JPH0831779A - Polishing method for compound semiconductor substrate - Google Patents

Polishing method for compound semiconductor substrate

Info

Publication number
JPH0831779A
JPH0831779A JP16154194A JP16154194A JPH0831779A JP H0831779 A JPH0831779 A JP H0831779A JP 16154194 A JP16154194 A JP 16154194A JP 16154194 A JP16154194 A JP 16154194A JP H0831779 A JPH0831779 A JP H0831779A
Authority
JP
Japan
Prior art keywords
polishing
substrate
compound semiconductor
semiconductor substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16154194A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健二 鈴木
Toru Fukui
徹 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP16154194A priority Critical patent/JPH0831779A/en
Publication of JPH0831779A publication Critical patent/JPH0831779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • ing And Chemical Polishing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To make it possible to obtain a substrate having a mirror surface with good surface roughness without haze by preventing the residue of an oxide film on the surface of substrate when polishing mirror surface. CONSTITUTION:In polishing and finishing the surface of a compound semiconductor substrate such as plate-shaped GaAs to mirror surface by supplying a polishing solution and rubbing the surface with polishing cloth, the polishing solution is made of an aqueous solution containing sodium hydroxide and a chloratebased salt selected from hypochlorite, chlorite, chlorate and perchlorate such as NaClO as the main components, and its pH is higher than 10 but lower than 11.5. Therefore, the polishing solution itself possesses a dissolving action for oxide film, and the substrate surface can be processed to a mirror surface having good surface roughness without haze, so that a device having good characteristics can be obtained by using said substrate and also an improve yield can be expected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体基板の研
磨方法に関し、特にヒ化ガリウム(GaAs)基板(ウ
ェハ)の鏡面研磨加工に適用して有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a compound semiconductor substrate, and more particularly to a technique useful when applied to mirror-polishing of a gallium arsenide (GaAs) substrate (wafer).

【0002】[0002]

【従来の技術】発光素子、高速演算素子等の基板材料と
して注目されている化合物半導体、特にGaAsよりな
る基板において、研磨布との擦り合わせにより基板表面
を鏡面に仕上げる際には、従来より、塩素系の酸化剤を
含むpHが約9程度(弱アルカリ性)の研磨液が広く用
いられているが、その研磨液自体には研磨中に基板表面
に生成する酸化物被膜の溶解作用が殆どないため、その
酸化物被膜により基板表面にヘイズが残ったり表面粗さ
が劣化したりして、その基板を用いて作成したデバイス
の特性劣化を招く虞があるという欠点があった。
2. Description of the Related Art In a compound semiconductor, which is attracting attention as a substrate material for light-emitting devices, high-speed arithmetic devices, etc., particularly a substrate made of GaAs, it has been conventionally required to make a mirror surface of the substrate by rubbing it with a polishing cloth. Although a polishing liquid containing a chlorine-based oxidizer and having a pH of about 9 (weakly alkaline) is widely used, the polishing liquid itself has almost no action of dissolving an oxide film formed on the substrate surface during polishing. Therefore, there is a drawback in that haze may remain on the surface of the substrate or the surface roughness may be deteriorated by the oxide film, which may lead to deterioration of characteristics of a device formed using the substrate.

【0003】そこで、上記欠点を解消すべく、GaAs
基板の研磨液について幾つかの提案がなされている。例
えば、特公昭55−28417号公報には、NaClO
(次亜塩素酸ナトリウム)水溶液とNa2 CO3 (炭酸
ナトリウム)水溶液とを混合した研磨液について開示さ
れている。また、この公報においては、NaClO水溶
液にNaOH(水酸化ナトリウム)を混入した溶液は、
GaAsの特徴のない表面を形成するのに適さないこと
が指摘されている。
Therefore, in order to eliminate the above drawbacks, GaAs
Several proposals have been made for a substrate polishing liquid. For example, Japanese Examined Patent Publication No. 55-28417 discloses NaClO.
A polishing liquid prepared by mixing an aqueous solution of (sodium hypochlorite) and an aqueous solution of Na 2 CO 3 (sodium carbonate) is disclosed. Further, in this publication, a solution obtained by mixing NaOH (sodium hydroxide) into a NaClO aqueous solution is
It has been pointed out that it is not suitable for forming a featureless surface of GaAs.

