JPH083195A - Tissue injury healing factor - Google Patents

Tissue injury healing factor

Info

Publication number
JPH083195A
JPH083195A JP3285650A JP28565091A JPH083195A JP H083195 A JPH083195 A JP H083195A JP 3285650 A JP3285650 A JP 3285650A JP 28565091 A JP28565091 A JP 28565091A JP H083195 A JPH083195 A JP H083195A
Authority
JP
Japan
Prior art keywords
hgf
treatment
indulin
tissue injury
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285650A
Other languages
Japanese (ja)
Inventor
Toshiichi Nakamura
敏一 中村
Kunio Matsumoto
邦夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3285650A priority Critical patent/JPH083195A/en
Priority to PCT/JP1992/001286 priority patent/WO1993006853A1/en
Publication of JPH083195A publication Critical patent/JPH083195A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To provide a new tissue injury healing factor originated from human or animal tissue or blood component, increasing by the injury of human or animal tissue and active to promote the production of hepatocyte growth factor(HGF) of an HGF-producing cell. CONSTITUTION:This new tissue injury healing factor indulin is originated from the tissue or blood component of human or animal, increases by the injury of human or animal tissue, exhibits a molecular weight of 10-30kD by the gel column treatment with biogel P-60 and Sephadex G-150 and a molecular weight of 40-60kD by SDS polyacrylamide electrophoresis under non-reducing condition and 10-20kD under reducing condition and is active to promote the production of hepatocyte growth factor (HGF) of an HGF-producing cell, stable by heat- treatment at 100 deg.C for 5min, acid treatment at pH1.0, reducing treatment with 1mM dithiothreitol and heparinase treatment at 0.31mU/ml and 37 deg.C for 1hr and inactivated by trypsin treatment at 100mug/ml and 37 deg.C for 3hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は組織傷害治癒因子に関
し、より詳細にはヒトまたは動物の組織または血液成分
に由来し、肝実質細胞増殖因子(Hepatocyto Growth Fa
ctor、以下、HGFという)産生細胞のHGF産生を促
進する物質に関する。
TECHNICAL FIELD The present invention relates to a tissue injury healing factor, and more particularly, it is derived from a human or animal tissue or blood component, and has a hepatocyte growth factor (Hepatocyto Growth Factor).
ctor (hereinafter, referred to as HGF)).

【0002】[0002]

【従来の技術】HGFは本発明者らが再生肝ラット血清
中から成熟肝実質細胞を in vitro で増殖させる因子と
して見いだしたタンパク質である(Biochem Biophys Re
s Commun, 122, 1450, 1984)。本発明者らはさらに、
HGFをラット血小板より単離することに成功し(Pro
c. Natl. Acad. Sci, 83, 6489,1986, FFBS Letter, 2
2,311, 1987)、そのアミノ酸配列を一部決定した。さ
らに、本発明者らは解明されたHGFアミノ酸配列をも
とにヒトおよびラット由来のHGFcDNAクローニン
グを行い、このcDNAを動物組織に組換えて肝実質細
胞増殖因子をタンパク質として得ることに成功した(ヒ
トHGF:Nature, 342, 440, 1989;ラットHGF:Pr
oc. Natl. Acad. Sci, 87, 3200, 1990)。
2. Description of the Related Art HGF is a protein found by the present inventors as a factor for proliferating mature hepatocytes from regenerated liver rat serum in vitro (Biochem Biophys Re.
S Commun, 122, 1450, 1984). We further
Succeeded in isolating HGF from rat platelets (Pro
c. Natl. Acad. Sci, 83, 6489,1986, FFBS Letter, 2
2,311, 1987), and its amino acid sequence was partially determined. Furthermore, the present inventors succeeded in cloning human and rat-derived HGF cDNA based on the elucidated HGF amino acid sequence, and recombining this cDNA into animal tissues to obtain hepatocyte growth factor as a protein ( Human HGF: Nature, 342, 440, 1989; Rat HGF: Pr
oc. Natl. Acad. Sci, 87, 3200, 1990).

【0003】HGFの分子量はSDS−ポリアクリルア
ミドゲル電気泳動で82〜85kDである。ラットHG
F分子は463アミノ酸残基からなるα鎖と233アミ
ノ酸残基からなるβ鎖が1個のジスルフィド結合により
架橋したヘテロダイマー構造を持ち、α、β両鎖とも2
個のグルコサミン型糖鎖結合部位が存在する。ヒトHG
Fもまたほぼ同じ生理活性を有し、463アミノ酸残基
からなるα鎖と234アミノ酸残基からなるβ鎖とから
なる。α鎖中には線溶酵素プラスミンと同様のクリング
ル構造が4個存在し、β鎖のアミノ酸配列においてもセ
リンプロテアーゼ活性を有するプラスミンのB鎖と約3
7%のホモロジーを有する。ラットHGFとヒトHGF
のアミノ酸配列のホモロジーはα鎖において91.6%、β
鎖において88.9%と非常に高い相同性を持ち、その活性
は全く互換性がある。
The molecular weight of HGF is 82-85 kD by SDS-polyacrylamide gel electrophoresis. Rat HG
The F molecule has a heterodimer structure in which an α chain consisting of 463 amino acid residues and a β chain consisting of 233 amino acid residues are crosslinked by one disulfide bond, and both α and β chains have 2 chains.
There are individual glucosamine-type sugar chain binding sites. Human HG
F also has almost the same physiological activity and consists of an α chain consisting of 463 amino acid residues and a β chain consisting of 234 amino acid residues. There are four kringle structures in the α chain, which are similar to the fibrinolytic enzyme plasmin, and the amino acid sequence of the β chain is about 3 times that of the B chain of plasmin that has serine protease activity.
It has a homology of 7%. Rat HGF and human HGF
The amino acid sequence homology is 91.6% in α chain, β
It has a very high homology of 88.9% in the chains and its activities are completely compatible.

【0004】肝実質細胞を特異的に増殖させる因子とし
て発見されたHGFは、本発明者をはじめとする研究者
による最近の研究成果によって、生体内で種々の活性を
示している事が明らかとなり、研究対象としてのみなら
ずヒトや動物の治療薬などへの応用に期待が集まってい
る。本発明者らは、HGFが増殖因子として肝細胞のみ
ならず広く上皮系細胞に働く事を明らかにし、いくつか
の発明を成就した。特願平2−158841号において
は、HGFが腎の近位尿細管細胞の増殖を促進すること
より、腎疾患治療剤としての応用開発を、また特願平2
−419158号においては、HGFがメラノサイト、
ケラチノサイトなど正常上皮細胞の増殖を促進すること
より、上皮細胞促進剤として創傷治療や皮膚潰瘍治療、
毛根細胞の増殖剤などへの応用開発を成就し、その詳細
を開示した。特に、HGFはEGF等他の多くの増殖因
子に見られるガン化作用やガン細胞増殖活性を有さない
ことから、より実用に適している。さらに本発明者ら
は、特願平3−140812号においてHGFのヒト肝
ガン由来HepG2細胞株、リンパ芽球ガン由来IM9
細胞株などのガン細胞増殖抑制活性を利用し、制ガン剤
としても利用可能であることを開示した。
HGF, which was discovered as a factor that specifically proliferates liver parenchymal cells, has been shown to exhibit various activities in vivo according to recent research results by the present inventors and other researchers. However, expectations are growing for its application not only as a research target but also as a therapeutic drug for humans and animals. The present inventors have clarified that HGF acts widely as a growth factor not only on hepatocytes but also on epithelial cells, and achieved several inventions. In Japanese Patent Application No. 2-158841, HGF promotes the proliferation of renal proximal tubule cells, so that the application development as a therapeutic agent for renal diseases is also described.
-419158, HGF is melanocyte,
By promoting the growth of normal epithelial cells such as keratinocytes, it can be used as an epithelial cell promoter to treat wounds and skin ulcers.
The application and development of hair root cells as a proliferative agent were accomplished and the details thereof were disclosed. In particular, HGF is more suitable for practical use because it does not have the canceration action and cancer cell growth activity found in many other growth factors such as EGF. Furthermore, the present inventors have disclosed that in Japanese Patent Application No. 3-140812, HGF human liver cancer-derived HepG2 cell line and lymphoblastic cancer-derived IM9.
It has been disclosed that it can be used as an antitumor agent by utilizing the cancer cell growth inhibitory activity of cell lines and the like.

