JPH08319833A - Direct injection type diesel engine - Google Patents

Direct injection type diesel engine

Info

Publication number
JPH08319833A
JPH08319833A JP7123914A JP12391495A JPH08319833A JP H08319833 A JPH08319833 A JP H08319833A JP 7123914 A JP7123914 A JP 7123914A JP 12391495 A JP12391495 A JP 12391495A JP H08319833 A JPH08319833 A JP H08319833A
Authority
JP
Japan
Prior art keywords
combustion chamber
intake
valve
exhaust
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7123914A
Other languages
Japanese (ja)
Inventor
Manabu Hasegawa
学 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7123914A priority Critical patent/JPH08319833A/en
Publication of JPH08319833A publication Critical patent/JPH08319833A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE: To provide a diesel engine of direct jet type equipped with such a wall surface shape as producing a complex vortex of squish and swirl in a combustion chamber and maintaining strong turbulence till the later stage of combustion. CONSTITUTION: A suction valve 9 and exhaust valve 10 are inclined with respect to the center line of a cylinder in such a way that the valve faces are opposing, and the ceiling wall 22 of a combustion chamber is composed of a spherical portion 24 of such a curvature as substantially contacting with each valve face 9a and a plane portion 23 positioned around the spherical portion 24 and spreading in the form of plane perpendicularly intersecting the center line of the cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直噴式ディーゼルエン
ジンにおいて、燃焼室にスキッシュとスワールの複合渦
流を生起し、燃焼後期まで強い乱れを維持する壁面形状
への改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type diesel engine having a wall surface shape which produces a squish-swirl composite vortex flow in a combustion chamber and maintains a strong turbulence until the latter stage of combustion.

【0002】[0002]

【従来の技術】1つのシリンダに吸・排気バルブを2本
づつ備える直噴式ディーゼルエンジンとして、従来例え
ば図10に示すようなものがある(実開平2−1423
号公報、参照)。
2. Description of the Related Art A conventional direct injection diesel engine having two intake / exhaust valves in one cylinder is shown in FIG.
Gazette, reference).

【0003】図において、1はシリンダ、2はピスト
ン、4はシリンダヘッド、5はピストン2の頂面21に
開口したキャビティ、3はシリンダヘッド4に形成され
た吸気ポート、8はシリンダヘッド4に形成された排気
ポートである。ピストン2の往復運動は図示しないコン
ロッド7を介してクランクシャフトの回転運動に変換さ
れる。
In the figure, 1 is a cylinder, 2 is a piston, 4 is a cylinder head, 5 is a cavity opened in the top surface 21 of the piston 2, 3 is an intake port formed in the cylinder head 4, and 8 is a cylinder head 4. It is the formed exhaust port. The reciprocating motion of the piston 2 is converted into a rotary motion of the crankshaft via a connecting rod 7 (not shown).

【0004】燃料噴射弁33を取り囲むように2本の吸
気バルブ9と、2本の排気バルブ10がそれぞれ設けら
れる。各吸気バルブ9が開かれるのに伴って各吸気ポー
ト3からシリンダ1に空気を吸入し、この空気をピスト
ン5で圧縮して着火燃焼させる。燃焼したガスは各排気
バルブ10が開かれるのに伴って各排気ポート8に排出
される。これらの各行程が連続して繰り返される。
Two intake valves 9 and two exhaust valves 10 are provided so as to surround the fuel injection valve 33. As each intake valve 9 is opened, air is taken into the cylinder 1 from each intake port 3, and this air is compressed by the piston 5 and ignited and burned. The burned gas is discharged to each exhaust port 8 as each exhaust valve 10 is opened. Each of these steps is continuously repeated.

【0005】吸・排気バルブ9,10は、各バルブフェ
イス9a,10aが互いに対向するように、シリンダ中
心線に対してそれぞれ所定角度で傾斜するように配置さ
れる。
The intake / exhaust valves 9 and 10 are arranged so as to be inclined at a predetermined angle with respect to the cylinder center line so that the valve faces 9a and 10a face each other.

【0006】燃焼室天井壁22は各バルブフェイス9
a,10aに沿ってペントルーフ型に傾斜して形成され
る。ピストン2の頂面21は、燃焼室天井壁22およぴ
各バルブフェイス9a,10aに平行に対峙するように
傾斜して形成される。キャビティ5の底面5cも、燃焼
室天井壁22およぴ各バルブフェイス9a,10aに平
行に対峙するように傾斜して形成される。
The combustion chamber ceiling wall 22 has a valve face 9
It is formed to be inclined in a pent roof type along a and 10a. The top surface 21 of the piston 2 is formed to be inclined so as to face the combustion chamber ceiling wall 22 and the valve faces 9a, 10a in parallel. The bottom surface 5c of the cavity 5 is also formed to be inclined so as to face the combustion chamber ceiling wall 22 and the valve faces 9a, 10a in parallel.

【0007】各吸・排気バルブ9,10を開閉駆動する
ために、シリンダヘッド4上には、2本のカムシャフト
13,14が設けられる。各カムシャフト13,14に
は、各吸・排気バルブ9,10を開閉駆動する各吸・排
気カム15,16を有する。
Two camshafts 13 and 14 are provided on the cylinder head 4 for opening and closing the intake and exhaust valves 9 and 10. The camshafts 13 and 14 have suction / exhaust cams 15 and 16 for opening / closing the suction / exhaust valves 9 and 10, respectively.

【0008】各カムシャフト13,14は、それぞれの
回転に伴って、各吸・排気カム15,16が各リフタ1
2を摺動させ、各リフタ12が各吸・排気バルブ9,1
0を各バルブスプリング19に抗して開閉させる。ま
た、排気カムシャフト14に形成されたカム31は、ロ
ッカアーム32を揺動させ、燃料噴射弁33を開閉駆動
する。
The intake / exhaust cams 15 and 16 of the camshafts 13 and 14 are rotated by the rotation of the lifters 1.
2 is slid so that each lifter 12 causes each intake / exhaust valve 9, 1
0 is opened and closed against each valve spring 19. Further, the cam 31 formed on the exhaust cam shaft 14 swings the rocker arm 32 to open / close the fuel injection valve 33.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うな従来装置にあっては、ピストン2の頂面21が燃焼
室天井壁22およぴ各バルブフェイス9a,10aに対
峙するようにペントルーフ型に隆起して形成されている
ため、トップリング34より上方に画成されるピストン
2とシリンダ1の隙間容積が増え、燃焼室の容積をキャ
ビティ5に集中させることができず、空気利用率が低下
して、HC、SOF等のスモークの排出量が増えるとい
う問題点がある。
However, in such a conventional apparatus, the pent roof type is adopted so that the top surface 21 of the piston 2 faces the combustion chamber ceiling wall 22 and the valve faces 9a, 10a. Since it is formed so as to be raised, the gap volume between the piston 2 and the cylinder 1 defined above the top ring 34 increases, the volume of the combustion chamber cannot be concentrated in the cavity 5, and the air utilization rate decreases. Then, there is a problem that the emission amount of smoke such as HC and SOF increases.

【0010】また、ピストン2の頂面21がペントルー
フ型に隆起して形成されているため、ピストン2が上死
点付近に到達するとき、ピストン2の頂面21とシリン
ダヘッド4の燃焼室天井壁22の間でシリンダ1内の空
気を圧縮してキャビティ5に流入するスキッシュ流の勢
力を十分に確保することができず、空気利用率が低下し
て、スモーク排出量が増えるという問題点がある。
Further, since the top surface 21 of the piston 2 is formed to be raised in a pent roof type, when the piston 2 reaches the vicinity of the top dead center, the top surface 21 of the piston 2 and the combustion chamber ceiling of the cylinder head 4 are formed. There is a problem that the air in the cylinder 1 cannot be compressed between the walls 22 and the force of the squish flow flowing into the cavity 5 cannot be sufficiently secured, the air utilization rate decreases, and the smoke discharge amount increases. is there.