【0004】それに反して、H.Hartnagel らは、Journa
l of Materials Science 8(1973年、1061〜1
063頁)において、0.1N(規定度)のNaOH水
溶液中に1NのNaClOを含有させた標準液を40倍
に希釈した研磨液(本発明者らが同じ組成の溶液を調製
して実測したところ、そのpHは11.5であった。)
を用いたところ基板表面は鏡面のようであったと報告し
ている。
On the contrary, H. Hartnagel et al.
l of Materials Science 8 (1973, 1061-1)
(063 page), a polishing solution prepared by diluting a standard solution containing 1N NaClO in a 0.1N (normality) NaOH aqueous solution by 40 times (the inventors prepared a solution having the same composition and measured it). However, the pH was 11.5.)
It was reported that the surface of the substrate was like a mirror surface when using.

【0005】また、埼玉大学の河西らは、昭和60年度
精機学会春季大会学術講演会論文集(287〜288
頁)において、NaClO水溶液にKOH(水酸化カリ
ウム)を混入した研磨液について紹介している。
Further, Kasai et al. Of Saitama University have published a collection of papers of the spring conference of the Seiki Society of Japan in 1985 (287-288).
Page) introduces a polishing liquid in which KOH (potassium hydroxide) is mixed in a NaClO aqueous solution.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本発明
者らが追試を行なったところ、上記特公昭55−284
17号公報に記載の研磨液については、基板表面に不動
態膜のようなものが生成してしまって研磨加工が進行せ
ず、一方、上記河西らの報告した研磨液については、基
板表面に細かいピット(穴)が多数発生してしまって鏡
面が得られなかった。また、上記H.Hartnagel らの提案
した研磨液では、pHが高くなるに従い基板を溶解する
作用が強くなるため、pHが11.5以上では基板に結
晶欠陥や傷等がある場合に、その部分が選択的に溶解さ
れ、研磨後にピットが発生し易い、或は傷が残り易いと
いう不都合があった。
However, when the present inventors made an additional test, the above Japanese Patent Publication No. 55-284.
With respect to the polishing liquid described in Japanese Patent Publication No. 17, the polishing process does not proceed because something like a passivation film is formed on the substrate surface, while the polishing liquid reported by Kasai et al. A large number of fine pits (holes) were generated and the mirror surface could not be obtained. Further, in the polishing liquid proposed by H. Hartnagel et al., The action of dissolving the substrate becomes stronger as the pH becomes higher. Therefore, if the substrate has crystal defects or scratches at a pH of 11.5 or higher, that portion should be removed. However, there is a disadvantage that pits are easily dissolved and pits are easily generated after polishing, or scratches are likely to remain.

【0007】本発明は、上記事情に鑑みてなされたもの
で、鏡面研磨の際に基板表面上に酸化物被膜が残留する
のを防ぐことによってヘイズがなく且つ表面粗さの良好
な鏡面を有する基板を得ることができる化合物半導体基
板の研磨方法を提供することを目的とする。
The present invention has been made in view of the above circumstances and has a mirror surface having no haze and good surface roughness by preventing the oxide film from remaining on the substrate surface during mirror polishing. It is an object of the present invention to provide a method for polishing a compound semiconductor substrate that can obtain a substrate.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、研磨液自体に基板表面の酸化物皮膜
を溶解する作用を持たせることにより、酸化物皮膜の生
成を防止することができる、或は酸化物皮膜を完全に除
去することができると考え、例えばGaAs基板の鏡面
研磨において一般的に用いられている塩素系の酸化剤を
主成分とする研磨液について検討した結果、NaOHを
添加して研磨液のpHを10以上11.5未満に調整す
ると研磨後の基板表面に酸化物皮膜が見られなくなると
いうことを見出した。
In order to achieve the above object, the present inventors prevent the formation of an oxide film by allowing the polishing liquid itself to dissolve the oxide film on the substrate surface. It is thought that the oxide film can be removed or the oxide film can be completely removed. For example, a polishing liquid containing a chlorine-based oxidizing agent as a main component, which is generally used in the mirror polishing of GaAs substrates, was examined. As a result, they have found that if the pH of the polishing liquid is adjusted to 10 or more and less than 11.5 by adding NaOH, no oxide film can be seen on the surface of the substrate after polishing.