【0005】HGFの医薬品としての実用性を考える上
でさらに重要な点は、HGFがG1期、すなわち増殖期
に入った細胞のみを増殖促進し、G0期、すなわち静止
期にある細胞には作用しないことである。このことは、
傷害のある組織の増殖再生は促進するが、傷害を受けて
いない組織に対しては全く作用を及ぼさないことを意味
する。従って、過剰にHGFを投与しても、あるいは血
液などを介して非患部にHGFが到達しても、正常組織
にガン化を誘導したり過剰な増殖を起こすことがないと
考えられる。
More important point in considering the practicality of HGF as a medicine is that HGF promotes the growth of only cells that have entered the G1 phase, that is, the growth phase, and acts on the cells in the G0 phase, that is, the quiescent phase. Do not do it. This is
It means that proliferation and regeneration of injured tissue is promoted, but it has no effect on undamaged tissue. Therefore, it is considered that even if HGF is excessively administered or HGF reaches the non-affected part via blood or the like, it does not induce canceration in normal tissues or cause excessive proliferation.

【0006】[0006]

【発明が解決しようとする課題】前記のようにHGFが
肝細胞だけでなく広く上皮細胞の増殖を促進し、またガ
ン細胞の増殖抑制活性を有することから、生体内ではH
GFが組織傷害治癒に働いていることが予想される。H
GF産生細胞は上皮細胞自身ではなく、肝臓ではKup
ffer細胞や類洞壁血管内皮細胞、腎臓では毛細血管
内皮細胞、肺では肺胞マクロファージや血管内皮細胞な
ど主に間葉系の細胞により産生されていることが解明さ
れており、近隣細胞から必要に応じてHGFが供給され
る、いわゆるパラクリン機構が成立していることが明ら
かにされている。しかしながら、肝臓や腎臓に傷害を受
けたとき、傷害を受けていない臓器、例えば肺などにお
いてもHGFの産生が高まることから、いわゆるエンド
クリン機構によってもHGFが供給されていると考えら
れる。この事実は、傷害を受けた組織からHGF産生細
胞に産生促進を伝達する物質が存在していることを意味
している。
As described above, HGF promotes the proliferation of not only hepatocytes but also epithelial cells in a wide range and has an activity of suppressing the proliferation of cancer cells.
It is expected that GF acts in healing tissue damage. H
GF-producing cells are not epithelial cells themselves, but Kup in the liver
It is known to be produced mainly by mesenchymal cells such as ffer cells and sinusoidal endothelial cells, capillary endothelial cells in the kidney, and alveolar macrophages and vascular endothelial cells in the lung. It has been clarified that a so-called paracrine mechanism in which HGF is supplied according to the above is established. However, when the liver or kidney is injured, HGF production is increased even in an uninjured organ, such as the lung, and therefore it is considered that HGF is also supplied by the so-called endocrine mechanism. This fact means that there is a substance that transmits production promotion from the injured tissue to the HGF-producing cells.

【0007】すなわち、HGFの産生を促進する物質は
傷害を受けた組織から分泌され、血液などを介してHG
F産生細胞に到達し、細胞内に蓄えられたHGFを放出
させたり、新たに産生を開始させる働きを持つと考えら
れる。創傷治癒や腎再生促進を目的としてHGFを投与
することは勿論であるが、HGF産生を促進する物質を
投与すれば、より少ない投与量、投与回数で同じ効果が
得られると予想される。より詳細には、組織傷害治療法
としてHGFを直接投与する場合と比較すると、HGF
産生促進物質を投与するほうが、HGFの血中濃度を長
時間維持することが可能であり、一回の投与量や投与回
数を減らすことができると予想される。
That is, a substance that promotes the production of HGF is secreted from the injured tissue, and HG is produced through blood and the like.
It is considered that it has a function of reaching the F-producing cell and releasing HGF accumulated in the cell, or initiating new production. It is needless to say that HGF is administered for the purpose of wound healing and promotion of renal regeneration, but it is expected that the same effect will be obtained with a smaller dose and administration frequency if a substance that promotes HGF production is administered. More specifically, compared with the case of directly administering HGF as a tissue injury treatment method, HGF
It is expected that administration of the production-promoting substance can maintain the blood concentration of HGF in the blood for a long period of time, and the dose per administration and the administration frequency can be reduced.

【0008】一方、生体は呼吸器、皮膚、消化器を始め
とするあらゆる組織、器官において外的、内的を問わず
常に物理的、化学的、あるいは微生物による傷害を受け
ている。これに対してHGF、FGF、EGF、PDG
Fなど細胞増殖因子を始め、あらゆる機能を動員して、
器官の機能組織細胞、マトリクス細胞などの修復作業を
行うことが、ホメオスタシスの一つの重要な要因である
が、その補償機能ネットワークを作動させ、調節する中
心的な因子が組織内に存在すると考えられてきた。組織
傷害治癒因子は、肝臓、腎臓等の臓器傷害の補償機能や
HGFの発現機構を研究するのに有用であるだけでな
く、生体のあらゆる組織、器官傷害を治癒する因子であ
り、治療薬として非常に有用であることは明らかであ
る。例えば肝臓について考えれば、肝切除や肝炎による
器官傷害の際、HGF投与によって肝実質細胞のみを再
生させることができるのに対し、器官傷害の修復機能全
体をコントロールする組織傷害治癒因子を投与すること
により、実質細胞のみならず、非実質細胞である類洞周
囲結合組織など支持組織を始め傷害部位全体の再生が加
速され、真の修復促進が行われる。
On the other hand, the living body is constantly injured by physical, chemical, or microbial in all tissues and organs including respiratory organs, skin, digestive organs, both externally and internally. On the other hand, HGF, FGF, EGF, PDG
Mobilize all functions including cell growth factors such as F,
Repair of functional tissue cells, matrix cells, etc. of organs is one of the important factors of homeostasis, but it is considered that the central factor that activates and regulates the compensation function network exists in the tissue. Came. The tissue injury healing factor is not only useful for studying the compensatory function of organ injury such as liver and kidney and the expression mechanism of HGF, but also a factor that heals all tissue and organ injury in the living body and is a therapeutic drug. Obviously it will be very useful. Considering the liver, for example, in the case of liver resection or organ injury due to hepatitis, only HGF administration can regenerate hepatic parenchymal cells, whereas administration of a tissue injury healing factor that controls the entire repair function of organ injury. This accelerates not only parenchymal cells but also the whole injury site including supporting tissues such as perisinusoidal connective tissue which is a non-parenchymal cell, and true repair is accelerated.

【0009】すなわち、組織傷害治癒因子を治療薬とし
て利用することができれば、従来の発見されてきた種々
の細胞増殖因子を単独で使用するのに比べて、格段にマ
イルドかつすみやかに傷害を治療することができ、その
有用性は計り知れない。組織傷害治癒因子を追跡し、そ
の本体を解明するためには細胞増殖因子の産生促進活性
をメルクマールにするのが最も効率的であり、実際に
は、HGF産生促進物質が組織傷害治癒因子の本体と考
えてまちがいない。
[0009] That is, if the tissue injury healing factor can be used as a therapeutic drug, the injury is markedly and promptly treated as compared with the case of using various conventionally found cell growth factors alone. And its usefulness is immeasurable. In order to trace the tissue damage healing factor and elucidate its main body, it is most efficient to make the cell growth factor production promoting activity Mercury, and in fact, the HGF production promoting substance is the main body of the tissue damage healing factor. There is no doubt that

【0010】[0010]

【課題を解決するための手段】本発明者らは、人工的に
肝臓または腎臓に傷害を与えたラットの血液中に、HG
F産生細胞を刺激し、産生能を高める作用があることを
見いだし、その作用物質を組織傷害治癒因子「インジュ
リン」と命名した(本明細書においても、便宜上、組織
傷害治癒因子の名称としてインジュリンを使用する)。
さらに、HGFmRNAもしくはHGFの産生量を指標
として詳細に検討した結果、インジュリンに関して精製
方法の確立とその分子量、物理化学的性質の解明を果た
し、本発明を完成するに至った。
[Means for Solving the Problems] The present inventors have found that HG is present in the blood of rats artificially injured in the liver or kidney.
It was found that there is an action of stimulating F-producing cells and increasing the production ability, and the agent was named a tissue injury healing factor "indullin" (also in the present specification, for the sake of convenience, indulin is the name of the tissue injury healing factor. use).
Further, as a result of detailed examination using the production amount of HGF mRNA or HGF as an index, the inventor established the purification method and elucidated its molecular weight and physicochemical properties, and completed the present invention.