【0011】本発明は上記の問題点を解消し、燃焼室に
スキッシュとスワールの複合渦流を生起し、燃焼後期ま
で強い乱れを維持する壁面形状を備える直噴式ディーゼ
ルエンジンを提供することを目的とする。
It is an object of the present invention to solve the above problems and to provide a direct injection diesel engine having a wall surface shape which produces a squish and swirl vortex flow in a combustion chamber and maintains a strong turbulence until the latter stage of combustion. To do.

【0012】[0012]

【課題を解決するための手段】請求項1に記載の直噴式
ディーゼルエンジンは、ピストンの頂面に凹状に窪むキ
ャビティと、ピストンとの間で燃焼室を画成する燃焼室
天井壁と、燃焼室天井壁の中央部に取付けられて燃料を
噴射する燃料噴射弁と、燃焼室天井壁に開口して吸気を
導入する複数の吸気ポートと、各吸気ポートを開閉する
複数の吸気バルブと、燃焼室天井壁に開口して排気を排
出する複数の排気ポートと、各排気ポートを開閉する複
数の排気バルブと、を備えるエンジンにおいて、前記吸
・排気バルブをそれぞれのバルブフェイスが互いに対向
するようにシリンダ中心線に対して傾斜させ、前記燃焼
室天井壁は閉弁位置にある吸・排気バルブの各バルブフ
ェイスに概ね接する球面状に湾曲した球面部と、球面部
の周囲に位置してシリンダ中心線と直交する平面状に広
がる平面部とを有する。
According to a first aspect of the present invention, there is provided a direct injection type diesel engine, which has a cavity recessed in a top surface of a piston and a combustion chamber ceiling wall defining a combustion chamber between the piston and the cavity. A fuel injection valve that is attached to the center of the combustion chamber ceiling wall to inject fuel, a plurality of intake ports that open to the combustion chamber ceiling wall to introduce intake air, and a plurality of intake valves that open and close each intake port, In an engine including a plurality of exhaust ports that open to the ceiling wall of a combustion chamber to discharge exhaust gas and a plurality of exhaust valves that open and close each exhaust port, the intake and exhaust valves are arranged so that their respective valve faces face each other. Is inclined with respect to the cylinder center line, and the combustion chamber ceiling wall is located around the spherical surface and a spherically curved spherical surface that is in close contact with each valve face of the intake / exhaust valve at the valve closing position. And a flat portion extending in a plane perpendicular to the cylinder centerline.

【0013】請求項2に記載の直噴式ディーゼルエンジ
ンは、請求項1に記載の発明において、前記球面部の半
径をキャビティの半径と略等しく設定する。
According to a second aspect of the present invention, in the direct injection type diesel engine, the radius of the spherical surface portion is set to be substantially equal to the radius of the cavity.

【0014】請求項3に記載の直噴式ディーゼルエンジ
ンは、請求項1または2に記載の発明において、前記燃
焼室天井壁の隣り合うバルブフェイスどうしが最も接近
する部位を通るシリンダ中心線を中心とする円弧を基準
円弧Sとすると、球面部の半径を基準円弧Sの半径より
大きく設定する。
According to a third aspect of the present invention, in the direct injection type diesel engine according to the first or second aspect of the invention, a cylinder center line passing through a portion where adjacent valve faces of the combustion chamber ceiling wall are closest to each other is centered. When the circular arc to be performed is the reference circular arc S, the radius of the spherical portion is set to be larger than the radius of the reference circular arc S.

【0015】請求項4に記載の直噴式ディーゼルエンジ
ンは、請求項1から3のいずれか一つに記載の発明にお
いて、前記各吸・排気バルブを開閉駆動する2本の吸・
排気カムシャフトを吸・排気バルブの上方に並んで設け
られる。
A direct injection diesel engine according to a fourth aspect of the present invention is the direct injection diesel engine according to any one of the first to third aspects, wherein two intake / exhaust valves for opening / closing each of the intake / exhaust valves are driven.
The exhaust camshafts are provided side by side above the intake / exhaust valves.

【0016】請求項5に記載の直噴式ディーゼルエンジ
ンは、請求項1から4のいずれか一つに記載の発明にお
いて、低速低負荷域で中速中負荷域よりスワール比を高
め、かつ燃料噴射時期を遅らせる燃焼制御手段を備え
る。
A direct injection diesel engine according to a fifth aspect of the present invention is the direct injection diesel engine according to any one of the first to fourth aspects, in which a swirl ratio is increased in a low speed low load range from a medium speed medium load range, and fuel injection is performed. Combustion control means for delaying the timing is provided.

【0017】[0017]

【作用】請求項1に記載の直噴式ディーゼルエンジンに
おいて、前記燃焼室天井壁の平面部は、球面部の周囲に
位置してシリンダ中心線と直交する平面状に広がる構造
により、トップリングより上方に画成されるピストンと
シリンダの隙間容積が小さく抑えられ、燃焼室の容積を
キャビティに集中させて空気利用率を高め、HC、SO
F等のスモーク排出量の低減がはかれる。
The direct injection diesel engine according to claim 1, wherein the flat portion of the combustion chamber ceiling wall is located above the spherical portion and spreads in a flat shape orthogonal to the cylinder center line. The volume of the space between the piston and the cylinder that is defined in Fig. 2 is kept small, the volume of the combustion chamber is concentrated in the cavity, and the air utilization rate is increased.
The amount of smoke emission such as F can be reduced.

【0018】燃焼室天井壁の球面部は、閉弁位置にある
吸・排気バルブの各バルブフェイスに概ね接する球面状
に湾曲した構造により、バルブフェイスが互いに対向す
るように配置された各吸・排気バルブの周囲で凹状に窪
むバルブリセスの容積を小さくし、球面部と各バルブフ
ェイスによって画成される燃焼室の壁面を平滑にする。
これにより、燃焼室に生起されるスワールやスキッシュ
の勢力がバルブリセスの窪みによって減衰することが抑
えられるとともに、燃料噴射弁から燃焼室に放射状に噴
射される燃料噴霧がバルブリセスに入り込むことを抑制
し、スモーク排出量の低減がはかれる。
The spherical portion of the ceiling wall of the combustion chamber has a spherically curved structure which is substantially in contact with each valve face of the intake / exhaust valve at the valve closing position, so that the intake / exhaust valves arranged so that the valve faces face each other. The volume of the valve recess that is recessed around the exhaust valve is reduced, and the wall surface of the combustion chamber defined by the spherical portion and each valve face is made smooth.
This suppresses the swirl and squish forces generated in the combustion chamber from being attenuated by the depression of the valve recess, and also suppresses the fuel spray radially injected from the fuel injection valve into the combustion chamber from entering the valve recess, Smoke emissions can be reduced.

【0019】請求項2に記載の直噴式ディーゼルエンジ
ンにおいて、球面部の半径をキャビティの半径と略等し
く設定することにより、ピストンの上死点付近で球面部
とキャビティの間に画成される燃焼室は、その表面積を
最小限にして、燃焼ガスから燃焼室天井壁やシリンダへ
の放熱量が抑えられる。
In the direct-injection diesel engine according to the present invention, the radius of the spherical portion is set to be substantially equal to the radius of the cavity so that combustion is defined between the spherical portion and the cavity near the top dead center of the piston. The surface area of the chamber is minimized, and the amount of heat released from the combustion gas to the combustion chamber ceiling wall and the cylinder is suppressed.