【0009】本発明は上記知見に基づきなされたもの
で、請求項1記載の発明は、平板状の化合物半導体基板
を、研磨液を供給しながら研磨布と擦り合わせて研磨す
ることにより該基板の表面を鏡面に仕上げるにあたっ
て、前記研磨液は、次亜塩素酸塩、亜塩素酸塩、塩素酸
塩及び過塩素酸塩から選ばれた塩素酸系の塩と水酸化ナ
トリウムとを主成分とする水溶液であり、且つpHが1
0以上11.5未満であることを特徴とする。この発明
において、例えば、請求項2記載の発明のように、前記
次亜塩素酸塩は次亜塩素酸ナトリウムであり、また、請
求項3記載の発明のように、前記化合物半導体はヒ化ガ
リウムである。
The present invention has been made on the basis of the above findings, and the invention according to claim 1 is to polish a flat plate compound semiconductor substrate by rubbing it with a polishing cloth while supplying a polishing liquid. In finishing the surface to a mirror surface, the polishing liquid contains a chloric acid salt selected from hypochlorite, chlorite, chlorate and perchlorate and sodium hydroxide as main components. Aqueous solution and pH of 1
It is characterized by being 0 or more and less than 11.5. In this invention, for example, as in the invention of claim 2, the hypochlorite is sodium hypochlorite, and in the invention of claim 3, the compound semiconductor is gallium arsenide. Is.

【0010】ここで、研磨液のpHの適正範囲は、本発
明者らの実験に基づいて決められているが、pHが上記
下限値に達しないと研磨後においてもGaAs基板の表
面にはヘイズや表面粗さの劣化原因となる黒色の酸化物
皮膜が残ってしまい、一方、上記上限値以上であるとp
Hが高くなるに従い基板を溶解する作用が強くなるた
め、pHが11.5以上では基板に結晶欠陥や傷等があ
る場合に、その部分が選択的に溶解され、研磨後にピッ
トが発生し易い、或は傷が残り易いという理由で好まし
くないからである。
Here, the proper range of the pH of the polishing liquid is determined based on the experiments by the present inventors, but if the pH does not reach the above lower limit, the haze on the surface of the GaAs substrate even after polishing And a black oxide film that causes deterioration of the surface roughness remains, while if the above upper limit is exceeded, p
Since the action of dissolving the substrate becomes stronger as H becomes higher, if the substrate has crystal defects or scratches at a pH of 11.5 or higher, that portion is selectively dissolved and pits easily occur after polishing. Or, it is not preferable because scratches are likely to remain.

【0011】[0011]

【作用】上記した手段によれば、化合物半導体基板の鏡
面研磨加工時に、研磨液として次亜塩素酸塩、亜塩素酸
塩、塩素酸塩及び過塩素酸塩から選ばれた塩素酸系の塩
と水酸化ナトリウムとを主成分とし、且つpHが10以
上11.5未満の水溶液を用いるため、研磨液自体の有
する酸化物皮膜の溶解作用により、基板表面での酸化物
皮膜の生成防止、或は基板表面からの酸化物皮膜の完全
な除去が可能となり、基板表面を表面粗さが良好で且つ
ヘイズのない鏡面に加工することができる。そして、そ
の基板を用いて特性の良好なデバイスを作成することが
でき、歩留りの向上が期待される。
According to the above means, a chloric acid-based salt selected from hypochlorite, chlorite, chlorate and perchlorate is used as a polishing liquid when mirror polishing a compound semiconductor substrate. Since an aqueous solution containing, as a main component, and sodium hydroxide and having a pH of 10 or more and less than 11.5 is used, the action of dissolving the oxide film of the polishing liquid itself prevents the formation of an oxide film on the substrate surface, or Makes it possible to completely remove the oxide film from the substrate surface, and the substrate surface can be processed into a mirror surface having good surface roughness and no haze. Then, a device having good characteristics can be manufactured using the substrate, and improvement in yield is expected.

【0012】[0012]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとするが、本発明が以下の実
施例によって何等制限されるものでないのはいうまでも
ない。なお、各実施例及び各比較例においては、鏡面研
磨装置として、研磨布に基板の片面を圧接させ、研磨液
を供給しながら研磨布と基板表面との間に相対運動を与
えることにより該片面を鏡面に加工する従来より一般的
な片面研磨機を用いた。また、各例では、円盤状のGa
As基板を用い、基板を押さえつける加工圧力を100
g/cm2 とし、研磨液の供給量を毎分0.5リットルと
したが、これらは、基板の大きさや加工枚数、及び加工
に要する時間などにより適宜選択される。
EXAMPLES The features of the present invention will be clarified below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples. In each of Examples and Comparative Examples, as a mirror polishing device, one surface of the substrate was pressed against a polishing cloth, and the polishing cloth and the substrate surface were supplied with a relative movement while supplying a relative motion to the one surface. A conventional single-sided polishing machine for processing the surface into a mirror surface was used. In addition, in each example, a disk-shaped Ga
Using As substrate, the processing pressure to press the substrate is 100
Although g / cm 2 was used and the supply amount of the polishing liquid was 0.5 liters per minute, these are appropriately selected depending on the size of the substrate, the number of processed substrates, the time required for the processing, and the like.