【0011】すなわち、正常ラットに開腹手術を行い、
70%部分肝切除または門脈血管の部分結紮により虚血状
態にして肝傷害を与えた後、経時的に血液を採取し、正
常ラットの腹腔下に注射したところ、6時間後から18時
間後にかけて肺におけるHGFmRNAの発現量が著し
く増加していることが判明した(実験例1参照)。同様
にin vitroでも、ヒト胎児肺由来線維芽細胞MRC−5
細胞株を用いたHGF産生定量法によって、70%部分肝
切除、四塩化炭素投与、肝虚血処理による肝傷害、また
は片腎摘出、塩化水銀投与、カナマイシン投与による腎
傷害を与えたラットの血液中にHGF産生を促進する作
用があることが確かめられた(実験例2参照)。これら
の結果より、肝臓、腎臓等に傷害を受けた動物の血中
に、傷害に呼応して、HGFの産生を促進する作用物質
が存在することが予想された。本発明者らは、四塩化炭
素投与ラットの血清を原料として、バイオゲルP−60
およびセファデックスG−150の各分子ふるい用ゲル
カラム、さらにイオン交換FPLC、逆相HPLC、調
製用SDS−PAGEなどを用いて本作用物質を精製す
ることに成功した(実施例2、4参照)。得られた組織
傷害治癒因子インジュリンについて、SDS−PAGE
によってより詳細に分子量を測定し、また種々の物理化
学的処理を施して安定性を調べた(実施例1、3、4参
照)。
That is, a laparotomy is performed on a normal rat,
After 70% partial hepatectomy or partial ligation of the portal vein to create an ischemic state and give liver injury, blood was collected over time and injected intraperitoneally into normal rats, 6 to 18 hours later. It was found that the expression level of HGF mRNA in the lung increased remarkably over time (see Experimental Example 1). Similarly, in vitro, human fetal lung-derived fibroblast MRC-5
Blood of a rat with 70% partial hepatectomy, carbon tetrachloride administration, liver injury due to hepatic ischemia treatment, or nephrectomy, mercuric chloride administration, and kanamycin administration renal injury by HGF production quantification using a cell line. It was confirmed that some of them have an action of promoting HGF production (see Experimental Example 2). From these results, it was expected that an agent that promotes HGF production in response to the injury is present in the blood of an animal injured in the liver, kidney, or the like. The present inventors have used Biogel P-60 as a starting material from the serum of carbon tetrachloride-administered rats.
The agent was successfully purified using a gel column for each molecular sieve of Sephadex G-150, ion-exchange FPLC, reverse phase HPLC, preparative SDS-PAGE and the like (see Examples 2 and 4). Regarding the obtained tissue injury healing factor indurin, SDS-PAGE
The molecular weight was measured in more detail by means of various methods, and various physicochemical treatments were performed to examine the stability (see Examples 1, 3, 4).

【0012】すなわち本発明は、 1.ヒトまたは動物の組織または血液成分に由来し、ヒト
または動物の組織の傷害に呼応して増加する特徴を有す
る、肝実質細胞増殖因子(HGF)産生細胞におけるH
GF産生を促進する活性を有する組織傷害治癒因子、イ
ンジュリン。 2.下記の1)ないし4)の処理により活性を保持し、5)の処
理により失活する組織傷害治癒因子、インジュリン。 1) 60℃ 5分、または100℃ 5分の熱処理。 2) pH 1.0、3.5、5.0の酸処理。 3) 1mM ジチオスレイトールの還元処理。 4) 0.31mU/ml、37℃、1時間のヘパリナーゼ処理。 5) 100μg/ml、37℃、3時間のトリプシン処理。 3.バイオゲルP−60およびセファデックスG−150
の各ゲルカラム処理により10kDないし30kDの分子量を示
す組織傷害治癒因子、インジュリン。 4.非還元条件下、SDSポリアクリルアミドゲル電気泳
動により10kDないし20kDの分子量を示す組織傷害治癒因
子、インジュリン。 5.非還元条件下、SDSポリアクリルアミドゲル電気泳
動により40kDないし60kDの分子量を示す組織傷害治癒因
子、インジュリン。に関する。
That is, the present invention relates to: 1. In a hepatocyte growth factor (HGF) -producing cell, which is derived from a human or animal tissue or blood component and has a characteristic of increasing in response to injury of human or animal tissue. H
Injurin, a tissue injury healing factor having an activity of promoting GF production. 2. Injulin, a tissue injury healing factor which retains its activity by the treatments 1) to 4) below and is inactivated by the treatment 5). 1) Heat treatment at 60 ℃ for 5 minutes or 100 ℃ for 5 minutes. 2) Acid treatment at pH 1.0, 3.5 and 5.0. 3) Reduction treatment of 1 mM dithiothreitol. 4) Heparinase treatment at 0.31mU / ml at 37 ° C for 1 hour. 5) Trypsin treatment at 100 µg / ml at 37 ° C for 3 hours. 3. Biogel P-60 and Sephadex G-150
Indulin, a tissue injury healing factor showing a molecular weight of 10 kD to 30 kD by each gel column treatment. 4. Injurin, a tissue injury healing factor showing a molecular weight of 10 kD to 20 kD by SDS polyacrylamide gel electrophoresis under non-reducing conditions. 5. Injurin, a tissue injury healing factor showing a molecular weight of 40 kD to 60 kD by SDS polyacrylamide gel electrophoresis under non-reducing conditions. Regarding

【0013】本発明の組織傷害治癒因子、インジュリン
を得る方法としては、四塩化炭素処理や片腎摘出手術を
施したラットなどの動物の組織や血液成分、あるいは肝
炎、腎炎患者もしくはその手術直後のヒトの組織や血液
成分を原料とし、実施例2に示すゲルろ過法や、実施例
4に示すようなFPLC、SDSポリアクリルアミドゲ
ル電気泳動などにより精製することができる。また、実
験例2に示す in vitro アッセイ系によりブタの種々臓
器抽出物のインジュリン活性を測定したところ、表1に
示す如く多くの臓器に活性が見いだされた(実験例5参
照)。特に、小脳、大脳、肝臓、肺において高い活性が
認められ、本発明のインジュリンが高濃度に蓄積されて
いることが明らかとなった。本実施例に用いられたMR
C−5細胞のアッセイ系においてラット、ブタ、ヒト
(実験例4参照)で同じように活性が認められたことか
ら、HGF同様、インジュリンの活性が少なくとも哺乳
類間で互換性があることを示している。
As a method for obtaining the tissue injury healing factor and indulin of the present invention, tissues and blood components of animals such as rats subjected to carbon tetrachloride treatment or unilateral nephrectomy surgery, or hepatitis, nephritis patients or immediately after surgery It can be purified using a human tissue or blood component as a raw material by the gel filtration method shown in Example 2, FPLC as shown in Example 4, or SDS polyacrylamide gel electrophoresis. In addition, when the indulin activity of various porcine organ extracts was measured by the in vitro assay system shown in Experimental Example 2, the activity was found in many organs as shown in Table 1 (see Experimental Example 5). In particular, high activity was observed in the cerebellum, cerebrum, liver, and lung, and it became clear that the indulin of the present invention was accumulated at a high concentration. MR used in this embodiment
Similar activity was observed in rats, pigs, and humans (see Experimental Example 4) in the C-5 cell assay system, indicating that, like HGF, the activity of indulin is at least compatible between mammals. There is.

【0014】[0014]

【発明の効果】本発明の組織傷害治癒因子は新規な因子
であり、本発明の組織傷害治癒因子によれば、生体の組
織、器官などの傷害の治癒を促進することができるとい
う効果を奏する。
EFFECTS OF THE INVENTION The tissue injury healing factor of the present invention is a novel factor, and the tissue injury healing factor of the present invention has the effect of promoting healing of injuries of tissues and organs of a living body. .