【0020】これに対して、球面部の半径がキャビティ
の半径より大幅に大きくなると、ピストンの上死点付近
で球面部の外周部とピストン頂面の間で楔状の断面をし
た空間が画成されるため、燃焼室に生起されるスワール
の勢力が減衰したり、あるいは燃料噴射弁から燃焼室に
放射状に噴射される燃料噴霧の拡散が悪化して、スモー
ク排出量が増加する可能性がある。
On the other hand, when the radius of the spherical portion becomes much larger than the radius of the cavity, a wedge-shaped space is defined between the outer peripheral portion of the spherical portion and the piston top surface near the top dead center of the piston. Therefore, the swirl force generated in the combustion chamber may be attenuated, or the diffusion of the fuel spray radially injected from the fuel injection valve into the combustion chamber may be deteriorated, and the smoke emission amount may increase. .

【0021】請求項3に記載の直噴式ディーゼルエンジ
ンにおいて、燃焼室天井壁の隣り合う各バルブフェイス
どうしが最も接近する部位は、その断面が球面部に含ま
れて円弧状に湾曲していることにより、熱応力が集中す
ることが緩和され、高速高負荷時に亀裂等が生じること
を防止できる。
In the direct-injection diesel engine according to the third aspect of the present invention, a portion of the combustion chamber ceiling wall where adjacent valve faces are closest to each other has a cross-section included in a spherical portion and curved in an arc shape. Thus, the concentration of thermal stress is relieved, and cracks and the like can be prevented from occurring at high speed and high load.

【0022】請求項4に記載の直噴式ディーゼルエンジ
ンにおいて、吸・排気バルブをそれぞれのバルブフェイ
スが互いに対向するようにシリンダ中心線に対して傾斜
しているため、吸・排気バルブ上で平行に延びる2本の
カムシャフトの間隔が確保され、各カムが干渉すること
が避けられる。この結果、吸・排気バルブとカムの間に
設けられるロッカアーム等の動弁機構が不要となり、部
品数を削減して、軽量化とコストダウンがはかれる。
In the direct injection diesel engine according to the present invention, since the intake / exhaust valves are inclined with respect to the cylinder center line so that their valve faces face each other, they are parallel to each other on the intake / exhaust valves. A space between the two extending cam shafts is ensured, and interference between the cams is avoided. As a result, a valve operating mechanism such as a rocker arm provided between the intake / exhaust valve and the cam becomes unnecessary, and the number of parts can be reduced, and the weight and cost can be reduced.

【0023】請求項5に記載の直噴式ディーゼルエンジ
ンにおいては、低速低負荷域で中速中負荷域よりスワー
ル比を高め、かつ燃料噴射時期を遅らせる燃焼制御を行
う構成により、低速低負荷域では緩やかな燃焼となっ
て、着火遅れ期間が長くなるため、NOx濃度の低減が
はかれるとともに、スワールの勢力が増大して、燃焼室
の空気利用率が十分に得られ、スモーク濃度の低減がは
かれる。
In the direct injection diesel engine according to the fifth aspect of the present invention, in the low speed low load region, the combustion control is performed so that the swirl ratio is increased and the fuel injection timing is delayed in the low speed low load region compared with the medium speed medium load region. Since the combustion becomes gradual and the ignition delay period becomes long, the NOx concentration can be reduced, the swirl power can be increased, and the air utilization rate of the combustion chamber can be sufficiently obtained to reduce the smoke concentration.

【0024】燃焼室天井壁の球面部によって、燃焼室に
生起されるスワールの勢力が高められることにより、吸
気ポートの先端を平面図上において渦巻き状に湾曲させ
てスワールを強化する必要がなく、吸気ポートの通路抵
抗を小さくし、高出力化がはかれる。
The spherical portion of the combustion chamber ceiling wall increases the force of the swirl generated in the combustion chamber, so that it is not necessary to bend the tip of the intake port in a spiral shape on the plan view to strengthen the swirl, Higher output is achieved by reducing the passage resistance of the intake port.

【0025】[0025]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0026】図1において、1はシリンダ、2はピスト
ン、4はシリンダヘッド、5はピストン2の頂面21に
開口したキャビティ、3はシリンダヘッド4に形成され
た吸気ポート、8はシリンダヘッド4に形成された排気
ポートである。ピストン2の往復運動は図示しないコン
ロッドを介してクランクシャフトの回転運動に変換され
る。
In FIG. 1, 1 is a cylinder, 2 is a piston, 4 is a cylinder head, 5 is a cavity opened at the top surface 21 of the piston 2, 3 is an intake port formed in the cylinder head 4, and 8 is a cylinder head 4. It is an exhaust port formed in. The reciprocating motion of the piston 2 is converted into a rotary motion of the crankshaft via a connecting rod (not shown).

【0027】ピストン2の頂面21は、シリンダ中心線
Cに対して平面状に形成される。トロイダル形状のキャ
ビティ5は、シリンダ中心線Cを中心とする円筒面状の
側面5aと、同じくシリンダ中心線Cを中心とする円錐
面状の底面5bとによって画成される。
The top surface 21 of the piston 2 is formed flat with respect to the cylinder center line C. The toroidal cavity 5 is defined by a cylindrical side surface 5a centered on the cylinder center line C and a conical bottom surface 5b also centered on the cylinder center line C.

【0028】ピストン頂面21は、キャビティ5のまわ
りに環状に広がり、ピストン2が上死点付近に到達する
とき、シリンダヘッド4の燃焼室天井壁22の間でシリ
ンダ1内の空気を圧縮してキャビティ5に流入するスキ
ッシュ流を生起するスキッシュエリアを構成する。
The piston top surface 21 extends annularly around the cavity 5 and compresses the air in the cylinder 1 between the combustion chamber ceiling walls 22 of the cylinder head 4 when the piston 2 reaches the vicinity of the top dead center. Forming a squish area that causes a squish flow to flow into the cavity 5.

【0029】図2に示すように、シリンダヘッド1に
は、キャビティ5に燃料を放射状に噴射する燃料噴射弁
11が設置される。燃料噴射弁11はシリンダ中心線C
上に配置され、キャビティ5の中央に臨んでいる。
As shown in FIG. 2, the cylinder head 1 is provided with a fuel injection valve 11 for radially injecting fuel into the cavity 5. The fuel injection valve 11 has a cylinder center line C.
It is located above and faces the center of the cavity 5.

【0030】燃料噴射弁11を取り囲むように2本の吸
気バルブ9と、2本の排気バルブ10がそれぞれ設けら
れる。各吸気バルブ9が開かれるのに伴って各吸気ポー
ト3からシリンダ1に空気を吸入し、この空気をピスト
ン5で圧縮して着火燃焼させる。燃焼したガスは各排気
バルブ10が開かれるのに伴って各排気ポート8に排出
される。これらの各行程が連続して繰り返される。
Two intake valves 9 and two exhaust valves 10 are provided so as to surround the fuel injection valve 11. As each intake valve 9 is opened, air is taken into the cylinder 1 from each intake port 3, and this air is compressed by the piston 5 and ignited and burned. The burned gas is discharged to each exhaust port 8 as each exhaust valve 10 is opened. Each of these steps is continuously repeated.

【0031】各吸気ポート3はその先端が平面図上にお
いて直線状に延びたストレート形状となっている。
Each intake port 3 has a straight shape with its tip extending linearly in a plan view.

