JPH0831804A - Chemical collimator - Google Patents

Chemical collimator

Info

Publication number
JPH0831804A
JPH0831804A JP16655194A JP16655194A JPH0831804A JP H0831804 A JPH0831804 A JP H0831804A JP 16655194 A JP16655194 A JP 16655194A JP 16655194 A JP16655194 A JP 16655194A JP H0831804 A JPH0831804 A JP H0831804A
Authority
JP
Japan
Prior art keywords
collimator
particles
particle beam
chemical
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16655194A
Other languages
Japanese (ja)
Inventor
Takashi Yunogami
隆 湯之上
Tatsumi Mizutani
巽 水谷
Tetsuo Ono
哲郎 小野
Katanobu Yokogawa
賢悦 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16655194A priority Critical patent/JPH0831804A/en
Publication of JPH0831804A publication Critical patent/JPH0831804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove specific particles from mixture particle beam by choosing such material as is easy to attract particles desired to be removed as a material for a collimator and providing multiple holes where the ratio of length L against diameter D, L/D, is large enough. CONSTITUTION:For example, if the only CF2 is removed from mixture particles 1 of CF2 and CF3 1 generated in CF4 plasma, for obtaining only collimated CF3, SiO2 whose attraction coefficient to CF2 is large is chosen as a material of a collimator 3, and many holes 4 whose L/D is large is provided to it for a multi-aperture structure. Making the particles 1 generated in-plasma pass through the collimator 3 thus obtained before reaching a sample, CF2 particles 5, conventionally prevented etching by accumulating in deep holes, are attracted to an inner wall of the collimator 3 for removal, so that, particles which reach the sample are only CF3 whose attraction probability is low, for smooth etching with the deep holes whose diameter is small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒子選別機能、また
は、粒子加工機能を持ったコリメータ、およびコリメー
タを使った表面処理方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collimator having a particle selection function or a particle processing function, and a surface treatment method and apparatus using the collimator.

【0002】[0002]

【従来の技術】粒子ビームをある立体角内に収めるよう
にする装置としてコリメータがある。また、口径の大き
な粒子ビームをコリメートするために、マルチアパーチ
ャ構造のコリメータが使われている。
2. Description of the Related Art A collimator is a device for keeping a particle beam within a certain solid angle. A collimator with a multi-aperture structure is used to collimate a particle beam having a large diameter.

【0003】混合粒子ビームから、特定の粒子のみを除
去し、更にコリメートしたい場合、従来は、粒子選別器
とコリメータの二つの装置を必要とした。
When it is desired to remove only specific particles from a mixed particle beam and further collimate the particles, two devices, a particle sorter and a collimator, have been conventionally required.

【0004】また、コリメートされた粒子ビームでか
つ、所望のエネルギ,所望の電子準位,所望の組成の粒
子ビームを得る場合、上記のような所望の粒子ビームを
何らかの方法でまず生成しておき、その後にコリメート
するという二段階の手法が取られてきた。
In order to obtain a particle beam having a desired energy, a desired electron level and a desired composition with a collimated particle beam, the desired particle beam as described above is first generated by some method. , Followed by a two-step technique of collimating.

【0005】また、SiまたはSiO2 の直径1μm以
下の深い孔をエッチングするには、CF系ガスを用いた
プラズマエッチングが使用されていた。その際、CF系
ガスプラズマ中で発生する粒子CF3,CF2,CF1
がすべて試料に入射していた。
Further, in order to etch deep holes of Si or SiO 2 having a diameter of 1 μm or less, plasma etching using CF type gas has been used. At that time, particles CF 3 , CF 2 , CF 1, etc. generated in the CF-based gas plasma were all incident on the sample.

【0006】[0006]

【発明が解決しようとする課題】本発明の第1の目的
は、混合粒子ビームから特定の粒子を除去する機能を有
するコリメータを提供することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to provide a collimator having a function of removing specific particles from a mixed particle beam.