【0015】[0015]

【実施例】本発明をより詳細に説明するために実施例を
挙げるが、本発明はこれらによってなんら限定されるも
のではない。また、以下の実験例および実施例に用いた
ラットはすべて、ウイスター系の成熟雄正常ラット(130
〜150g)である。
EXAMPLES Examples will be given to explain the present invention in more detail, but the present invention is not limited thereto. Further, all the rats used in the following experimental examples and examples were Wistar adult male normal rats (130
~ 150g).

【0016】実験例1 正常ラットに開腹手術により70%部分肝切除を施し、も
しくは門脈血管を部分結紮して虚血状態にし、肝臓に傷
害を与えた。これら肝傷害ラットから経時的に血清を2m
l採取し、それぞれ正常ラットの腹腔内に投与した。対
照として、正常ラット末梢血および生理食塩水を投与
し、投与6時間後、ラットを解剖して肺を摘出し、HG
FmRNA測定に供した。より詳細には、摘出した肺か
ら酸-グアニジン-フェノール-クロロホルム法(AGP
C法)によりRNAを抽出し、Oligotex dT-30 でポリ
(A)RNAを精製した。ポリ(A)RNA2μgをホルムア
ルデヒドで変性させた後、0.7%ホルムアルデヒドを含む
1.2%アガロースゲルで電気泳動した。泳動後、Hybond-N
フィルターに転写し、[α-P32]-CTPでラベルし
た1.4kb RBC-1フラグメントをハイブリダイズさせ
た。ハイブリダイゼーションは20μg/mlのサケ精子DN
A、50%(V/V)ホルムアルデヒド、0.5%(W/V)SDS、0.9
M NaCl、50mM NaH2PO4、5mM EDTAおよび
2Xデンハート溶液を含む緩衝液を用い、42℃ 17時間
で行った。0.36M NaCl、20mM NaH2PO4、2mM
EDTA、0.5% SDSからなる緩衝液で65℃、15分間
の条件で2回洗浄し、X線フィルム(富士フィルム社
製)で撮影した。その結果を図1に示す。図1に示す如
く部分肝切除、肝虚血の何れの場合も、肺におけるHG
FmRNAの発現が促進されていることが認められた。
Experimental Example 1 A 70% partial hepatectomy was performed on a normal rat by laparotomy, or a portal vein was partially ligated to an ischemic state to injure the liver. 2m serum from these liver-injured rats over time
l was collected and administered intraperitoneally to each normal rat. As a control, normal rat peripheral blood and physiological saline were administered, and 6 hours after the administration, the rat was dissected and the lungs were excised.
It was subjected to F mRNA measurement. More specifically, the acid-guanidine-phenol-chloroform method (AGP) from isolated lungs
RNA is extracted by the C method) and poly-treated with Oligotex dT-30.
(A) RNA was purified. Denature 2 μg of poly (A) RNA with formaldehyde and then add 0.7% formaldehyde
It was electrophoresed on a 1.2% agarose gel. After migration, Hybond-N
Transferred to a filter and hybridized with a 1.4 kb RBC-1 fragment labeled with [α-P 32 ] -CTP. Hybridization is 20 μg / ml salmon sperm DN
A, 50% (V / V) formaldehyde, 0.5% (W / V) SDS, 0.9
It was carried out at 42 ° C. for 17 hours using a buffer solution containing M NaCl, 50 mM NaH 2 PO 4 , 5 mM EDTA and 2 × Denhardt's solution. 0.36M NaCl, 20mM NaH 2 PO 4 , 2mM
It was washed twice with a buffer solution consisting of EDTA and 0.5% SDS at 65 ° C. for 15 minutes and photographed with an X-ray film (Fuji Film Co., Ltd.). The result is shown in FIG. In both cases of partial hepatectomy and liver ischemia as shown in FIG.
It was confirmed that the expression of F mRNA was promoted.

【0017】実験例2 肝傷害、または腎傷害ラットの血清中にHGF誘導活性
物質がある事を次の手順により in vitro のアッセイ系
で確認した。肝傷害ラットとして70%部分肝切除を施し
たラット、四塩化炭素投与(2mg CCl4/g体重)したラッ
トおよび肝虚血状態にしたラット、また腎傷害ラットと
して片腎のみ摘出したラット、塩化水銀投与(2mg HgCl
4/g体重)したラットおよびカナマイシン投与(0.3mg
カナマイシン/g体重)したラットのそれぞれから経時的
に血清を採取した。ヒト胎児肺由来線維芽細胞株MRC
−5細胞は、10%ウシ胎児血清(FCS)、ペニシリン1
00IU/ml、ストレプトマイシン100IU/mlを添加したダル
ベッコのイーグル培地(DMEM)にて培養した。イン
ジュリン活性は、MRC−5細胞が産生するHGFを定
量する事により測定した。すなわち、24穴マイクロプレ
ート(コーニング社製)でMRC−5細胞を培養し、80
〜90%飽和細胞密度になった時点で、培地をFCSを含
まないDMEMに交換し、サンプル血清を各ウエルに添
加してさらに24時間培養を続けた。インジュリン活性の
単位は、ブタ肺の酸性抽出物を加えたときに発現される
HGF最大濃度の50%濃度を与える活性をもって1mU(1/
1000単位活性)とした。
Experimental Example 2 It was confirmed by an in vitro assay system that the HGF-inducing active substance was present in the serum of liver-injured or renal-injured rat by the following procedure. Liver-damaged rats were subjected to 70% partial hepatectomy, carbon tetrachloride-administered rats (2 mg CCl 4 / g body weight) and rats that had been in hepatic ischemia, and kidney-damaged rats in which only one kidney had been removed, chloride Mercury administration (2mg HgCl
4 / g body weight rats and kanamycin administration (0.3 mg
Serum was collected over time from each of the rats (kanamycin / g body weight). Human fetal lung-derived fibroblast cell line MRC
-5 cells are 10% fetal calf serum (FCS), penicillin 1
The cells were cultured in Dulbecco's Eagle medium (DMEM) supplemented with 00 IU / ml and streptomycin 100 IU / ml. Inulin activity was measured by quantifying HGF produced by MRC-5 cells. That is, MRC-5 cells were cultured in a 24-well microplate (manufactured by Corning) and
When the cell density reached ˜90%, the medium was replaced with DMEM without FCS, the sample serum was added to each well, and the culture was continued for another 24 hours. The unit of indulin activity is 1 mU (1 / m) with an activity that gives 50% of the maximum concentration of HGF expressed when an acidic extract of pig lung is added.
1000 units of activity).