【0032】シリンダ1内に生起されるスワールの勢力
を調節する手段として、一方の吸気ポート3の開口面積
を調節するスワールコントロールバルブ(図示せず)が
設けられる。
A swirl control valve (not shown) for adjusting the opening area of one intake port 3 is provided as means for adjusting the swirl force generated in the cylinder 1.

【0033】吸・排気バルブ9,10は、各バルブフェ
イス9a,10aが互いに対向するように、シリンダ中
心線Cに対してそれぞれ所定角度で傾斜するように配置
される。
The intake / exhaust valves 9 and 10 are arranged so as to be inclined at a predetermined angle with respect to the cylinder center line C so that the valve faces 9a and 10a face each other.

【0034】吸・排気バルブ9,10の挟み角は、後述
するように吸・排気バルブ9,10を開閉駆動する吸・
排気カム15,16が互いに干渉しない範囲で、最も小
さい値となるように設定される。この場合、吸・排気バ
ルブ9,10は、そのはさみ角が6°に設定され、シリ
ンダ中心線Cに対してそれぞれ3°づつ傾斜するように
配置される。
The angle between the intake / exhaust valves 9 and 10 is determined by the intake / exhaust valves that open / close the intake / exhaust valves 9 and 10, as will be described later.
The exhaust cams 15 and 16 are set to have the smallest value within a range in which they do not interfere with each other. In this case, the intake / exhaust valves 9 and 10 are arranged such that the angle between the intake / exhaust valves 9 and 10 is set to 6 °, and the intake / exhaust valves 9 and 10 are each inclined by 3 ° with respect to the cylinder center line C.

【0035】燃焼室天井壁22は、その外周部でシリン
ダ中心線Cに直交する平面状に広がる平面部23と、そ
の中央部で球面状に窪む球面部24とを備える。
The combustion chamber ceiling wall 22 is provided with a flat surface portion 23 that spreads in a plane shape orthogonal to the cylinder center line C at the outer peripheral portion thereof, and a spherical surface portion 24 that is recessed into a spherical shape at the center portion thereof.

【0036】シリンダヘッド4の燃焼室天井壁22に
は、各吸・排気バルブ9,10を着座させる各バルブシ
ート17,18が嵌合される。燃焼室天井壁22には各
バルブシート17,18を収装するように凹状に窪む各
バルブリセス27,28が形成される。
Valve seats 17, 18 on which the intake / exhaust valves 9, 10 are seated are fitted to the combustion chamber ceiling wall 22 of the cylinder head 4. The combustion chamber ceiling wall 22 is formed with valve recesses 27 and 28 that are recessed to accommodate the valve seats 17 and 18, respectively.

【0037】燃焼室天井壁22の球面部24は、各吸・
排気バルブ9,10のバルブフェイス9a,10aに概
ね接するように、所定の曲率半径で球面状に湾曲して形
成される。このため、球面部24の曲率中心は、吸・排
気バルブ9,10の中心線I,Eの交点に略一致してい
る。
The spherical portion 24 of the combustion chamber ceiling wall 22 is provided with
The exhaust valves 9 and 10 are formed in a spherical shape with a predetermined radius of curvature so as to come into contact with the valve faces 9a and 10a of the exhaust valves 9 and 10. Therefore, the center of curvature of the spherical surface portion 24 substantially coincides with the intersection of the center lines I and E of the intake / exhaust valves 9 and 10.

【0038】各吸・排気バルブ9,10を開閉駆動する
ために、シリンダヘッド4上には、2本のカムシャフト
13,14が設けられる。各カムシャフト13,14に
は、各吸・排気バルブ9,10を開閉駆動する各吸・排
気カム15,16を有する。
Two camshafts 13 and 14 are provided on the cylinder head 4 to open and close the intake and exhaust valves 9 and 10. The camshafts 13 and 14 have suction / exhaust cams 15 and 16 for opening / closing the suction / exhaust valves 9 and 10, respectively.

【0039】各カムシャフト13,14には、図示しな
いクランクシャフトの回転力がプーリおよびタイミング
ベルトを介して1/2の速度に減速して伝達される。
The rotational force of the crankshaft (not shown) is transmitted to each of the camshafts 13 and 14 through the pulley and the timing belt at a reduced speed of 1/2.

【0040】各カムシャフト13,14は、それぞれの
回転に伴って、各吸・排気カム15,16が各リフタ1
2を摺動させ、各リフタ12が各吸・排気バルブ9a,
9b,10a,10bを各バルブスプリング19に抗し
て開閉させる。
As the cam shafts 13 and 14 rotate, the intake / exhaust cams 15 and 16 are moved to the lifter 1 respectively.
2 is slid so that each lifter 12 causes each intake / exhaust valve 9a,
9b, 10a, 10b are opened and closed against each valve spring 19.

【0041】吸・排気バルブ9,10は、6°の挟み角
をもって配置されているため、吸・排気バルブ9,10
上で平行に延びる2本のカムシャフト13,14の間隔
が確保され、各カム15,16が干渉することが避けら
れる。この結果、ロッカアーム等の動弁機構が不要とな
り、部品数を削減して、軽量化とコストダウンがはかれ
る。
Since the intake / exhaust valves 9 and 10 are arranged with an included angle of 6 °, the intake / exhaust valves 9 and 10 are arranged.
The space between the two cam shafts 13 and 14 extending parallel to each other is ensured to prevent the cams 15 and 16 from interfering with each other. As a result, a valve mechanism such as a rocker arm is not required, the number of parts can be reduced, and the weight and cost can be reduced.

【0042】図3において、60は、燃料の噴射時期と
燃料の噴射量が電子制御される燃料噴射ポンプである。
燃料噴射ポンプ60から圧送される燃料が、配管58を
通って噴射弁11に導かれる。
In FIG. 3, reference numeral 60 denotes a fuel injection pump whose fuel injection timing and fuel injection amount are electronically controlled.
The fuel pumped from the fuel injection pump 60 is guided to the injection valve 11 through the pipe 58.

【0043】63は吸気通路、65は排気通路、76は
排気中のパーティキュレート等を捕集するフィルタ、7
7は排気音を低減する排気マフラである。
Reference numeral 63 is an intake passage, 65 is an exhaust passage, 76 is a filter for collecting particulates in the exhaust, and 7
An exhaust muffler 7 reduces exhaust noise.

【0044】66は排気通路65と吸気通路63とを連
通するEGR通路、67は制御負圧に応動するダイアフ
ラム式のEGR弁である。
Reference numeral 66 is an EGR passage that connects the exhaust passage 65 and the intake passage 63, and 67 is a diaphragm type EGR valve that responds to the control negative pressure.

【0045】68は負圧制御弁で、コントロールユニッ
ト71からのデューティ信号に応じてバキュームポンプ
69からの一定負圧を3段階に調整する。例えば、負圧
調整弁68へのOFFデューティ(一定周期のOFF時
間割合)が最大値で一定負圧がそのままEGR弁67に
導入されるときは、排出ガスの50%が還流される。こ
れはEGR率(=EGR量/新気量×100%)が10
0%に相当する。OFFデューティが段階的に小さくな
ると、EGR弁67への制御負圧の減少によりEGR弁
開度が小さくなってEGR流量が少なくなる。つまり、
OFFデューティを小さくするごとにEGR率が60
%、30%と小さくなる。
Reference numeral 68 denotes a negative pressure control valve, which adjusts the constant negative pressure from the vacuum pump 69 in three stages according to the duty signal from the control unit 71. For example, when the OFF duty to the negative pressure adjusting valve 68 (OFF time ratio of a constant cycle) is the maximum value and a constant negative pressure is directly introduced to the EGR valve 67, 50% of the exhaust gas is recirculated. This means that the EGR rate (= EGR amount / fresh air amount x 100%) is 10
It corresponds to 0%. When the OFF duty gradually decreases, the control negative pressure to the EGR valve 67 decreases, so that the EGR valve opening decreases and the EGR flow rate decreases. That is,
The EGR rate is 60 each time the OFF duty is reduced.
% And 30%.