【0007】また、本発明の第2の目的は、所望のエネ
ルギ、または所望の電子準位、または所望の組成になる
ように入射粒子ビームを加工する機能を有するコリメー
タを提供することにある。
A second object of the present invention is to provide a collimator having a function of processing an incident particle beam so as to have a desired energy, a desired electronic level, or a desired composition.

【0008】また、本発明の第3の目的は、上記コリメ
ータを使い、プラズマ中で発生している吸着係数の大き
い粒子、すなわち、孔に堆積してエッチングを妨げるよ
うな粒子を除去し、直径1μm以下のような微細な孔
を、スムーズに、深くエッチングできる方法と装置を提
供することにある。
A third object of the present invention is to use the above collimator to remove particles having a large adsorption coefficient generated in plasma, that is, particles which are deposited in the holes and interfere with etching, and have a diameter of It is an object of the present invention to provide a method and an apparatus capable of smoothly and deeply etching fine holes of 1 μm or less.

【0009】[0009]

【課題を解決するための手段】第1の目的に対する手段
は、コリメータの材質として、除去したい粒子を吸着し
やすい材質を選び、直径D,長さLの孔が複数個開いて
いるマルチアパーチャ構造のコリメータを作成する。そ
の際、比L/Dを十分大きな値になるようにしておく。
更に、孔の軸と上記入射粒子ビームの間の角度θを調節
して、入射粒子が孔の中で一回以上衝突するようにす
る。更に、コリメータに加熱または冷却機構を具備さ
せ、吸着係数がなるべく大きくなるような温度Tにす
る。
[Means for Solving the Problems] A means for the first object is a multi-aperture structure in which a material which easily adsorbs particles to be removed is selected as a material of a collimator and a plurality of holes having a diameter D and a length L are opened. Create a collimator for. At that time, the ratio L / D is set to a sufficiently large value.
Further, the angle θ between the axis of the hole and the incident particle beam is adjusted so that the incident particle collides more than once in the hole. Further, the collimator is provided with a heating or cooling mechanism, and the temperature T is set so that the adsorption coefficient becomes as large as possible.

【0010】第2の目的に対する手段は、コリメータの
材質として、入射粒子と化学反応等を起こしやすい物質
を選び、直径D,長さLの孔が複数個開いているマルチ
アパーチャ構造のコリメータを作成する。その際、比L
/Dを十分大きな値になるようにしておく。更に、孔の
軸と上記入射粒子ビームの間の角度θを調節して、入射
粒子が孔の中で一回以上衝突するようにする。更に、上
記コリメータに加熱または冷却機構を具備させ、化学反
応等が十分起こるような温度Tにする。
As a means for the second object, as the material of the collimator, a material which easily causes a chemical reaction with incident particles is selected, and a collimator having a multi-aperture structure in which a plurality of holes having a diameter D and a length L are opened is prepared. To do. At that time, the ratio L
Set / D to a sufficiently large value. Further, the angle θ between the axis of the hole and the incident particle beam is adjusted so that the incident particle collides more than once in the hole. Further, the collimator is equipped with a heating or cooling mechanism, and the temperature T is set so that a chemical reaction or the like sufficiently occurs.

【0011】第3の目的に対する手段は、プラズマエッ
チング装置内部のプラズマと試料との間に上のようなコ
リメータを設置し、プラズマ中で発生したすべての粒子
を一度コリメータを通過させてから、試料に照射するよ
うにする。
The means for the third object is to install a collimator as described above between the plasma inside the plasma etching apparatus and the sample, pass all particles generated in the plasma once through the collimator, and then To irradiate.