【0018】MRC−5細胞の培養上清中のHGFは酵
素免疫測定法(ELISA法)により定量した。抗ヒト
HGFポリクローナル抗体は組換え型ヒトHGFをウサ
ギに免疫し、得られた血清からプロテインAセファロー
スゲル(ファルマシア社製)を用いてIgGを精製して
得た。得られた抗体はラットHGFとは交差反応しなか
った。抗ヒトHGF抗体を50mM炭酸緩衝液中に20μg/ml
の濃度で溶解させ、96穴マイクロプレート(コースター
社製)に分注し、飽和湿度恒温室内で37℃、15時間静置
し、プレート固相を調製した。リン酸緩衝食塩水(PB
S)中に3%の濃度で調製したウシ血清アルブミン(BS
A)でブロッキングした後、培養上清をウエルに加え、
37℃、2時間でインキュベートした。各ウエルを、0.025
%Tween20を含むPBS(PBS-Tween20)で3回洗浄
し、PBS-Tween20に溶解したビオチン結合抗ヒトHG
F抗体を添加して37℃、2時間インキュベートした。P
BS-Tween20で3回洗浄した後、Horse Radish Peroxid
ase標識したストレプトアビジンを加え、37℃で1時間イ
ンキュベートし、PBS-Tween20にて再度3回洗浄し
た。50mM クエン酸、100mM リン酸ナトリウム、2.5mg/m
l o-フェニレンジアミン、0.015% H22からなる発色
剤を加えて酵素反応を開始した。1.5M硫酸を加えて反応
を停止させた後490nmの吸収度を測定した。その結果を
図2に示す。図2において、(A):四塩化炭素投与
(●)、部分肝切除(○)、肝虚血処理(▲)、(B):片腎
摘出(△)、塩化水銀投与(■)、カナマイシン投与(□)の
それぞれの処理を施したラットの結果を示す。図2に示
す如く、各処置3時間後にはインジュリン活性が非常に
高まり、6〜12時間後には最高に達した。
HGF in the culture supernatant of MRC-5 cells was quantified by enzyme-linked immunosorbent assay (ELISA method). The anti-human HGF polyclonal antibody was obtained by immunizing a rabbit with recombinant human HGF and purifying IgG from the obtained serum using protein A sepharose gel (Pharmacia). The obtained antibody did not cross-react with rat HGF. 20 μg / ml of anti-human HGF antibody in 50 mM carbonate buffer
The solution was dissolved at a concentration of, and dispensed into a 96-well microplate (manufactured by Coaster Co., Ltd.), and allowed to stand at 37 ° C for 15 hours in a saturated humidity constant temperature room to prepare a plate solid phase. Phosphate buffered saline (PB
Bovine serum albumin (BS) prepared at a concentration of 3% in S)
After blocking with A), the culture supernatant was added to the wells,
Incubated at 37 ° C for 2 hours. 0.025 for each well
Biotin-conjugated anti-human HG dissolved in PBS-Tween20 after washing 3 times with PBS containing% Tween20 (PBS-Tween20)
F antibody was added and incubated at 37 ° C for 2 hours. P
After washing 3 times with BS-Tween20, Horse Radish Peroxid
An ase-labeled streptavidin was added, the mixture was incubated at 37 ° C. for 1 hour, and washed again with PBS-Tween20 three times. 50 mM citric acid, 100 mM sodium phosphate, 2.5 mg / m
An enzyme reaction was initiated by adding a color former consisting of l-o-phenylenediamine and 0.015% H 2 O 2 . After the reaction was stopped by adding 1.5 M sulfuric acid, the absorbance at 490 nm was measured. The result is shown in FIG. In FIG. 2, (A): Carbon tetrachloride administration
(●), partial hepatectomy (○), hepatic ischemia treatment (▲), (B): Rats subjected to treatments of hemi nephrectomy (△), mercuric chloride administration (■), and kanamycin administration (□). The result is shown. As shown in FIG. 2, indulin activity was greatly increased after 3 hours of each treatment and reached the maximum after 6 to 12 hours.

【0019】実験例3 実験例1の方法に従って、四塩化炭素投与ラットの血清
中の組織傷害治癒因子によるMRC−5細胞のmRNA
発現の経時的変化を調べた。MRC−5細胞を10%FC
Sを含むDMEMで80〜90%飽和細胞密度になるまで培
養し、FCSを含まないDMEMに正常ラット血清およ
び四塩化炭素投与12時間後のラット血清を添加した培地
に交換した。3〜48時間後、培地をサンプリングしてA
GPC法でRNAを抽出し、実験例1の方法に従ってノ
ーザンハイブリダイゼーションを行ってHGFmRNA
の発現量を経時的に追跡した。対照として、血清を添加
しない培地に交換した例を示す。その結果を図3に示
す。図3に示す如く、MRC−5細胞のHGFmRNA
発現量は3時間後に非常に高まり、一旦下がった後24時
間後に再び高まっていることが認められた。
Experimental Example 3 According to the method of Experimental Example 1, mRNA of MRC-5 cells caused by tissue injury healing factor in serum of carbon tetrachloride-administered rat.
The change in expression over time was examined. 10% FC of MRC-5 cells
The cells were cultured in SMEM-containing DMEM until the cell density reached 80 to 90%, and the medium was replaced with a medium containing FCS-free DMEM supplemented with normal rat serum and rat serum 12 hours after carbon tetrachloride administration. After 3 to 48 hours, sample the medium and
RNA was extracted by the GPC method, and Northern hybridization was performed according to the method of Experimental Example 1 to obtain HGF mRNA.
The expression level of was monitored over time. As a control, an example in which the medium is replaced with serum-free medium is shown. The result is shown in FIG. As shown in FIG. 3, HGF mRNA of MRC-5 cells
It was confirmed that the expression level was extremely increased after 3 hours, and was decreased again and then increased again 24 hours later.

【0020】実験例4 ヒト血清中のインジュリン活性を調べるため、以下の実
験を行った。肝ガンと診断された2人の患者の外科的治
療に際し、血清中のインジュリン活性、すなわちHGF
産生誘導活性の変化を追跡した。手術の4日前から14
日後までの間、数回に分けて患者から血清を採取し、そ
のインジュリン活性をMRC−5細胞を用い実験例2の
方法に従って測定した。その結果を図4に示す。図4に
示す如く、手術直後からインジュリン活性は2〜2.5
倍に高まり、その後次第に低下し、約2週間で正常値に
戻った。
Experimental Example 4 The following experiment was carried out in order to investigate the indulin activity in human serum. Serum inducin activity, HGF, during surgical treatment of two patients diagnosed with liver cancer
The change in production-inducing activity was followed. Four days before surgery 14
Serum was collected from the patient several times until the day after, and the indulin activity was measured according to the method of Experimental Example 2 using MRC-5 cells. FIG. 4 shows the results. As shown in FIG. 4, inducin activity was 2 to 2.5 immediately after surgery.
It doubled, then gradually decreased, and returned to the normal value in about 2 weeks.

【0021】実験例5 ブタの各種臓器抽出物に存在するインジュリン活性を以
下の方法により測定した。摘出した各ブタ臓器は1重量
当り5倍量(5ml/g・サンプル)の1M酢酸(pH3.5)を加
え、ポリトロン・ホモジナイザーを用いて0℃で2分間
ホモジナイズした。破砕物を100,000xgで1時間遠心分
離し、得られた上清を中和してpH7.0に調整した。さら
に100,000xgで20分間遠心分離した後、上清をPBSで
透析し、0.22μmメッシュのフィルターで濾過した。得
られた抽出物について、実験例2の方法に従って、MR
C−5細胞HGF産生刺激活性によりインジュリン活性
を測定した。蛋白質濃度はBCA蛋白アッセイキット
(ピアースケミカル社)を用いて測定した。その結果を
表1に示す。表1に示す如く、蛋白質当たりのインジュ
リン活性は小脳、肺、大脳において高く、臓器当たりの
活性総量は肺が顕著に高いことが明らかとなった。
Experimental Example 5 The indulin activity present in various pig organ extracts was measured by the following method. Each of the excised pig organs was added with 5 times amount (5 ml / g. Sample) of 1 M acetic acid (pH 3.5) per weight, and homogenized for 2 minutes at 0.degree. C. using a Polytron homogenizer. The disrupted product was centrifuged at 100,000 xg for 1 hour, and the resulting supernatant was neutralized to adjust the pH to 7.0. After centrifugation at 100,000 xg for 20 minutes, the supernatant was dialyzed against PBS and filtered through a 0.22 µm mesh filter. The obtained extract was subjected to MR according to the method of Experimental Example 2.
Indulin activity was measured by C-5 cell HGF production stimulating activity. The protein concentration was measured using a BCA protein assay kit (Pierce Chemical Co.). Table 1 shows the results. As shown in Table 1, the indulin activity per protein was high in the cerebellum, lung and cerebrum, and the total activity per organ was significantly higher in the lung.

【0022】 [0022]

【0023】実施例1 実験例1の方法に従って肝傷害ラット血清中の組織傷害
治癒因子インジュリンの物性を調べた。正常ラットの血
清、および70%肝切除を行った正常ラットの手術3時間
後の血清をサンプルとして用いた。本因子の酸に対する
安定性を調べるため、1M 酢酸を添加してpH 3.5とし、4
℃で12時間インキュベートした後、100,000xgで1時間遠
心分離して、その上清を下記の試験に供した。次に熱に
対する安定性を調べるため、上記の酸処理を施したサン
プルを100℃で5分間熱処理し、0.22μmメッシュのフィ
ルターでろ過した後、濾液を下記の試験に供した。ま
た、分子量が10kD以上か、それ未満かを調べるためアミ
コンYM10メンブレンフィルターを用いてサンプルを限外
ろ過し、フィルターを透過した(分子量10kD未満のもの
を含む)溶液とフィルターに残った(分子量10kD以上の
ものを含む)溶液とをそれぞれ下記の試験に供した。
Example 1 In accordance with the method of Experimental Example 1, the physical properties of the tissue injury healing factor indulin in the serum of liver injury rat were examined. Serum of a normal rat and serum of a normal rat after 70% hepatectomy 3 hours after surgery were used as samples. To investigate the acid stability of this factor, add 1M acetic acid to adjust the pH to 3.5 and
After incubating at 12 ° C. for 12 hours, centrifugation was performed at 100,000 × g for 1 hour, and the supernatant was subjected to the following test. Next, in order to examine the stability against heat, the sample subjected to the above-mentioned acid treatment was heat-treated at 100 ° C. for 5 minutes, filtered through a 0.22 μm mesh filter, and then the filtrate was subjected to the following test. The sample was ultrafiltered using an Amicon YM10 membrane filter to determine whether the molecular weight was 10 kD or more, and the solution that passed through the filter (including those with a molecular weight of less than 10 kD) remained in the filter (molecular weight of 10 kD Each of these solutions (including the above) was subjected to the following tests.