【0046】61は前述したスワールコントロールバル
ブ、62はスワールコントロールバルブ61を開閉駆動
するアクチュエータである。
Reference numeral 61 is the above-mentioned swirl control valve, and 62 is an actuator for opening and closing the swirl control valve 61.

【0047】EGR率とスワール比および燃料噴射時期
等をエンジンの運転条件に応じて制御するため、マイコ
ンからなるコントロールユニット71が設けられる。コ
ントロールユニット71では、アクセル開度(アクセル
ペダル開度)を検出するセンサ、エアクリーナ75を介
して吸気通路63に取り入れられる吸入空気量Qを検出
するエアフローメータ73からの信号と、エンジン回転
数、エンジン水温等の検出信号を入力する。
A control unit 71 including a microcomputer is provided for controlling the EGR rate, the swirl ratio, the fuel injection timing and the like according to the operating conditions of the engine. The control unit 71 has a sensor for detecting an accelerator opening (accelerator pedal opening), a signal from an air flow meter 73 for detecting an intake air amount Q taken into the intake passage 63 via an air cleaner 75, an engine speed, an engine speed, and an engine speed. Input the detection signal such as water temperature.

【0048】コントロールユニット71は、所定の低速
低負荷域で中速中負荷域よりEGR率を高め、スワール
比を高めるとともに、燃料噴射時期を上死点の近傍まで
遅らせる制御を行う。低速低負荷域で燃料噴射時期を上
死点の近傍まで遅らせることにより、拡散燃焼より予混
合気燃焼の占める割合を大きくし、NOx濃度とスモー
ク濃度の両方を低減する。
The control unit 71 controls the EGR rate to be higher than the medium speed to medium load range in a predetermined low speed and low load range to increase the swirl ratio and to delay the fuel injection timing to near the top dead center. By delaying the fuel injection timing to near the top dead center in the low speed and low load region, the proportion of premixed gas combustion is made larger than that of diffusion combustion, and both the NOx concentration and the smoke concentration are reduced.

【0049】運転条件に応じた燃料噴射時期の特性を図
6に示すと、高速高負荷時で上死点前8°まで進め、回
転数または負荷が下がるほど燃料噴射時期を段階的に遅
らせて、低速低負荷時に上死点まで遅らせる。
The characteristics of the fuel injection timing according to the operating conditions are shown in FIG. 6. At high speed and high load, the fuel injection timing is advanced to 8 ° before top dead center, and the fuel injection timing is delayed stepwise as the rotation speed or load decreases. Delay at top dead center at low speed and low load.

【0050】EGR率は、運転条件に応じて図4のよう
に設定している。図において、中速中負荷域と低速の全
負荷域でEGR率は100%である。これに対して、高
速高負荷域においては、燃焼期間が長びいてスモークの
発生を完全に抑えることができないため、さらには排気
温度の上昇およびEGR流量の増大で吸気温度が上昇
し、EGRによるNOx低減の効果が減少することなど
のため、EGR率を60%、30%と段階的に減少させ
ている。
The EGR rate is set as shown in FIG. 4 according to the operating conditions. In the figure, the EGR rate is 100% in the medium-speed / medium-load range and the low-speed full-load range. On the other hand, in the high speed and high load region, the combustion period is long and the generation of smoke cannot be completely suppressed. Therefore, the intake air temperature rises due to the increase in the exhaust gas temperature and the increase in the EGR flow rate. Since the effect of reducing NOx is reduced, the EGR rate is gradually reduced to 60% and 30%.

【0051】エンジンの発生するトルクとエンジン回転
数に対して図4に示したEGR率(目標EGR率)の特
性が得られるように、アクセル開度(エンジン負荷相当
量)Accとエンジン回転数Neをパラメータとするマ
ップ(図示せず)を設定しておき、このマップをルック
アップして、そのときの目標EGR率を求める。これと
エアフローメータ流量(新気量)とからEGR流量を EGR流量=エアフローメータ流量×目標EGR率 により計算し、この流量のEGRガスが流れるように負
圧制御弁68へのOFFデューティを決定するのであ
る。
In order to obtain the characteristics of the EGR rate (target EGR rate) shown in FIG. 4 with respect to the torque generated by the engine and the engine speed, the accelerator opening (engine load equivalent amount) Acc and the engine speed Ne. Is set as a parameter (not shown) and the map is looked up to obtain the target EGR rate at that time. The EGR flow rate is calculated from this and the air flow meter flow rate (new air amount) by EGR flow rate = air flow meter flow rate × target EGR rate, and the OFF duty to the negative pressure control valve 68 is determined so that the EGR gas of this flow rate flows. Of.

【0052】運転条件に応じたスワール比の特性を図5
に示すと、低速になるほどスワール比を高くしている。
高速域では高スワール比に伴う体積効率の低下があらわ
になるし、噴射圧の高圧化による燃焼改善がスワールの
必要性を弱めることから、回転数が高くなるほどスワー
ルコントロールバルブ61を段階的に開いて、スワール
比を減少させるのである。
The characteristics of the swirl ratio according to the operating conditions are shown in FIG.
As shown in, the swirl ratio is increased as the speed decreases.
In the high speed range, the volume efficiency decreases with the high swirl ratio, and the improvement of combustion by increasing the injection pressure weakens the need for swirl. Therefore, the swirl control valve 61 is opened stepwise as the rotation speed increases. It reduces the swirl ratio.

【0053】以上のように構成され、次に作用について
説明する。
With the above construction, the operation will be described below.

【0054】直噴式ディーゼルエンジンの場合、燃料噴
射弁11から燃焼室に噴射される燃料は、微粒化、蒸
発、空気との混合を経て燃焼に至る。
In the case of a direct injection diesel engine, the fuel injected from the fuel injection valve 11 into the combustion chamber is combusted through atomization, evaporation and mixing with air.

【0055】図7に示すように、ピストン上死点前5°
のクランク角度で燃料噴射弁から燃料が燃焼室に噴射さ
れる従来DI方式の場合、ピストンが上死点に到達する
のに伴って拡散燃焼が急激に行われて、排気ガスのNO
x濃度が増加する。
As shown in FIG. 7, 5 ° before the piston top dead center
In the case of the conventional DI method in which fuel is injected from the fuel injection valve into the combustion chamber at a crank angle of, the diffusion combustion is rapidly performed as the piston reaches the top dead center, and exhaust gas NO
The x concentration increases.

【0056】また、燃焼室に生起されるスワールの勢力
が十分に得られない燃焼室構造を備える直噴式ディーゼ
ルエンジンにおいて、燃料噴射時期を上死点の近傍まで
遅らせる制御を行う従来排気対応DI方式の場合、拡散
燃焼より予混合気燃焼の占める割合が大きくなってNO
x濃度の低減がはかれるものの、スワールの勢力が不足
して、燃焼室の空気利用率が十分に得られないため、H
C、SOF等のスモーク濃度が増加する。
Further, in the direct injection type diesel engine having the combustion chamber structure in which the swirl force generated in the combustion chamber is not sufficiently obtained, the conventional DI system corresponding to the exhaust control for delaying the fuel injection timing to near the top dead center In the case of NO, the ratio of premixed combustion is larger than that of diffusion combustion, and NO
Although the x concentration can be reduced, the swirl's power is insufficient and the air utilization rate in the combustion chamber cannot be sufficiently obtained.
The smoke concentration of C, SOF, etc. increases.

