JPH0831723A - Synthetic quartz mask substrate for arf excimer laser lithography and manufacture thereof - Google Patents

Synthetic quartz mask substrate for arf excimer laser lithography and manufacture thereof

Info

Publication number
JPH0831723A
JPH0831723A JP16347394A JP16347394A JPH0831723A JP H0831723 A JPH0831723 A JP H0831723A JP 16347394 A JP16347394 A JP 16347394A JP 16347394 A JP16347394 A JP 16347394A JP H0831723 A JPH0831723 A JP H0831723A
Authority
JP
Japan
Prior art keywords
excimer laser
synthetic quartz
arf excimer
mask substrate
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16347394A
Other languages
Japanese (ja)
Other versions
JP3071362B2 (en
Inventor
Hisatoshi Otsuka
久利 大塚
Katsumi Sugita
勝美 杉田
Masatoshi Takita
政俊 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16347394A priority Critical patent/JP3071362B2/en
Publication of JPH0831723A publication Critical patent/JPH0831723A/en
Application granted granted Critical
Publication of JP3071362B2 publication Critical patent/JP3071362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide a synthetic quartz mask substrate for ArF excimer laser lithography having excellent stability to the irradiation of an ArF excimer laser and manufacture thereof. CONSTITUTION:The synthetic quartz mask substrate for excimer laser lithography has hydrogen molecule content of 0.5-4X10<18> molecules/cm<3> and contains no chlorine, has OH group content of 700-1000ppm and is free of unidirectional stria, has absorbance of K<=0.008cm<-1> at a time when an ArF excimer laser having low energy is applied, and has the quantity of the deviation of a refractive index of DELTAn<=1X10<-6> at a time when an ArF laser having high energy is applied. The manufacture is produced from synthetic quartz glass manufactured from silica fine particles obtained by flame-hydrolyzing alkoxy silane in the oxyhydrogen flame burner of a quintuple tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はArFエキシマレーザリ
ソグラフィー用合成石英マスク基板、特にはArFエキ
シマレーザ(193nm) の照射に対して優れた安定性を有す
るArFエキシマレーザリソグラフィー用合成石英マス
ク基板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz mask substrate for ArF excimer laser lithography, and particularly to a synthetic quartz mask substrate for ArF excimer laser lithography having excellent stability against irradiation with ArF excimer laser (193 nm). The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴なってウエ
ーハ上に集積回路パターンを描画する光リソグラフィー
技術においても、サブミクロン単位の描画技術が要求さ
れており、より微細な線幅描画を行なうために、露光系
の光源の短波長化が進められているので、リソグラフィ
ー用のステッパーや反射屈折光学系システムに使用され
るレンズやマスク基板には、優れた均質性と優れた紫外
線の透過性および紫外線照射に対する強い耐性が要求さ
れている。また、この光源波長については、現在主流と
なっているI線(365nm) が、例えばKrFエキシマレー
ザ(248nm) 、あるいはArFエキシマレーザ(193nm) と
いった高エネルギーを有する波長に移行しつつあり、こ
の紫外線波長領域になると透過材料としては石英ガラ
ス、特には不純物含有量の少ない合成石英ガラスが用い
られている。
2. Description of the Related Art In recent years, with the high integration of LSIs, a submicron unit drawing technique is required in the optical lithography technique for drawing an integrated circuit pattern on a wafer. In order to do so, the wavelength of the light source of the exposure system is being shortened, so the lens and mask substrate used for the stepper for lithography and the catadioptric optical system have excellent homogeneity and excellent transmission of ultraviolet rays. And strong resistance to UV irradiation are required. Regarding the wavelength of this light source, the I-line (365 nm), which is currently the mainstream, is shifting to a wavelength with high energy such as KrF excimer laser (248 nm) or ArF excimer laser (193 nm). In the wavelength region, quartz glass is used as the transmissive material, and in particular synthetic quartz glass with a low content of impurities is used.

【0003】この合成石英ガラスは、通常高純度のシリ
コン化合物、例えば四塩化けい素(SiCl4 )などの化学
的に合成、蒸留されて作られたものを用いるとされてい
るが、この合成石英ガラスの製造方法としては直接火炎
法、多孔質シリカ母材の溶融からなるスート法、プラズ
マ法、ゾルゲル法などが知られており、このガラスの物
性、例えばOH基量、Cl量などの組成、構造欠陥種な
どはその製造方法に起因するところが大きい。これらの
製造方法のなかでは、特に直接火炎法あるいはスート法
で製造された透明な合成石英ガラス部材は、 190nm程度
の短波領域まで良好な透明な光透過性を示し、紫外線レ
ーザー光、例えばKrF、XeCl(308nm) 、XeBr
(282nm) 、XeF(351nm) 、ArFなどのエキシマレー
ザ光およびYAGの4倍高調波(250nm) などについての
透過材料として用いられている。
It is said that this synthetic quartz glass is usually made of a highly pure silicon compound, such as silicon tetrachloride (SiCl 4 ), which is chemically synthesized and distilled. As a method for producing glass, a direct flame method, a soot method consisting of melting a porous silica base material, a plasma method, a sol-gel method and the like are known, and the physical properties of the glass, for example, the composition such as the OH group content and the Cl content, Structural defect species are largely due to their manufacturing method. Among these production methods, the transparent synthetic quartz glass member produced by the direct flame method or the soot method in particular exhibits excellent transparent light transmittance up to a short wave region of about 190 nm, and has an ultraviolet laser beam such as KrF, XeCl (308nm), XeBr
(282 nm), XeF (351 nm), ArF and other excimer laser lights, and YAG fourth harmonics (250 nm) are used as transmission materials.