【0024】正常血清、酸処理血清、酸及び熱処理血清
を各2ml、および正常血清2mlを10kDフィルター処理した
濾液と残渣のそれぞれを正常ラット腹腔に注射し、6時
間後、肺を摘出して、実験例1の方法に従ってRNA抽
出、精製およびノーザンハイブリダイゼーションを行っ
た。その結果を図5に示す。図5に示す如く、酸処理、
熱処理によってインジュリン活性は減衰しておらず、本
発明のインジュリンが酸、熱に耐性があること、および
分子量10kDのフィルターを通過しないことが明らかにな
った。
2 ml each of normal serum, acid-treated serum, acid- and heat-treated serum, and a filtrate and residue obtained by filtering 2 ml of normal serum with a 10 kD filter were injected into the peritoneal cavity of a normal rat, and 6 hours later, the lung was excised. RNA extraction, purification, and Northern hybridization were performed according to the method of Experimental Example 1. The result is shown in FIG. As shown in FIG. 5, acid treatment,
The heat treatment did not attenuate the indulin activity, revealing that the indulin of the invention is acid and heat resistant and does not pass through a filter with a molecular weight of 10 kD.

【0025】実施例2 四塩化炭素投与ラットの血清から分子ふるいクロマトグ
ラフィーにより本発明の組織傷害治癒因子インジュリン
を精製した。 (1)ラット腹部に四塩化炭素を接種し、15時間後血清を
採取した。得られた血清を蟻酸を用いてpH3.5に調整
し、4℃で2時間撹拌したのち0.22μmメッシュのフィル
ターでろ過した。得られた酸処理血清20mlを、100mM蟻
酸アンモニウム(pH3.5)で平衡化したバイオゲルP−
60(バイオラッド社製)カラム(19.6cm2 x60cm)に
かけた。8mlづつフラクション分離し、得られたフラク
ションは細胞培養液に添加するため、凍結乾燥した後、
50mM HEPES-NaOH緩衝液(pH7.4)に溶解し、
ろ過滅菌した。インジュリン活性はMRC−5細胞を用
いて、実験例2の方法に従って定量した。その結果を図
6に示す。図6に示す如く、インジュリンはフラクショ
ンNo.43〜60に溶出していることが明らかとなった。
Example 2 Injulin, a tissue injury healing factor of the present invention, was purified from the serum of a carbon tetrachloride-administered rat by molecular sieve chromatography. (1) Carbon tetrachloride was inoculated into the abdomen of the rat, and 15 hours later, serum was collected. The obtained serum was adjusted to pH 3.5 with formic acid, stirred at 4 ° C. for 2 hours, and then filtered with a 0.22 μm mesh filter. 20 ml of the obtained acid-treated serum was equilibrated with 100 mM ammonium formate (pH 3.5) to obtain Biogel P-
It was applied to a 60 (manufactured by Bio-Rad) column (19.6 cm 2 x 60 cm). Separated into 8 ml fractions, the obtained fractions were added to the cell culture medium, so after freeze-drying,
Dissolve in 50 mM HEPES-NaOH buffer (pH 7.4),
It was sterilized by filtration. Inulin activity was quantified using MRC-5 cells according to the method of Experimental Example 2. The result is shown in FIG. As shown in FIG. 6, it was revealed that indurin was eluted in fractions Nos. 43-60.

【0026】(2)さらに詳細に分子量を測定するため、
上記(1)で得られたインジュリン活性フラクションを集
め、0.2M NaClを含む10mM HEPES-NaOH緩
衝液(pH7.2)で平衡化したセファデックスG−150
(ファルマシア社製)カラム(5.3cm2 x 90cm)にかけ
た。分子量マーカーとして、アルドラーゼ(158kD)、
BSA(67kD)、キモトリプシンA(25kD)、リボヌク
レアーゼA(14kD)を用い、図中に示した。6mlずつフ
ラクション分離し、得られた中の偶数番のフラクション
について、インジュリン活性を測定した。活性測定は実
験例2の方法に従い、MRC−5細胞HGF産生刺激活
性により測定した。その結果を図7に示す。図7に示す
如く、本発明のインジュリンは約1万から3万(10kD〜
30kD)の分子量を示すことが明らかとなった。
(2) In order to measure the molecular weight in more detail,
Sephadex G-150 obtained by collecting the active fraction of indulin obtained in the above (1) and equilibrating it with 10 mM HEPES-NaOH buffer (pH 7.2) containing 0.2 M NaCl.
It was applied to a column (5.3 cm 2 x 90 cm, manufactured by Pharmacia). As a molecular weight marker, aldolase (158kD),
BSA (67 kD), chymotrypsin A (25 kD) and ribonuclease A (14 kD) were used and shown in the figure. Fractions were separated by 6 ml, and the indulin activity was measured for the even-numbered fractions obtained. The activity was measured according to the method of Experimental Example 2 by measuring the HGF production stimulating activity of MRC-5 cells. FIG. 7 shows the result. As shown in FIG. 7, the indulin of the present invention is about 10,000 to 30,000 (10 kD-
It was revealed that it showed a molecular weight of 30 kD).

【0027】実施例3 本発明の細胞傷害治癒因子インジュリンの物性を調べる
ため、実施例2で得られたインジュリン活性フラクショ
ンを用いて種々の処理を行った。耐熱性を調べるため、
60℃で5分、および100℃で5分の2種類の熱処理を行っ
た。耐酸性を調べるため、酢酸を用いてpH5.0、pH3.5、
および塩酸を用いてpH1.0に調整した。トリプシン処理
として、蛋白濃度470μg/mlのインジュリンフラクショ
ンに対し100μg/mlとなるようにトリプシンを加え、37
℃で3時間インキュベートした。酵素反応の停止はダイ
ズ由来トリプシンインヒビターを200μg/mlの濃度で添
加して行った。還元剤に対する安定性を調べるため、ジ
チオスレイトールを1mMの濃度で添加した。ヘパリナー
ゼ処理として、蛋白濃度470μg/mlのインジュリンフラ
クションに対し0.31mU/mlとなるようにヘパリナーゼを
加えて37℃で1時間インキュベートし、1M 塩酸を加えて
酵素反応を停止した。以上の処理を行ったサンプルを用
いて、実験例2の方法に従いMRC−5細胞HGF産生
刺激活性を、無処理のインジュリンフラクションとの比
較で調べた。その結果を表2に示す。表2に示す如く、
本発明のインジュリンは熱、酸、還元剤に安定であり、
またトリプシン処理により失活し、ヘパリナーゼにより
影響を受けない事から少なくとも活性を担う部分はヘパ
リン様多糖類ではなく、蛋白質であると想定された。
Example 3 In order to examine the physical properties of the cytotoxic healing factor indullin of the present invention, various treatments were carried out using the inducin active fraction obtained in Example 2. To check the heat resistance,
Two types of heat treatment were performed at 60 ° C. for 5 minutes and 100 ° C. for 5 minutes. To check acid resistance, use acetic acid at pH 5.0, pH 3.5,
The pH was adjusted to 1.0 with hydrochloric acid. As trypsin treatment, trypsin was added to 100 μg / ml to the indulin fraction with a protein concentration of 470 μg / ml,
Incubated at ℃ for 3 hours. The enzymatic reaction was stopped by adding soybean-derived trypsin inhibitor at a concentration of 200 μg / ml. To examine the stability against reducing agents, dithiothreitol was added at a concentration of 1 mM. As the heparinase treatment, heparinase was added to the inducin fraction having a protein concentration of 470 μg / ml so as to be 0.31 mU / ml, and the mixture was incubated at 37 ° C. for 1 hour, and the enzymatic reaction was stopped by adding 1M hydrochloric acid. Using the sample treated as described above, the MRC-5 cell HGF production stimulating activity was examined by comparison with the untreated inducin fraction according to the method of Experimental Example 2. The results are shown in Table 2. As shown in Table 2,
The indulin of the present invention is stable to heat, acid and reducing agent,
In addition, since it was inactivated by trypsin treatment and was not affected by heparinase, it was assumed that at least the part responsible for the activity is not a heparin-like polysaccharide but a protein.