【0013】(実施例1及び実施例2)実施例1では、
NaClO及びNaOHの濃度が、それぞれ0.1N
(有効塩素量:3.5g/l)及び0.025N(1g
/l)であり、pH10.0の研磨液を用いた。実施例
2では、NaClO及びNaOHの濃度が、それぞれ
0.1N及び0.05N(2g/l)であり、pH1
1.4の研磨液を用いた。実施例1及び実施例2では、
ともに鏡面の研磨面が得られた。それら実施例1,2の
各鏡面について、テンコール社のサーフスキャン450
0によりヘイズの測定を行ない、またAFM(原子間力
顕微鏡)により表面粗さを測定したところ、何れも良好
であった。
(Example 1 and Example 2) In Example 1,
The concentration of NaClO and NaOH is 0.1N each
(Available chlorine amount: 3.5 g / l) and 0.025 N (1 g
/ L) and a polishing solution having a pH of 10.0 was used. In Example 2, the concentrations of NaClO and NaOH are 0.1 N and 0.05 N (2 g / l), respectively, and pH 1
The polishing liquid of 1.4 was used. In Example 1 and Example 2,
In both cases, a mirror-polished surface was obtained. For each of the mirror surfaces of Examples 1 and 2, Surfscan 450 manufactured by Tencor Co., Ltd.
The haze was measured by 0, and the surface roughness was measured by AFM (atomic force microscope).

【0014】(比較例1及び比較例2)比較例1では、
NaClOの濃度が0.1Nであり、pH8.9の研磨
液を用いたが、この研磨液にはNaOHを添加しなかっ
た。比較例1では、研磨布との接触により生じたと推測
される条痕が研磨面に残っているのが目視によっても確
認された。また、上記各実施例と同様にヘイズ及び表面
粗さの測定を行なったところ、上記実施例1,2よりも
格段に劣っていた。比較例2では、NaClO及びNa
OHの濃度が、それぞれ0.1N及び0.5N(20g
/l)であり、pH13.0の研磨液を用いたが、研磨
面に多数のピットが発生してしまい、鏡面が得られなか
った。
(Comparative Example 1 and Comparative Example 2) In Comparative Example 1,
A polishing solution having a NaClO concentration of 0.1 N and a pH of 8.9 was used, but NaOH was not added to this polishing solution. In Comparative Example 1, it was also visually confirmed that the scratches, which are presumed to be caused by the contact with the polishing cloth, remained on the polishing surface. Further, when the haze and the surface roughness were measured in the same manner as in each of the above Examples, it was significantly inferior to the above Examples 1 and 2. In Comparative Example 2, NaClO and Na
The concentration of OH is 0.1N and 0.5N (20g
/ L), and a polishing liquid having a pH of 13.0 was used, but many pits were generated on the polishing surface, and a mirror surface could not be obtained.

【0015】以上の実施例1,2及び比較例1,2か
ら、NaClOにNaOHを添加してpHが10以上1
1.5未満となるように調整した研磨液を用いることに
よって、表面粗さが良好で且つヘイズのない鏡面が得ら
れることが確認された。そして、その鏡面においてデバ
イスを作成することによって、特性の良好なデバイスが
得られ、歩留りが向上することが期待される。
From the above Examples 1 and 2 and Comparative Examples 1 and 2, pH was 10 or more by adding NaOH to NaClO.
It was confirmed that by using a polishing liquid adjusted to be less than 1.5, a mirror surface having good surface roughness and no haze can be obtained. Then, it is expected that a device having excellent characteristics can be obtained and the yield can be improved by forming the device on the mirror surface.