【0057】これに対して平滑な燃焼室壁面形状を備え
る本発明DI方式は、低速低負荷域で中速中負荷域より
スワール比を高め、かつ燃料噴射時期を上死点まで遅ら
せる燃焼制御を行う構成により、低速低負荷域では緩や
かな燃焼となって、着火遅れ期間が長くなるため、NO
x濃度の低減がはかれるとともに、燃焼室にスキッシュ
とスワールの複合渦流を生起し、燃焼後期まで強い乱れ
を維持して、燃焼室の空気利用率が十分に得られ、スモ
ーク濃度の低減がはかれる。
On the other hand, the DI method of the present invention, which has a smooth combustion chamber wall surface shape, achieves combustion control in which the swirl ratio is increased in the low speed and low load range compared to the middle speed and middle load range, and the fuel injection timing is delayed to the top dead center. With this configuration, the combustion is gradual in the low-speed low-load range, and the ignition delay period becomes long, so NO
In addition to reducing the x concentration, a complex vortex flow of squish and swirl is generated in the combustion chamber, maintaining a strong turbulence until the latter stage of combustion, so that the air utilization rate of the combustion chamber is sufficiently obtained and the smoke concentration is reduced.

【0058】すなわち、燃焼室天井壁22の球面部24
は、各吸・排気バルブ9,10のバルブフェイス9a,
10aに対して概ね接する球面状に湾曲して形成されて
いるため、燃焼室天井壁22に凹状に窪む各バルブリセ
ス27,28の容積を小さくして、球面部24と各バル
ブフェイス9a,10aによって画成される燃焼室の壁
面を平滑にし、燃焼室に生起されるスワールの勢力がバ
ルブリセス27,28の窪みによって減衰することが抑
えられる。
That is, the spherical portion 24 of the combustion chamber ceiling wall 22.
Is a valve face 9a of each intake / exhaust valve 9,10,
Since the valve recesses 27 and 28 that are concavely recessed in the combustion chamber ceiling wall 22 have a small volume, the spherical recess 24 and the valve faces 9a and 10a are formed. The wall surface of the combustion chamber defined by is smoothed, and damping of the swirl force generated in the combustion chamber by the depressions of the valve recesses 27 and 28 is suppressed.

【0059】この結果、吸気ポート3はその先端を平面
図上において渦巻き状に湾曲させてスワールを強化する
必要がなく、吸気ポート3の通路抵抗を小さくし、高出
力化がはかれる。
As a result, it is not necessary to bend the tip of the intake port 3 in a spiral shape on the plan view to strengthen the swirl, and the passage resistance of the intake port 3 can be reduced to achieve high output.

【0060】燃焼室天井壁22の平面部23は、球面部
24の周囲に位置してシリンダ中心線Cと直交する平面
状に広がる構造により、トップリング34より上方に画
成されるピストン2とシリンダ1の隙間容積が小さく抑
えられ、燃焼室の容積をキャビティ5に集中させて空気
利用率を高め、スモーク排出量の低減がはかれる。
The flat portion 23 of the combustion chamber ceiling wall 22 is located around the spherical portion 24 and spreads in a plane orthogonal to the cylinder center line C, so that the flat portion 23 is defined above the top ring 34. The clearance volume of the cylinder 1 is suppressed to be small, the volume of the combustion chamber is concentrated in the cavity 5, the air utilization rate is increased, and the smoke discharge amount is reduced.

【0061】球面部24によってバルブリセス27,2
8の窪み容積を小さくすることにより、燃料噴射弁11
から燃焼室に放射状に噴射される燃料噴霧がバルブリセ
ス27,28に入り込むことを抑制し、スモーク排出量
の低減がはかれる。
The valve recesses 27, 2 are formed by the spherical portion 24.
The fuel injection valve 11
The fuel spray radially injected into the combustion chamber from the inside is prevented from entering the valve recesses 27 and 28, and the smoke emission amount is reduced.

【0062】また、ピストン2の頂面21が燃焼室天井
壁22およぴ各バルブフェイス9a,10aに平行に対
峙するようにシリンダ中心線Cと直交して形成されてい
るため、ピストン2が上死点付近に到達するとき、ピス
トン2の頂面21とシリンダヘッド4の燃焼室天井壁2
2の間でシリンダ1内の空気を圧縮してキャビティ5に
流入するスキッシュ流の勢力を十分に確保し、空気利用
率を高めて、スモーク排出量の低減がはかれる。
Further, since the top surface 21 of the piston 2 is formed orthogonal to the cylinder center line C so as to face the combustion chamber ceiling wall 22 and the valve faces 9a, 10a in parallel, the piston 2 is formed. When reaching near the top dead center, the top surface 21 of the piston 2 and the combustion chamber ceiling wall 2 of the cylinder head 4
Between the two, the air in the cylinder 1 is compressed to sufficiently secure the force of the squish flow flowing into the cavity 5, the air utilization rate is increased, and the smoke discharge amount is reduced.

【0063】吸・排気バルブ9,10の挟み角は、後述
するように吸・排気バルブ9,10を開閉駆動する吸・
排気カム15,16が互いに干渉しない範囲で、最も小
さい値となるように設定されているため、ピストン頂面
21との間でスキッシュ流を生起する燃焼室天井壁22
のスキッシュエリア面積を最大限に確保し、スキッシュ
流の勢力を高めて、空気利用率の向上がはかれる。
The sandwiching angle of the intake / exhaust valves 9 and 10 is determined by the intake / exhaust valves for opening and closing the intake / exhaust valves 9 and 10, as will be described later.
Since the exhaust cams 15 and 16 are set to have the smallest value within a range where they do not interfere with each other, the combustion chamber ceiling wall 22 that produces a squish flow with the piston top surface 21.
The maximum squish area area is secured, the squish flow power is increased, and the air utilization rate is improved.

【0064】次に、図8に示す他の実施例は、燃焼室天
井壁22の球面部24の半径をキャビティ5の半径と略
等しく設定するものである。なお、図1との対応部分に
は同一符号を用いている。
Next, in another embodiment shown in FIG. 8, the radius of the spherical portion 24 of the combustion chamber ceiling wall 22 is set to be substantially equal to the radius of the cavity 5. The same parts as those in FIG. 1 are designated by the same reference numerals.

【0065】この場合、ピストン2の上死点付近で球面
部24とキャビティ5の間に画成される燃焼室は、その
表面積を最小限にして、燃焼ガスから燃焼室天井壁22
やシリンダ1への放熱量が抑えられる。
In this case, the combustion chamber defined between the spherical portion 24 and the cavity 5 in the vicinity of the top dead center of the piston 2 has its surface area minimized, and the combustion chamber is covered with the combustion chamber ceiling wall 22.
The amount of heat released to the cylinder 1 can be suppressed.

【0066】これに対して、燃焼室天井壁22の球面部
24の半径がキャビティ5の半径より大幅に大きくなる
と、ピストン2の上死点付近で球面部24の外周部とピ
ストン頂面21の間で楔状の断面をした空間が画成され
るため、燃焼室に生起されるスワールの勢力が減衰した
り、あるいは燃料噴射弁11から燃焼室に放射状に噴射
される燃料噴霧の拡散が悪化して、スモーク排出量が増
加する可能性がある。
On the other hand, when the radius of the spherical surface portion 24 of the combustion chamber ceiling wall 22 becomes significantly larger than the radius of the cavity 5, the outer peripheral portion of the spherical surface portion 24 and the piston top surface 21 near the top dead center of the piston 2. Since a space having a wedge-shaped cross section is defined between them, the swirl force generated in the combustion chamber is attenuated, or the diffusion of fuel spray radially injected from the fuel injection valve 11 into the combustion chamber is deteriorated. As a result, smoke emissions may increase.