【0028】 [0028]

【0029】実施例4 本発明のインジュリンをさらに精製し、より詳細に分子
量を求めるため、インジュリンフラクションを電気泳動
にかけた。実施例2-(2)で得られたインジュリン活性フ
ラクションをイオン交換FPLC、逆相HPLC、調製
用SDS−PAGEで精製した後、非還元条件下で10-2
0%グラジエント・ポリアクリルアミドゲルにより電気泳
動した。分子量マーカーとして次の5種類の蛋白質を用
いた。ホスホリパーゼb(94kD)、BSA(67kD)、卵
白アルブミン(43kD)、ダイズ由来トリプシンインヒビ
ター(21kD)、リゾチーム(14kD)。SDS電気泳動終
了後、ゲルを小片に切り分けテフロン製のホモジナイザ
ーで破砕した。それぞれのゲル片を試験管にとり、PB
Sを加えて4℃で15時間振盪した。1,000xgで20分間遠心
分離した後、上清にBSAを加え、最終濃度が25μg/ml
になるよう調整した。得られた抽出物を精製水で4℃12
時間透析し、凍結乾燥した後、0.15M NaClを含む10
mM HEPES−NaOH緩衝液(pH7.2)に溶解した。
最終濃度が4mg/mlになるようBSAを添加した後、冷エ
タノール(ー20℃)を加えて氷上で30分間インキュベー
トした。15,000xgで10分間遠心分離し、沈渣を集めて10
mM酢酸アンモニウムに溶解し、再度凍結乾燥した。凍結
乾燥品を0.15M NaClを含む10mM HEPES−Na
OH緩衝液(pH7.2)に溶解し、インジュリン活性測定
に供した。インジュリン活性は、実験例2の方法に従
い、MRC−5細胞HGF産生刺激活性により測定し
た。その結果を図8に示す。図8に示す如く、本発明の
インジュリンは約1万から2万の分子量を示すことが明
らかとなった。また、分子量約4万から6万(40kD〜60
kD)の画分にもインジュリン活性が認められた。
Example 4 The indulin of the present invention was further purified, and in order to determine the molecular weight in more detail, the indulin fraction was subjected to electrophoresis. The indulin active fraction obtained in Example 2- (2) was purified by ion exchange FPLC, reverse phase HPLC, preparative SDS-PAGE and then 10-2 under non-reducing conditions.
Electrophoresis was performed on a 0% gradient polyacrylamide gel. The following five proteins were used as molecular weight markers. Phospholipase b (94 kD), BSA (67 kD), ovalbumin (43 kD), soybean-derived trypsin inhibitor (21 kD), lysozyme (14 kD). After the completion of SDS electrophoresis, the gel was cut into small pieces and crushed with a Teflon homogenizer. Put each gel piece into a test tube and
After adding S, the mixture was shaken at 4 ° C. for 15 hours. After centrifugation at 1,000 xg for 20 minutes, BSA was added to the supernatant to give a final concentration of 25 μg / ml.
It was adjusted to become. The extract obtained is purified water at 4 ° C 12
Dialyzed for 10 hours, freeze-dried and then containing 0.15M NaCl 10
It was dissolved in mM HEPES-NaOH buffer (pH 7.2).
BSA was added to a final concentration of 4 mg / ml, cold ethanol (-20 ° C) was added, and the mixture was incubated on ice for 30 minutes. Centrifuge at 15,000 xg for 10 minutes and collect the sediment for 10
It was dissolved in mM ammonium acetate and lyophilized again. Freeze-dried product containing 10 mM HEPES-Na containing 0.15 M NaCl
It was dissolved in an OH buffer solution (pH 7.2) and subjected to indulin activity measurement. The inducin activity was measured by the MRC-5 cell HGF production stimulating activity according to the method of Experimental Example 2. FIG. 8 shows the result. As shown in FIG. 8, it became clear that the indulin of the present invention has a molecular weight of about 10,000 to 20,000. Also, the molecular weight is about 40,000 to 60,000 (40kD-60
Indulin activity was also observed in the kD) fraction.

【0030】実施例5 ヒト血清中のインジュリンを以下の方法により精製して
得た。実験例4で得た、肝ガンと診断された患者より得
られた血清を実施例2の方法に従ってバイオゲルP−6
0、セファデックスG−150にて精製した後、実施例
4の方法に従ってイオン交換FPLC、逆相HPLC、
調製用SDS−PAGEで精製し、得られたインジュリ
ン活性フラクションを非還元条件下で10-20%グラジエン
ト・ポリアクリルアミドゲルにより電気泳動した。実施
例4の方法に従ってゲル切片に切り分け、MRC−5細
胞のHGF誘導活性を指標としてインジュリン活性画分を
精製し、本発明の組織傷害治癒因子、インジュリンを得
た。
Example 5 Indulin in human serum was obtained by purification by the following method. Serum obtained from a patient diagnosed with liver cancer obtained in Experimental Example 4 was subjected to Biogel P-6 according to the method of Example 2.
0, purified by Sephadex G-150, followed by ion exchange FPLC, reverse phase HPLC, according to the method of Example 4.
Purified by preparative SDS-PAGE, the resulting inducin active fractions were electrophoresed on a 10-20% gradient polyacrylamide gel under non-reducing conditions. Gel slices were cut according to the method of Example 4, and the inducin active fraction was purified by using the HGF-inducing activity of MRC-5 cells as an index to obtain the tissue injury healing factor of the present invention, indulin.

【図面の簡単な説明】[Brief description of drawings]

【図1】部分肝切除および虚血状態により肝傷害を起こ
したラットの血清を経時的に採取して正常ラットの腹腔
に注射し、肺におけるHGFmRNAの発現を追跡した
結果を示す。
FIG. 1 shows the results of tracing the expression of HGF mRNA in the lung by collecting the serum of a rat in which liver injury was caused by partial hepatectomy and ischemia, and injecting it into the abdominal cavity of a normal rat.

【図2】肝傷害および腎傷害ラットの血清を経時的に採
取し、MRC−5細胞HGF発現誘導によりインジュリ
ン活性を測定した結果を示す。図において、(A):四
塩化炭素投与(●)、部分肝切除(○)、肝虚血処理(▲)、
(B):片腎摘出(△)、塩化水銀投与(■)、カナマイシ
ン投与(□)のそれぞれの処理を施したラットの結果を示
す。
FIG. 2 shows the results of measuring sera of liver injury and renal injury rats over time and measuring inducin activity by inducing HRC expression of MRC-5 cells. In the figure, (A): carbon tetrachloride administration (●), partial hepatectomy (○), hepatic ischemia treatment (▲),
(B): Shows the results of rats subjected to the treatments of single nephrectomy (Δ), mercuric chloride administration (■), and kanamycin administration (□).

【図3】四塩化炭素投与ラット血清をMRC−5細胞培
養系に添加した場合のHGFmRNA発現量の経時変化
を示す。アガロースゲル電気泳動後、ノーザンハイブリ
ダイゼーションにより検出した。
FIG. 3 shows the time course of HGF mRNA expression level when carbon tetrachloride-administered rat serum was added to an MRC-5 cell culture system. After agarose gel electrophoresis, it was detected by Northern hybridization.

【図4】肝臓手術を施行したヒト血清を経時的に採取
し、MRC−5細胞HGF発現誘導によりインジュリン
活性を測定した結果を示す。○および●は2人の患者を
示し、◇は健常人の血清(正常血清)を示す。
FIG. 4 shows the results of measuring the indulin activity by inducing HGF expression on MRC-5 cells by collecting human serum subjected to liver surgery over time. ○ and ● indicate two patients, and ◇ indicates serum (normal serum) of a healthy person.