【0016】なお、上記実施例においては、塩素酸系の
塩としてNaClOを用いたが、NaOHの添加により
pHが10以上11.5未満において研磨液自体が酸化
物皮膜の溶解作用を有するものであれば、Ca(Cl
O)2 (次亜塩素酸カルシウム)等の次亜塩素酸塩や、
NaClO3 (塩素酸ナトリウム)等の塩素酸塩や、N
aClO4 (過塩素酸ナトリウム)等の過塩素酸塩や、
亜塩素酸塩などでもよい。
Although NaClO was used as the chloric acid salt in the above examples, the polishing liquid itself has the action of dissolving the oxide film at a pH of 10 or more and less than 11.5 due to the addition of NaOH. If there is Ca (Cl
O) 2 (calcium hypochlorite) and other hypochlorites,
Chlorates such as NaClO 3 (sodium chlorate) and N
perchlorate such as aClO 4 (sodium perchlorate),
Chlorite may be used.

【0017】また、上記実施例では、GaAs基板の鏡
面研磨加工について説明したが、本発明は、InPな
ど、GaAs以外の化合物半導体基板の鏡面研磨加工に
も有効である。
Further, in the above-mentioned embodiment, the mirror-polishing process of the GaAs substrate is explained, but the present invention is also effective for the mirror-polishing process of the compound semiconductor substrate other than GaAs such as InP.

【0018】[0018]

【発明の効果】本発明に係る化合物半導体基板の研磨方
法によれば、平板状のヒ化ガリウム等の化合物半導体基
板を、研磨液を供給しながら研磨布と擦り合わせて研磨
することにより該基板の表面を鏡面に仕上げるにあたっ
て、前記研磨液を、次亜塩素酸ナトリウム等の次亜塩素
酸塩、亜塩素酸塩、塩素酸塩及び過塩素酸塩から選ばれ
た塩素酸系の塩と水酸化ナトリウムとを主成分とする水
溶液であり、且つpHを10以上11.5未満に調整し
たため、研磨液自体が酸化物皮膜の溶解作用を有し、そ
れによって基板表面での酸化物皮膜の生成防止、或は基
板表面からの酸化物皮膜の完全な除去が可能となり、基
板表面を表面粗さが良好で且つヘイズのない鏡面に加工
することができる。そして、その基板を用いて特性の良
好なデバイスを作成することができ、歩留りの向上が期
待される。
According to the method of polishing a compound semiconductor substrate according to the present invention, a flat plate-shaped compound semiconductor substrate such as gallium arsenide is rubbed with a polishing cloth while being supplied with a polishing liquid to polish the substrate. In finishing the surface of the to a mirror surface, the polishing liquid, a hypochlorite salt such as sodium hypochlorite, chlorite salt, chlorate salt selected from chlorate and perchlorate and water Since it is an aqueous solution containing sodium oxide as a main component, and the pH is adjusted to 10 or more and less than 11.5, the polishing liquid itself has a dissolving effect on the oxide film, thereby forming an oxide film on the substrate surface. It is possible to prevent or completely remove the oxide film from the substrate surface, and the substrate surface can be processed into a mirror surface having good surface roughness and no haze. Then, a device having good characteristics can be manufactured using the substrate, and improvement in yield is expected.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平板状の化合物半導体基板を、研磨液を
供給しながら研磨布と擦り合わせて研磨することにより
該基板の表面を鏡面に仕上げるにあたって、前記研磨液
は、次亜塩素酸塩、亜塩素酸塩、塩素酸塩及び過塩素酸
塩から選ばれた塩素酸系の塩と水酸化ナトリウムとを主
成分とする水溶液であり、且つpHが10以上11.5
未満であることを特徴とする化合物半導体基板の研磨方
法。
1. A flat compound semiconductor substrate is rubbed with a polishing cloth while being supplied with a polishing liquid to polish the surface of the substrate to a mirror surface, and the polishing liquid is hypochlorite, An aqueous solution containing a chloric acid salt selected from chlorite, chlorate, and perchlorate as main components and sodium hydroxide, and having a pH of 10 or more and 11.5.
A method for polishing a compound semiconductor substrate, wherein
【請求項2】 前記次亜塩素酸塩は次亜塩素酸ナトリウ
ムであることを特徴とする請求項1記載の化合物半導体
基板の研磨方法。
2. The method for polishing a compound semiconductor substrate according to claim 1, wherein the hypochlorite is sodium hypochlorite.
【請求項3】 前記化合物半導体はヒ化ガリウムである
ことを特徴とする請求項1または2記載の化合物半導体
基板の研磨方法。
3. The method for polishing a compound semiconductor substrate according to claim 1, wherein the compound semiconductor is gallium arsenide.
JP16154194A 1994-07-13 1994-07-13 Polishing method for compound semiconductor substrate Pending JPH0831779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16154194A JPH0831779A (en) 1994-07-13 1994-07-13 Polishing method for compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16154194A JPH0831779A (en) 1994-07-13 1994-07-13 Polishing method for compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0831779A true JPH0831779A (en) 1996-02-02