【0012】[0012]

【作用】第1の目的に対する手段の作用を説明する。除
去したい粒子を吸着しやすい材質を選ぶことにより、所
望の粒子を除去できる。この除去効率を高めるために、
孔の直径Dを小さく、孔の長さLを大きくする。すなわ
ち、比L/Dが大きいほど粒子は、コリメータ内壁と衝
突しやすくなり除去効率はあがる。また、入射粒子の直
進性が良い場合は、入射角θを大きくすることにより、
コリメータ内壁との衝突回数を増大させることができ
る。更に、コリメータの温度を低く保てば、吸着速度が
増加するため、吸着効率が増す。このようにして、複数
の種類の粒子が混合した入射粒子ビームから、ある特定
の粒子のみを除去することができる。
The operation of the means for the first purpose will be described. Desired particles can be removed by selecting a material that easily adsorbs the particles to be removed. To increase this removal efficiency,
The diameter D of the hole is reduced and the length L of the hole is increased. That is, the larger the ratio L / D, the easier the particles collide with the inner wall of the collimator, and the higher the removal efficiency. Also, if the incident particles have a good straightness, by increasing the incident angle θ,
The number of collisions with the inner wall of the collimator can be increased. Furthermore, if the temperature of the collimator is kept low, the adsorption rate increases, so the adsorption efficiency increases. In this way, only certain particles can be removed from the incident particle beam in which a plurality of types of particles are mixed.

【0013】第2の目的に対する手段の作用を説明す
る。入射粒子と化学反応などを起こしやすい材質を選ぶ
ことにより、所望の粒子に加工できる。その他のパラメ
ータ、L,D,θ,Tの作用については、第1の目的に
対する手段の作用と同じ。
The operation of the means for the second purpose will be described. The desired particles can be processed by selecting a material that easily causes a chemical reaction with the incident particles. The operation of the other parameters, L, D, θ, T is the same as the operation of the means for the first purpose.

【0014】第3の目的に対する手段の作用を説明す
る。プラズマ中で発生したすべての粒子は試料に届く前
に、一度、コリメータを通過するが、その際、吸着確率
の高い粒子、すなわち従来深い孔に堆積してエッチング
を妨げていた粒子はコリメータの内壁に吸着されて除去
される。従って、試料に届く粒子は、吸着確率の小さな
粒子となり、口径の小さな深い孔をスムーズにエッチン
グできる。
The operation of the means for the third purpose will be described. All particles generated in the plasma pass through the collimator once before reaching the sample.At that time, particles with high adsorption probability, that is, particles that had been deposited in deep holes and prevented etching in the past, were collided with the inner wall of the collimator. Are adsorbed on and removed. Therefore, the particles that reach the sample become particles having a low adsorption probability and can smoothly etch deep holes having a small diameter.

【0015】[0015]

【実施例】本発明の一実施例を図1を用いて説明する。
入射粒子ビーム1として、CF2とCF3の混合粒子ビー
ムがあったとする。これは、例えば、CF4プラズマ中
からイオンをひきだすと、このような混合粒子ビームが
得られる。この混合粒子ビームからCF2のみを除去
し、コリメートされたCF3イオンビームのみを得たい
とき、次のようなケミカルコリメータ3が有効である。
まず材質はSiO2 を使う。なぜならば、CF2および
CF3の吸着係数は、それぞれ10-2および10-5であ
り(ジャパニーズ ジャーナル オブ アプライド フ
ィジクス(JapaneseJournal of Applied Physics), Vo
l.30, 1991, p.2873)、CF2の方がCF3より約一千倍
吸着しやすいからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
It is assumed that the incident particle beam 1 is a mixed particle beam of CF 2 and CF 3 . This is because, for example, when ions are extracted from CF 4 plasma, such a mixed particle beam is obtained. When it is desired to remove only CF 2 from the mixed particle beam and obtain only the collimated CF 3 ion beam, the following chemical collimator 3 is effective.
First, use SiO 2 as the material. Because, the adsorption coefficients of CF 2 and CF 3 are 10 −2 and 10 −5 , respectively (Japanese Journal of Applied Physics, Vo
l.30, 1991, p.2873), because CF 2 is about 1000 times more easily adsorbed than CF 3 .