【0067】次に、図9に示す他の実施例は、燃焼室天
井壁22の隣り合う各バルブフェイス9a,10aどう
しが最も接近する部位を通り、シリンダ中心線Cを中心
とする円弧を基準円弧Sとすると、球面部24の半径を
基準円弧Sの半径より大きく設定するものである。な
お、図1との対応部分には同一符号を用いている。
Next, in another embodiment shown in FIG. 9, an arc centered on the cylinder center line C is used as a reference, passing through a portion where the adjacent valve faces 9a, 10a of the combustion chamber ceiling wall 22 are closest to each other. When the arc S is set, the radius of the spherical surface portion 24 is set to be larger than the radius of the reference arc S. The same parts as those in FIG. 1 are designated by the same reference numerals.

【0068】この場合、燃焼室天井壁22の隣り合う各
バルブフェイス9a,10aどうしが最も接近する部位
は、その断面が球面部24に含まれて円弧状に湾曲して
いるため、熱応力が集中することが緩和され、高速高負
荷時に亀裂等が生じることを防止できる。
In this case, since the section where the adjacent valve faces 9a, 10a of the combustion chamber ceiling wall 22 are closest to each other is curved in an arc shape with the cross section included in the spherical portion 24, thermal stress is generated. Concentration is relieved, and cracks and the like can be prevented from occurring at high speed and high load.

【0069】[0069]

【発明の効果】以上説明したように請求項1に記載の直
噴式ディーゼルエンジンは、吸・排気バルブをそれぞれ
のバルブフェイスが互いに対向するようにシリンダ中心
線に対して傾斜させ、燃焼室天井壁は閉弁位置にある吸
・排気バルブの各バルブフェイスに概ね接する球面状に
湾曲した球面部と球面部の周囲に位置してシリンダ中心
線と直交する平面状に広がる平面部を有する燃焼室構造
のため、燃焼室の容積をキャビティに集中させて空気利
用率を高められ、燃焼室に生起されるスワールの勢力が
バルブリセスの窪みによって減衰することが抑えられる
とともに、燃料噴射弁から燃焼室に放射状に噴射される
燃料噴霧がバルブリセスに入り込むことを抑制し、H
C、SOF等のスモーク排出量の低減がはかれる。
As described above, in the direct injection diesel engine according to the first aspect of the present invention, the intake / exhaust valves are inclined with respect to the cylinder center line so that their valve faces face each other, and the combustion chamber ceiling wall is provided. Is a combustion chamber structure that has a spherically curved spherical surface that is almost in contact with each valve face of the intake / exhaust valve in the closed position, and a flat surface that extends around the spherical surface and extends in a plane orthogonal to the cylinder center line. Therefore, the volume of the combustion chamber is concentrated in the cavity to increase the air utilization rate, the damping of the swirl force generated in the combustion chamber by the depression of the valve recess is suppressed, and the radial direction from the fuel injection valve to the combustion chamber is increased. Suppresses the fuel spray injected into the valve recess from entering the H
Smoke emissions such as C and SOF can be reduced.

【0070】請求項2に記載の直噴式ディーゼルエンジ
ンにおいては、球面部の半径をキャビティの半径と略等
しく設定することにより、ピストンの上死点付近で球面
部とキャビティの間に画成される燃焼室は、その表面積
を最小限にして、燃焼ガスから燃焼室天井壁やシリンダ
への放熱量が抑えられ、燃費の低減がはかれる。
In the direct injection diesel engine of the second aspect, the radius of the spherical surface portion is set to be substantially equal to the radius of the cavity so that the piston is defined between the spherical surface portion and the cavity near the top dead center. The surface area of the combustion chamber is minimized, so that the amount of heat released from the combustion gas to the ceiling wall of the combustion chamber and the cylinder is suppressed, thereby reducing fuel consumption.

【0071】請求項3に記載の直噴式ディーゼルエンジ
ンにおいては、燃焼室天井壁の隣り合う各バルブフェイ
スどうしが最も接近する部位は、その断面が球面部に含
まれて円弧状に湾曲していることにより、熱応力が集中
することが緩和され、高速高負荷時に亀裂等が生じるこ
とを防止できる。
In the direct injection type diesel engine according to the third aspect of the present invention, a portion of the ceiling wall of the combustion chamber where adjacent valve faces are closest to each other is curved in an arc shape with its cross section included in the spherical portion. This alleviates the concentration of thermal stress and prevents the occurrence of cracks or the like at high speed and high load.

【0072】請求項4に記載の直噴式ディーゼルエンジ
ンにおいては、吸・排気バルブをそれぞれのバルブフェ
イスが互いに対向するようにシリンダ中心線に対して傾
斜させているため、吸・排気バルブ上で平行に延びる2
本のカムシャフトの間隔が確保され、各カムが干渉する
ことが避けられる。この結果、吸・排気バルブとカムの
間に設けられるロッカアーム等の動弁機構が不要とな
り、部品数を削減して、軽量化とコストダウンがはかれ
る。
In the direct injection diesel engine according to the fourth aspect, since the intake / exhaust valves are inclined with respect to the cylinder center line so that their valve faces face each other, they are parallel on the intake / exhaust valves. Extending to 2
The spacing between the camshafts of the book is secured, and the interference of the cams is avoided. As a result, a valve operating mechanism such as a rocker arm provided between the intake / exhaust valve and the cam becomes unnecessary, and the number of parts can be reduced, and the weight and cost can be reduced.

【0073】請求項5に記載の直噴式ディーゼルエンジ
ンにおいては、低速低負荷域で中速中負荷域よりスワー
ル比を高めかつ燃料噴射時期を遅らせる燃焼制御を行う
構成により、低速低負荷域では緩やかな燃焼となって、
着火遅れ期間が長くなるため、NOx濃度の低減がはか
れるとともに、スワールの勢力が増大して、燃焼室の空
気利用率が十分に得られ、スモーク濃度の低減がはかれ
る。
In the direct injection type diesel engine according to the fifth aspect of the present invention, in the low speed low load region, the combustion control is performed so that the swirl ratio is increased and the fuel injection timing is delayed compared with the medium speed medium load region. Burning,
Since the ignition delay period becomes long, the NOx concentration can be reduced, the swirl power can be increased, and the air utilization rate of the combustion chamber can be sufficiently obtained to reduce the smoke concentration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すエンジンの断面図。FIG. 1 is a sectional view of an engine showing an embodiment of the present invention.

【図2】同じく燃焼室天井壁等の平面図。FIG. 2 is a plan view of a combustion chamber ceiling wall and the like.

【図3】同じくエンジンの制御系を示すシステム図。FIG. 3 is a system diagram showing a control system of the engine.

【図4】同じくEGR率の制御特性図。FIG. 4 is a control characteristic diagram of the EGR rate.

【図5】同じくスワール比の制御特性図。FIG. 5 is a control characteristic diagram of a swirl ratio.

【図6】同じく燃料噴射時期の制御特性図。FIG. 6 is a control characteristic diagram of fuel injection timing.

【図7】同じく燃焼状態の説明図。FIG. 7 is an explanatory view of a combustion state of the same.

【図8】他の実施例を示すエンジンの断面図。FIG. 8 is a sectional view of an engine showing another embodiment.

【図9】さらに他の実施例を示す燃焼室天井壁の平面
図。
FIG. 9 is a plan view of a combustion chamber ceiling wall showing still another embodiment.