Family

ID=15737068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16154194A Pending JPH0831779A (en) 1994-07-13 1994-07-13 Polishing method for compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0831779A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045574B1 (en) 2001-11-21 2006-05-16 Nippon Bee Chemical Co., Ltd. Primer composition for polyolefin materials
US7056538B2 (en) * 2001-08-03 2006-06-06 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Disinfectant solution based on sodium hypochlorite, and process for preparing it
JP2008300422A (en) * 2007-05-29 2008-12-11 Sumitomo Electric Ind Ltd Method of polishing compound semiconductor substrate, compound semiconductor substrate, method of manufacturing compound semiconductor epi-substrate, and compound semiconductor epi-substrate
US7547619B2 (en) * 2002-09-20 2009-06-16 Panasonic Corporation Method of introducing impurity, device and element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056538B2 (en) * 2001-08-03 2006-06-06 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Disinfectant solution based on sodium hypochlorite, and process for preparing it
US7045574B1 (en) 2001-11-21 2006-05-16 Nippon Bee Chemical Co., Ltd. Primer composition for polyolefin materials
US7547619B2 (en) * 2002-09-20 2009-06-16 Panasonic Corporation Method of introducing impurity, device and element
JP2008300422A (en) * 2007-05-29 2008-12-11 Sumitomo Electric Ind Ltd Method of polishing compound semiconductor substrate, compound semiconductor substrate, method of manufacturing compound semiconductor epi-substrate, and compound semiconductor epi-substrate
JP4552968B2 (en) * 2007-05-29 2010-09-29 住友電気工業株式会社 Compound semiconductor substrate polishing method, compound semiconductor substrate, compound semiconductor epi substrate manufacturing method, and compound semiconductor epi substrate
US8133815B2 (en) 2007-05-29 2012-03-13 Sumitomo Electric Industries, Ltd. Method of polishing compound semiconductor substrate, compound semiconductor substrate, method of manufacturing compound semiconductor epitaxial substrate, and compound semiconductor epitaxial substrate

Similar Documents

Publication Publication Date Title
CA1044580A (en) Process for chemical-mechanical polishing of iii-v semiconductor materials
US5032203A (en) Apparatus for polishing
KR102515964B1 (en) Polishing composition
KR100825216B1 (en) Ready-to-use stable chemical-mechanical polishing slurries
US6626967B2 (en) Polishing composition and polishing method employing it
TWI520203B (en) Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor crystal
JP4552968B2 (en) Compound semiconductor substrate polishing method, compound semiconductor substrate, compound semiconductor epi substrate manufacturing method, and compound semiconductor epi substrate
US20010003672A1 (en) Polishing composition and surface treating composition
JP2006324639A (en) Polish slurry and method for regenerating wafer
WO2016031310A1 (en) Method for polishing silicon wafer
US6776696B2 (en) Continuous chemical mechanical polishing process for polishing multiple conductive and non-conductive layers on semiconductor wafers
US20080156347A1 (en) Cleaning Liquid And Cleaning Method For Electronic Material
WO2011142052A1 (en) Polishing agent, method for producing compound semiconductor, and method for manufacturing semiconductor device
CN114790367B (en) Nanometer sphere-like cerium oxide polishing solution for monocrystalline silicon and polycrystalline silicon and application
TWI673357B (en) Composition and method for removing residue from chemical-mechanical planarization substrate
JP4167928B2 (en) Polishing liquid for group III-V compound semiconductor wafer and method for polishing group III-V compound semiconductor wafer using the same
JPH0831779A (en) Polishing method for compound semiconductor substrate
JP5497400B2 (en) Semiconductor wafer polishing composition and polishing method
JP2006269910A (en) Polishing liquid for metal, and polishing method using same
JPH02275629A (en) Polishing method of semiconductor wafer
JP5671793B2 (en) Cleaning method for silicon wafers that have undergone finish polishing
JP3077665B2 (en) Abrasive for Group III-V compound semiconductor and method of supplying the same
JP2621398B2 (en) Mirror polishing liquid for GaAs wafer and polishing method
JP2001068438A (en) Composition for polishing compound semiconductor wafer and polishing method for compound semiconductor using the same
JP6905836B2 (en) Polishing composition and method for producing polishing composition