【0016】このSiO2 製のケミカルコリメータ3
に、直径1μm以下、長さ20μm以上の孔4を数多く
設け、マルチアパーチャ構造にする。このようなケミカ
ルコリメータ3に入射粒子ビーム1を入射させると、除
去したい粒子5としてCF2 が孔4の壁に吸着され、そ
の結果、コリメートされたCF3 のみの出射粒子ビーム
2が得られる。この時、ケミカルコリメータ3を液体窒
素などで−50℃程度に冷却しておくと、吸着確率が更
に増加し、より効率的にCF2を除去できる。
This SiO 2 chemical collimator 3
In addition, a large number of holes 4 having a diameter of 1 μm or less and a length of 20 μm or more are provided to form a multi-aperture structure. When the incident particle beam 1 is incident on such a chemical collimator 3, CF 2 as particles 5 to be removed is adsorbed on the wall of the hole 4, and as a result, the collimated emitted particle beam 2 of only CF 3 is obtained. At this time, if the chemical collimator 3 is cooled to about −50 ° C. with liquid nitrogen or the like, the adsorption probability further increases, and CF 2 can be removed more efficiently.

【0017】本発明の第二の実施例を図2を用いて説明
する。図2はマイクロ波プラズマエッチング装置にSi
2 でできたケミカルコリメータ3を設置したものであ
る。マイクロ波7とコイル11の作る磁場によって、C
4,CHF3,CH22,C38,C48等のCF系ガ
スプラズマ10を発生させる。このプラズマ中には、C
F,CF2,CF3等の粒子がラジカルおよびイオンとし
て存在する。これらの粒子をケミカルコリメータ3を通
過させると、吸着係数の大きなCF,CF2等が除去さ
れ、吸着係数の小さな粒子18のみが試料17をエッチ
ングする。従って、吸着係数の大きな粒子によって試料
17のエッチングが停止することなどが防止できる。
A second embodiment of the present invention will be described with reference to FIG. Fig. 2 shows a microwave plasma etching system
The chemical collimator 3 made of O 2 is installed. By the microwave 7 and the magnetic field created by the coil 11, C
A CF-based gas plasma 10 of F 4 , CHF 3 , CH 2 F 2 , C 3 F 8 , C 4 F 8 or the like is generated. In this plasma, C
Particles such as F, CF 2 and CF 3 exist as radicals and ions. When these particles pass through the chemical collimator 3, CF and CF 2 having a large adsorption coefficient are removed, and only the particles 18 having a small adsorption coefficient etch the sample 17. Therefore, it is possible to prevent the etching of the sample 17 from being stopped by the particles having a large adsorption coefficient.

【0018】[0018]

【発明の効果】除去したい粒子を吸着しやすい材質を選
ぶことにより、所望の粒子を除去できる。この時、孔の
直径Dを小さく長さLを大きくすると、すなわち、比L
/Dを大きくするほど、粒子はコリメータ内壁と衝突し
やすくなり除去効率があがる。また、入射粒子の直進性
が良い場合は、入射角θを大きくすることにより、コリ
メータ内壁との衝突回数を増大させることができる。更
に、コリメータの温度を低く保てば、吸着速度が増加す
るため、吸着効率が増す。このようにして、複数の種類
の粒子が混合した入射粒子ビームから、ある特定の粒子
のみを効率良く除去することができる。
The desired particles can be removed by selecting a material that easily adsorbs the particles to be removed. At this time, if the diameter D of the hole is reduced and the length L is increased, that is, the ratio L
As / D is increased, the particles are more likely to collide with the inner wall of the collimator and the removal efficiency is increased. Further, when the straightness of the incident particles is good, the number of collisions with the inner wall of the collimator can be increased by increasing the incident angle θ. Furthermore, if the temperature of the collimator is kept low, the adsorption rate increases, so the adsorption efficiency increases. In this way, only certain particles can be efficiently removed from the incident particle beam in which a plurality of types of particles are mixed.

