insulating material with time can be reduced.

【0019】また、インデックスが増加するごとに、未
処理のウレタンフォームをコア材とした真空断熱材の熱
伝導率の経時劣化が大きくなるが、インデックスの大き
なウレタンフォームでは特に高温高湿処理の効果も大き
く、熱伝導率の悪化を大幅に改善できる。
As the index increases, the thermal conductivity of the vacuum heat insulating material using untreated urethane foam as the core material deteriorates with time. However, the effect of high temperature and high humidity treatment is particularly high for urethane foam with a large index. Is also large, and the deterioration of thermal conductivity can be greatly improved.

【0020】なお、上記の実施例では高温高湿の条件は
2条件のみ記載したが、ウレタンフォームに残存するイ
ソシアネート基の量はフォームの処方や発泡プロセスに
より異なるため、ウレタンフォームに適した条件を設定
する必要がある。その際には、赤外分光光度計によるイ
ソシアネート基の測定や、あるいはウレタンフォームを
水分存在下で 100℃以上に加温し、このとき発生するガ
スをガスクロマトグラフィーGC−FIDへ導入し、発
生した二酸化炭素濃度を測定する方法などを用い、高温
高湿処理の条件を設定することができる。
In the above embodiment, the conditions of high temperature and high humidity are
Although only two conditions are described, the amount of isocyanate groups remaining in the urethane foam varies depending on the foam formulation and the foaming process, so it is necessary to set the conditions suitable for the urethane foam. In that case, the isocyanate group is measured by an infrared spectrophotometer, or the urethane foam is heated to 100 ° C or higher in the presence of water, and the gas generated at this time is introduced into the gas chromatography GC-FID to generate the gas. The conditions of high temperature and high humidity treatment can be set by using the method of measuring the carbon dioxide concentration.

【0021】また、上述の実施例で得られた真空断熱材
を冷蔵庫本体の両側面および背面に配設し、すきまに独
立気泡ウレタンフォーム断熱材を充填してなる冷蔵庫を
組み立て連続試験運転を行った結果、消費電力は表3に
示すように変化した。
Further, the vacuum heat insulating material obtained in the above-mentioned embodiment is arranged on both sides and back surface of the refrigerator main body, and the refrigerator is filled with the closed cell urethane foam heat insulating material, and a continuous test operation is conducted. As a result, the power consumption changed as shown in Table 3.

【0022】[0022]

【表3】 表3に示すように、本発明の冷蔵庫は消費電力量の変化
量が少なく、断熱効果が長期間維持された。
[Table 3] As shown in Table 3, in the refrigerator of the present invention, the amount of change in power consumption was small and the heat insulating effect was maintained for a long time.

【0023】[0023]

【発明の効果】請求項1の真空断熱材は、高温高湿処理
を行ったウレタンフォームをコア材として使用するの
で、真空断熱材内部で発生するガスの発生を抑えること
ができる。その結果、熱伝導率の経時劣化を大幅に抑え
ることができ、断熱効果を長期間維持することができ
る。
In the vacuum heat insulating material according to the first aspect of the present invention, since urethane foam which has been subjected to high temperature and high humidity treatment is used as the core material, generation of gas generated inside the vacuum heat insulating material can be suppressed. As a result, deterioration of the thermal conductivity over time can be significantly suppressed, and the heat insulating effect can be maintained for a long period of time.

【0024】請求項2の冷蔵庫は、高温高湿処理を行っ
たウレタンフォームをコア材として使用する真空断熱材
を外箱に配設するので、断熱効果を長期間維持すること
ができ、耐久性が向上する。
In the refrigerator according to the second aspect, since the vacuum heat insulating material which uses the urethane foam subjected to the high temperature and high humidity treatment as the core material is arranged in the outer box, the heat insulating effect can be maintained for a long period of time and the durability is improved. Is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】インデックスとウレタンフォームの強度との関
係を示す図である。
FIG. 1 is a diagram showing a relationship between an index and strength of urethane foam.

フロントページの続き (72)発明者 竹島 久美子 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内Front Page Continuation (72) Inventor Kumiko Takeshima 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気密性容器内にコア材を挿入し内部を減
圧した後封止する真空断熱材において、 前記コア材は、高温高湿処理を行ったウレタンフォーム
からなることを特徴とする真空断熱材。
1. A vacuum heat insulating material in which a core material is inserted into an airtight container, the inside pressure is reduced, and then sealed, wherein the core material is made of urethane foam subjected to high temperature and high humidity treatment. Insulation.
【請求項2】 外箱に断熱材を配設してなる冷蔵庫にお
いて、前記断熱材は気密性容器内に高温高湿処理を行っ
たウレタンフォームからなるコア材を挿入し内部を減圧
した後封止する真空断熱材であることを特徴とする冷蔵
庫。
2. A refrigerator in which a heat insulating material is provided in an outer box, wherein the heat insulating material is a hermetically-sealed container in which a core material made of urethane foam subjected to high-temperature and high-humidity treatment is inserted, and the inside is depressurized and then sealed. A refrigerator characterized by being a vacuum heat insulating material that stops.
JP12798895A 1995-05-26 1995-05-26 Vacuum heat insulation material and refrigerator Withdrawn JPH08320179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12798895A JPH08320179A (en) 1995-05-26 1995-05-26 Vacuum heat insulation material and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12798895A JPH08320179A (en) 1995-05-26 1995-05-26 Vacuum heat insulation material and refrigerator

Publications (1)

Publication Number Publication Date
JPH08320179A true JPH08320179A (en) 1996-12-03

Family

ID=14973677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12798895A Withdrawn JPH08320179A (en) 1995-05-26 1995-05-26 Vacuum heat insulation material and refrigerator

Country Status (1)

Country Link
JP (1) JPH08320179A (en)

Similar Documents

Publication Publication Date Title
US5350777A (en) Production and use of open cell rigid polyurethane foam
US4997706A (en) Foaming system for closed-cell rigid polymer foam
US5575871A (en) Heat insulating material and method for producing same
EP3037261B1 (en) Insulating member and its attaching method
US5889067A (en) Open cell rigid polyurethane foam and method for producing the same and method for making vacuum insulation panel using same
KR20000006467A (en) Open-celled rigid polyurethane foam and method for producing the same
US6322743B1 (en) Method of forming evacuated insulation panels
JPH08320179A (en) Vacuum heat insulation material and refrigerator
KR101560125B1 (en) Method for manufacturing insulation box improved insulation performance and insulation box for the same
JP3553470B2 (en) Rigid polyurethane foam and method for producing the same
CA2175192A1 (en) Process for rigid polyurethane foams
JPH03137138A (en) Foamed heat insulating material
KR101345275B1 (en) Core material for vacuum insulator using fumed silica with high purity and vacuum insulator using the same
JPS6321475A (en) Heat insulator
JP2000171148A (en) Cold reserving device
Cunningham et al. Recent advances in the development of rigid polyurethane foams of improved thermal insulation efficiency
JPS62147275A (en) Manufacture of heat insulator
JPS605455B2 (en) Method of manufacturing rubber foam
JPH04298545A (en) Open-cell rigid urethane foam and thermal insulator made by using same
JPS6223017B2 (en)
JPH04351622A (en) Open-cell rigid polyurethane foam and thermal insulator prepared therefrom
Vos et al. Polyurethane foam based vacuum panel technology
JPS6361587B2 (en)
JPH0272294A (en) Heat insulating structure
JPS63189772A (en) Heat insulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806