【図5】部分肝切除を施行したラットの血清に物理化学
的処理を行った場合のインジュリン活性を測定した結果
を示す。(A)は酸・熱処理を行った場合、(B)は限
外ろ過を行った場合のHGFmRNA測定の結果を示
す。
FIG. 5 shows the results of measuring the indulin activity when the serum of a rat subjected to partial hepatectomy was subjected to physicochemical treatment. (A) shows the results of HGF mRNA measurement when acid / heat treatment was carried out and (B) was carried out when ultrafiltration was carried out.

【図6】四塩化炭素投与ラット血清からバイオゲルP−
60カラムクロマトグラフィーによりインジュリンを分
離した結果を示す。●はインジュリン活性測定値を、○
は280nmの吸光度を示す。
FIG. 6: Biogel P- from carbon tetrachloride-administered rat serum
The result of having isolate | separated indulin by 60 column chromatography is shown. ● indicates the measured value of indulin activity, ○
Indicates the absorbance at 280 nm.

【図7】バイオゲルP−60カラム分離後の活性フラク
ションからセファデックスG−150ゲルカラムクロマ
トグラフィーによりインジュリンを分離した結果を示
す。●はインジュリン活性測定値を、○は280nmの吸光
度を示す。
FIG. 7 shows the results of separation of indurin from the active fraction after separation by Biogel P-60 column by Sephadex G-150 gel column chromatography. ● indicates the measured value of indulin activity, and ○ indicates the absorbance at 280 nm.

【図8】ゲルろ過後の活性フラクションを用いてSDS
−PAGEにより分離した結果を示す。●はゲル抽出物
のインジュリン活性測定値を、図中の数値は分子量マー
カーの溶出位置を示す。
FIG. 8: SDS using active fraction after gel filtration
-Shows the results of separation by PAGE. ● indicates the measured value of inducin activity of the gel extract, and the numerical value in the figure indicates the elution position of the molecular weight marker.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 肝実質細胞増殖因子(Hepatocyto G
rowth Factor、HGF)産生細胞のHGF産生を促進す
る活性を有する組織傷害治癒因子、インジュリン。
1. A hepatocyte growth factor (Hepatocyto G)
Rowth Factor, HGF) Injurin, a tissue injury healing factor having an activity of promoting HGF production in cells.
【請求項2】 ヒトまたは動物の組織または血液成
分に由来する請求項1記載の組織傷害治癒因子、インジ
ュリン。
2. The tissue injury healing factor according to claim 1, which is derived from human or animal tissues or blood components, indulin.
【請求項3】 ヒトまたは動物の組織の傷害に呼応
して増加する特徴を有する請求項1記載の組織傷害治癒
因子、インジュリン。
3. The tissue injury healing factor, indulin according to claim 1, which has a characteristic of increasing in response to injury of human or animal tissue.
【請求項4】 下記の1)ないし4)の処理により活性
を保持し、5)の処理により失活する請求項1記載の組織
傷害治癒因子、インジュリン。 1) 60℃ 5分、または100℃ 5分の熱処理。 2) pH 1.0、3.5、5.0の酸処理。 3) 1mM ジチオスレイトールの還元処理。 4) 0.31mU/ml、37℃、1時間のヘパリナーゼ処理。 5) 100μg/ml、37℃、3時間のトリプシン処理。
4. The tissue injury healing factor, indulin according to claim 1, which retains its activity by the treatments 1) to 4) below and is inactivated by the treatment 5). 1) Heat treatment at 60 ℃ for 5 minutes or 100 ℃ for 5 minutes. 2) Acid treatment at pH 1.0, 3.5 and 5.0. 3) Reduction treatment of 1 mM dithiothreitol. 4) Heparinase treatment at 0.31mU / ml at 37 ° C for 1 hour. 5) Trypsin treatment at 100 µg / ml at 37 ° C for 3 hours.
【請求項5】 バイオゲルP−60およびセファデ
ックスG−150の各ゲルカラム処理により10kDないし
30kDの分子量を示す請求項1記載の組織傷害治癒因子、
インジュリン。
5. The treatment of Biogel P-60 and Sephadex G-150 with each gel column is performed at 10 kD to 10 kD.
The tissue injury healing factor according to claim 1, which has a molecular weight of 30 kD,
Indulin.
【請求項6】 非還元条件下、SDSポリアクリル
アミドゲル電気泳動により10kDないし20kDの分子量を示
す請求項1記載の組織傷害治癒因子、インジュリン。
6. The tissue injury healing factor, indurin according to claim 1, which exhibits a molecular weight of 10 kD to 20 kD by SDS polyacrylamide gel electrophoresis under non-reducing conditions.
【請求項7】 非還元条件下、SDSポリアクリル
アミドゲル電気泳動により40kDないし60kDの分子量を示
す請求項1記載の組織傷害治癒因子、インジュリン。
7. The injulin, a tissue injury healing factor according to claim 1, which exhibits a molecular weight of 40 kD to 60 kD by SDS polyacrylamide gel electrophoresis under non-reducing conditions.
JP3285650A 1991-10-04 1991-10-04 Tissue injury healing factor Pending JPH083195A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3285650A JPH083195A (en) 1991-10-04 1991-10-04 Tissue injury healing factor
PCT/JP1992/001286 WO1993006853A1 (en) 1991-10-04 1992-10-05 Cell damage repairing factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285650A JPH083195A (en) 1991-10-04 1991-10-04 Tissue injury healing factor

Publications (1)

Publication Number Publication Date
JPH083195A true JPH083195A (en) 1996-01-09

Family

ID=17694285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285650A Pending JPH083195A (en) 1991-10-04 1991-10-04 Tissue injury healing factor

Country Status (2)

Country Link
JP (1) JPH083195A (en)
WO (1) WO1993006853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058807A (en) * 2016-10-08 2018-04-12 株式会社ニューロゲン HGF inducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867996A1 (en) 2000-08-28 2007-12-19 Damavand Wound AB Kit for determining HGF in excrement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799455B2 (en) * 1988-11-15 1998-09-17 工業技術院長 Method for producing hepatocyte growth factor
JP3030312B2 (en) * 1988-12-12 2000-04-10 敏一 中村 Mature hepatocyte growth factor (I)
JPH03130091A (en) * 1989-06-05 1991-06-03 Toyobo Co Ltd Recombinant human hepatocyte proliferation factor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058807A (en) * 2016-10-08 2018-04-12 株式会社ニューロゲン HGF inducer

Also Published As

Publication number Publication date
WO1993006853A1 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
JP3854307B2 (en) Inhibition of transforming growth factor beta to prevent extracellular matrix accumulation
JP3159705B2 (en) Angiogenic peptide
McCarthy et al. Production of Heparin-Binding Epidermal Growth Factor–like Growth Factor (HB-EGF) at Sites of Thermal Injury in Pediatric Patients
JP2564486B2 (en) Hepatocyte growth factor
KR0137017B1 (en) Use of gamma interferon in pharmaceutical preparations for the treatment of vascular stenosis
JP2750372B2 (en) Wise disease treatment
JP2784455B2 (en) Liver cirrhosis treatment
JP2007051150A (en) Connective tissue growth factor
KR20050004809A (en) Use of il-18 inhibitors for the treatment and/or prevention of peripheral vascular diseases
JP3285862B2 (en) Activity-dependent neurotrophic factor
JP2001518304A (en) Fusion protein containing angiostatin component and its use in antitumor therapy
JP3622015B2 (en) Lung injury treatment
JP4129994B2 (en) Angiogenesis inhibitors containing tissue factor coagulation inhibitor
WO1993008821A1 (en) Side effect inhibitor for cancer therapy
JPH083195A (en) Tissue injury healing factor
JP2022502359A (en) Drugs for the treatment of dermatological disorders
WO2022121084A1 (en) Protein with activity of inhibiting neovascularization growth and inhibiting inflammatory response, and preparation method therefor
RU2446174C2 (en) Peptide with antiproliferative activity and pharmaceutical composition for treating proliferative diseases
JPH06312941A (en) Hgf production promoter
CN109280079A (en) A kind of the wound repair peptide and its synthetic method in frog source
JP3737532B2 (en) Cartilage disorder treatment
JP4256497B2 (en) Anti-angiitis agent
JPH08782B2 (en) Anti-inflammatory agent
KR102115557B1 (en) Pharmaceutical composition for preventing or treating pulmonary fibrosis
JPH0420289A (en) Protein