【図10】従来例を示すエンジンの断面図。FIG. 10 is a sectional view of an engine showing a conventional example.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 ピストン 5 キャビティ 8 排気ポート 9 吸気弁 9aバルブフェイス 10 排気弁 10aバルブフェイス 11 燃料噴射弁 13 カムシャフト 14 カムシャフト 15 吸気カム 16 排気カム 17 バルブシート 18 バルブシート 21 ピストン頂面 22 燃焼室天井壁 23 平面部 24 球面部 27 バルブリセス 28 バルブリセス 1 Cylinder 2 Piston 5 Cavity 8 Exhaust Port 9 Intake Valve 9a Valve Face 10 Exhaust Valve 10a Valve Face 11 Fuel Injection Valve 13 Camshaft 14 Camshaft 15 Intake Cam 16 Exhaust Cam 17 Valve Seat 18 Valve Seat 21 Piston Top 22 Combustion Chamber Ceiling wall 23 Plane part 24 Spherical part 27 Valve recess 28 Valve recess

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 23/06 F02B 23/06 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F02B 23/06 F02B 23/06 B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ピストンの頂面に凹状に窪むキャビティ
と、 ピストンとの間で燃焼室を画成する燃焼室天井壁と、 燃焼室天井壁の中央部に取付けられて燃料を噴射する燃
料噴射弁と、 燃焼室天井壁に開口して吸気を導入する複数の吸気ポー
トと、 各吸気ポートを開閉する複数の吸気バルブと、 燃焼室天井壁に開口して排気を排出する複数の排気ポー
トと、 各排気ポートを開閉する複数の排気バルブと、 を備えるエンジンにおいて、 前記吸・排気バルブをそれぞれのバルブフェイスが互い
に対向するようにシリンダ中心線に対して傾斜させ、 前記燃焼室天井壁は閉弁位置にある吸・排気バルブの各
バルブフェイスに概ね接する球面状に湾曲した球面部
と、球面部の周囲に位置してシリンダ中心線と直交する
平面状に広がる平面部とを有したことを特徴とする直噴
式ディーゼルエンジン。
Claim: What is claimed is: 1. A cavity that is recessed in a top surface of a piston, a combustion chamber ceiling wall that defines a combustion chamber between the piston, and a fuel that is attached to a central portion of the combustion chamber ceiling wall and injects fuel. Injection valves, multiple intake ports that open to the combustion chamber ceiling wall to introduce intake air, multiple intake valves that open and close each intake port, and multiple exhaust ports that open to the combustion chamber ceiling wall to discharge exhaust gas And a plurality of exhaust valves that open and close each exhaust port, the intake / exhaust valves are inclined with respect to a cylinder center line so that respective valve faces face each other, and the combustion chamber ceiling wall is It has a spherically curved spherical portion that is in close contact with each valve face of the intake / exhaust valve in the valve closing position, and a flat portion that is located around the spherical portion and spreads in a planar shape orthogonal to the cylinder center line. Direct-injection diesel engine, wherein the door.
【請求項2】前記球面部の半径をキャビティの半径と略
等しく設定したことを特徴とする請求項1に記載の直噴
式ディーゼルエンジン。
2. The direct injection diesel engine according to claim 1, wherein the radius of the spherical surface portion is set to be substantially equal to the radius of the cavity.
【請求項3】前記燃焼室天井壁の隣り合うバルブフェイ
スどうしが最も接近する部位を通るシリンダ中心線を中
心とする円弧を基準円弧Sとすると、 球面部の半径を基準円弧Sの半径より大きく設定したこ
とを特徴とする請求項1または2に記載の直噴式ディー
ゼルエンジン。
3. A radius of a spherical portion is larger than a radius of a reference arc S when an arc centered on a cylinder center line passing through a portion where adjacent valve faces of the combustion chamber ceiling wall are closest to each other is defined as a reference arc S. The direct injection diesel engine according to claim 1 or 2, wherein the diesel engine is set.
【請求項4】前記各吸・排気バルブを開閉駆動する2本
の吸・排気カムシャフトを吸・排気バルブの上方に並ん
で設けたことを特徴とする請求項1から3のいずれか一
つに記載の直噴式ディーゼルエンジン。
4. The two intake / exhaust camshafts for driving the intake / exhaust valves to open and close are provided side by side above the intake / exhaust valves. Direct injection diesel engine described in.
【請求項5】低速低負荷域で中速中負荷域よりスワール
比を高めかつ燃料噴射時期を遅らせる燃焼制御手段を備
えたことを特徴とする請求項1から4のいずれか一つに
記載の直噴式ディーゼルエンジン。
5. The combustion control means for increasing the swirl ratio and delaying the fuel injection timing in the low speed and low load region compared to the medium speed and medium load region is provided, as claimed in any one of claims 1 to 4. Direct injection diesel engine.
JP7123914A 1995-05-23 1995-05-23 Direct injection type diesel engine Pending JPH08319833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7123914A JPH08319833A (en) 1995-05-23 1995-05-23 Direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7123914A JPH08319833A (en) 1995-05-23 1995-05-23 Direct injection type diesel engine

Publications (1)

Publication Number Publication Date
JPH08319833A true JPH08319833A (en) 1996-12-03

Family

ID=14872474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123914A Pending JPH08319833A (en) 1995-05-23 1995-05-23 Direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPH08319833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150347A (en) * 2007-12-21 2009-07-09 Honda Motor Co Ltd Direct fuel-injection engine
JP2012052530A (en) * 2010-08-12 2012-03-15 Crf Soc Consortile Per Azioni Combustion chamber for diesel engine with inclined engine valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150347A (en) * 2007-12-21 2009-07-09 Honda Motor Co Ltd Direct fuel-injection engine
US8714136B2 (en) 2007-12-21 2014-05-06 Honda Motor Co., Ltd. Direct fuel-injection engine
JP2012052530A (en) * 2010-08-12 2012-03-15 Crf Soc Consortile Per Azioni Combustion chamber for diesel engine with inclined engine valve

Similar Documents

Publication Publication Date Title
US5950582A (en) Internal combustion engine with variable camshaft timing and intake valve masking
EP1945932B1 (en) An exhaust gas recirculation system
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
US20120042849A1 (en) Method and device for controlling diesel engine with forced induction system
JP2639721B2 (en) Combustion chamber of internal combustion engine
WO2013080454A1 (en) Device and method for controlling spark-ignition gasoline engine
US6131554A (en) Engine having combustion control system
JPH03264727A (en) Intake system for multiple valve engine
JP2007132319A (en) Controller for four-cycle premixed compression self-igniting internal combustion engine
JPH11264319A (en) Exhaust control device for internal combustion engine
WO2007094251A1 (en) Four-cycle engine
CN101680371A (en) Control apparatus and control method for internal combustion engine
JPH0324838Y2 (en)
JPH08319833A (en) Direct injection type diesel engine
JPH11117776A (en) Suction device for direct injection diesel engine
JPH0635834B2 (en) Double intake valve engine
JP2020153235A (en) Internal combustion engine
JPS5810565B2 (en) Dual intake passage internal combustion engine
JP7155917B2 (en) engine combustion chamber structure
JP7283055B2 (en) engine combustion chamber structure
JP7271912B2 (en) engine combustion chamber structure
JPH07102982A (en) Engine having supercharger
US10738684B2 (en) Applied-ignition internal combustion engine with two cylinder-specific valves and method for mixture formation in an internal combustion engine of said type
JPH084599A (en) Combustion control method for engine
JP3233000B2 (en) Engine swirl control device