【0019】プラズマ中で発生したすべての粒子が、試
料に届く前に、一度、コリメータを通過するようにする
と、吸着確率の高い粒子、すなわち従来深い孔に堆積し
てエッチングを妨げていた粒子はコリメータの内壁に吸
着されて除去される。従って、試料に届く粒子は、吸着
確率の小さな粒子となり、口径の小さな深い孔をスムー
ズにエッチングできる。
If all the particles generated in the plasma are allowed to pass through the collimator once before reaching the sample, particles having a high adsorption probability, that is, particles that have conventionally been deposited in deep holes and hindered etching are generated. It is adsorbed and removed by the inner wall of the collimator. Therefore, the particles that reach the sample become particles having a low adsorption probability and can smoothly etch deep holes having a small diameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】本発明の第二実施例の説明図。FIG. 2 is an explanatory diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…入射粒子ビーム、2…出射粒子ビーム、3…ケミカ
ルコリメータ、4…孔、5…除去したい粒子。
1 ... Incident particle beam, 2 ... Exit particle beam, 3 ... Chemical collimator, 4 ... Hole, 5 ... Particles to be removed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横川 賢悦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenetsu Yokokawa 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数の種類の粒子が混合した入射粒子のビ
ームが、コリメータを通過する際、上記入射粒子のうち
除去したい粒子を上記コリメータの内壁に吸着させるこ
とを特徴とするケミカルコリメータ。
1. A chemical collimator, wherein when a beam of incident particles, which is a mixture of a plurality of types of particles, passes through a collimator, particles of the incident particles to be removed are adsorbed on the inner wall of the collimator.
【請求項2】請求項1において、上記ケミカルコリメー
タは、孔が複数個開いているマルチアパーチャ構造をし
ており、コリメータ自身の温度を変化させることができ
る加熱または冷却機構を具備し、上記ケミカルコリメー
タの材質,孔の直径,孔の長さ,コリメータの温度,上
記孔の軸と入射粒子ビームの間の角度が、除去したい粒
子にとって除去効率が最適になるように決められている
ケミカルコリメータ。
2. The chemical collimator according to claim 1, wherein the chemical collimator has a multi-aperture structure in which a plurality of holes are opened, and the chemical collimator comprises a heating or cooling mechanism capable of changing the temperature of the collimator itself. A chemical collimator in which the material of the collimator, the diameter of the hole, the length of the hole, the temperature of the collimator, the angle between the axis of the hole and the incident particle beam are determined so that the removal efficiency is optimum for the particles to be removed.
【請求項3】入射粒子ビームが、コリメータを通過する
際、コリメータ内壁に衝突することにより、上記粒子の
エネルギ,電子準位,粒子の組成のいずれかが変化し、
所望のエネルギ、または所望の電子準位、または所望の
組成の粒子ビームを得ることができることを特徴とする
ケミカルコリメータ。
3. When an incident particle beam passes through a collimator and collides with the inner wall of the collimator, any of the energy of the particles, the electron level, and the composition of the particles changes,
A chemical collimator capable of obtaining a particle beam having a desired energy, a desired electron level, or a desired composition.
【請求項4】請求項3において、上記コリメータは孔が
複数個開いているマルチアパーチャ構造をなし、コリメ
ータ自身の温度を変化させることができる加熱または冷
却機構を具備し、上記コリメータの材質,孔の直径,孔
の長さ,コリメータの温度,上記孔の軸と上記入射粒子
ビームの間の角度が、所望の粒子ビームを得るために最
適な値になるように決められているケミカルコリメー
タ。
4. The collimator according to claim 3, wherein the collimator has a multi-aperture structure in which a plurality of holes are opened, and the collimator is equipped with a heating or cooling mechanism capable of changing the temperature of the collimator. A chemical collimator in which the diameter, the length of the hole, the temperature of the collimator, the angle between the axis of the hole and the incident particle beam are optimal values for obtaining the desired particle beam.
【請求項5】請求項1〜4のいずれか記載のコリメータ
を用いて、所望のエネルギ、または所望の電子準位、ま
たは所望の組成の粒子ビームを通過させ、前記粒子ビー
ムを被処理物表面に照射して行うことを特徴とする表面
処理方法。
5. A collimator according to any one of claims 1 to 4 is used to pass a particle beam having a desired energy, a desired electron level, or a desired composition, and the particle beam is applied to the surface of a workpiece. A method for surface treatment, which comprises irradiating the surface of the surface.
【請求項6】請求項5において、上記処理がされる被処
理物表面がSiまたはSiO2 である表面処理方法。
6. The surface treatment method according to claim 5, wherein the surface of the object to be treated is Si or SiO 2 .
【請求項7】請求項1〜4のいずれか記載のコリメータ
を具備し、所望のエネルギ、または所望の電子準位、ま
たは所望の組成の粒子ビームを被処理物表面に照射する
手段を有することを特徴とする表面処理装置。
7. A collimator according to any one of claims 1 to 4, comprising means for irradiating a surface of an object to be treated with a particle beam having a desired energy, a desired electron level, or a desired composition. A surface treatment device.
【請求項8】請求項7において、上記表面処理装置がS
iまたはSiO2 のエッチング装置である表面処理装
置。
8. The surface treatment device according to claim 7, wherein
A surface treatment device which is an etching device for i or SiO 2 .
JP16655194A 1994-07-19 1994-07-19 Chemical collimator Pending JPH0831804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16655194A JPH0831804A (en) 1994-07-19 1994-07-19 Chemical collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16655194A JPH0831804A (en) 1994-07-19 1994-07-19 Chemical collimator

Publications (1)

Publication Number Publication Date
JPH0831804A true JPH0831804A (en) 1996-02-02

Family

ID=15833368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16655194A Pending JPH0831804A (en) 1994-07-19 1994-07-19 Chemical collimator

Country Status (1)

Country Link
JP (1) JPH0831804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140051962A (en) * 2011-07-20 2014-05-02 램 리써치 코포레이션 Atomic layer etching using metastables formed from an inert gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140051962A (en) * 2011-07-20 2014-05-02 램 리써치 코포레이션 Atomic layer etching using metastables formed from an inert gas
JP2014522104A (en) * 2011-07-20 2014-08-28 ラム リサーチ コーポレーション Atomic layer etching using metastable gas generated from inert gas
US10014192B2 (en) 2011-07-20 2018-07-03 Lam Research Corporation Apparatus for atomic layering etching

Similar Documents

Publication Publication Date Title
JP5112181B2 (en) High resolution plasma etching
US6221169B1 (en) System and method for cleaning contaminated surfaces in an ion implanter
DE10305602B4 (en) Method and apparatus for generating a gas plasma and method for producing a semiconductor device
EP0021140B1 (en) Ion source in a vacuum chamber and method for its operation
US5146088A (en) Method and apparatus for surface analysis
US5883005A (en) Semiconductor etching by hyperthermal neutral beams
DE4308203C2 (en) Plasma etching device
EP0451943A2 (en) Plasma processing method and apparatus
JP2008546154A (en) Charged beam dump and particle attractor
JPS62229100A (en) Method and device for generating neutral atomic and molecular beam
JP2000011906A (en) Ion flow forming method and device
DE4020816C2 (en)
US6259105B1 (en) System and method for cleaning silicon-coated surfaces in an ion implanter
US5432670A (en) Generation of ionized air for semiconductor chips
US4414069A (en) Negative ion beam selective etching process
Wilkinson et al. Dry etching and sputtering
JPH0272620A (en) Plasma treatment device
JPH0831804A (en) Chemical collimator
Oostra et al. Etching of silicon by SF6 induced by ion bombardment
Matsuo et al. Gas cluster ion beam equipments for industrial applications
JPH0729871A (en) Method and apparatus for surface treatment
KR102455749B1 (en) Method for increasing oxide etch selectivity
JPS6113634A (en) Plasma processor
Bayly et al. Ion beam processing of glass surfaces
JPH08104980A (en) Cluster ion beam sputtering device