【0004】しかして、この直接火炎法によって製造し
た合成石英ガラスには水素分子が含有されており、この
含有されている水素分子によって例えばKrFエキシマ
レーザに対して優れた透過率安定性をもつものになるこ
とが知られているが、多孔質ガラス母材を経て透明ガラ
ス化されたスート法による合成石英ガラス部材には水素
分子が殆ど含有されていないので、これについては熱処
理下に水素分子をドープして同様の効果を出すようにさ
れている。
However, the synthetic quartz glass produced by the direct flame method contains hydrogen molecules, and the hydrogen molecules contained in the synthetic quartz glass have excellent transmittance stability against, for example, a KrF excimer laser. It is known that, since almost no hydrogen molecules are contained in the synthetic quartz glass member made by the soot method, which is transparent vitrified through the porous glass base material, hydrogen molecules are not contained during the heat treatment. Doped to produce the same effect.

【0005】しかし、これらの方法で作られた合成石英
ガラスはKrFエキシマレーザに対して十分安定した光
透過性を有するけれども、ArFエキシマレーザを照射
した場合にこの水素分子を含有していることからレーザ
照射初期に大きな透過率低下、つまり吸光度の急激な立
ち上がりを示すため好ましくないということがある。こ
の合成石英ガラスにエキシマレーザなどの紫外線を照射
したときに生ずる光の吸収は、専ら石英ガラス中の固有
欠陥から光反応により生ずる常磁性欠陥によるものと考
えられており、このような常磁性欠陥による光吸収はこ
れまでESRスペクトルなどで数多く同定されており、
これには例えばE’センター(Si・)やNBOHC(Si-O・)な
どがある。
However, although the synthetic quartz glass produced by these methods has a sufficiently stable optical transparency to the KrF excimer laser, it contains the hydrogen molecules when irradiated with the ArF excimer laser. In some cases, it is not preferable because it shows a large decrease in transmittance at the initial stage of laser irradiation, that is, a sharp rise in absorbance. It is considered that the absorption of light generated when the synthetic quartz glass is irradiated with ultraviolet rays such as excimer laser is mainly due to the paramagnetic defect generated by the photoreaction from the intrinsic defect in the quartz glass. Many light absorptions due to have been identified by ESR spectra,
This includes, for example, E'center (Si.) And NBOHC (Si-O.).

【0006】この常磁性欠陥は一般的に光学的吸収帯を
有しており、したがって石英ガラスで問題となる吸収帯
は例えばE’センターの 215nmとまだ正確に同定されて
いない 260nmがあり、これらの吸収帯は比較的ブロード
で、かつ強い吸収を生じることがあり、特にArFレー
ザの透過材料としたときに問題となっているが、この常
磁性欠陥の原因となる石英ガラス中の固有欠陥は例えば
SiOHやSiClなどのSiO2以外の構造をしたものや、Si-Si
、Si-O-O-Si などの酸素欠損、酸素過剰の構造をした
ものである。そのため、これら常磁性欠陥の前駆体とな
るSiClの存在し得ない、いわゆる塩素を含有しない原料
としてアルコキシシランなどから製造した合成石英ガラ
スを用いることも知られており、このものは合成石英ガ
ラスに適切なレーザ耐性を与えるのに有効なものとさ
れ、合成石英ガラス光学部材、特にステッパーなどのレ
ンズ系に好適に用いられている(特開平3-109233号公報
参照)。
This paramagnetic defect generally has an optical absorption band. Therefore, the absorption band in question in quartz glass is, for example, 215 nm at the E'center and 260 nm which has not yet been accurately identified. The absorption band of is relatively broad and may cause strong absorption, which is a problem especially when used as a transmission material for ArF laser. However, the intrinsic defect in quartz glass that causes the paramagnetic defect is For example
Structures other than SiO 2 , such as SiOH and SiCl, or Si-Si
, Si-OO-Si, etc. have oxygen deficiency and oxygen excess structure. Therefore, it is also known to use a synthetic quartz glass produced from alkoxysilane or the like as a so-called chlorine-free raw material in which SiCl that is a precursor of these paramagnetic defects cannot exist, and this is a synthetic quartz glass. It is effective for giving appropriate laser resistance and is suitably used for a synthetic quartz glass optical member, particularly for a lens system such as a stepper (see JP-A-3-109233).

【0007】また、この常磁性欠陥を抑制する働きを示
すものとして水素分子が有効であることはこの先行例か
らも知られており、レーザ照射によって発生する常磁性
欠陥、例えばE’センター(Si・)にこの水素が結合し
てSi-HとなるとE’センターの増加が抑制されるという
効果が与えられる。しかし、ArFレーザを照射したと
きには、この水素分子がレーザ照射初期に急激な透過率
低下をもたらし、さらに照射を継続すると透過率を回復
させるという関与をするため、水素を含有する合成石英
ガラス部材に対しては長時間の熱処理によって水素分子
を脱ガスして使用していた。
It is also known from this prior example that hydrogen molecules are effective as a substance that suppresses this paramagnetic defect, and the paramagnetic defect generated by laser irradiation, such as E'center (Si). The effect of suppressing the increase of E'center is provided when this hydrogen is bonded to.) To form Si-H. However, when irradiated with ArF laser, this hydrogen molecule causes a rapid decrease in transmittance at the beginning of laser irradiation, and since it contributes to recovering the transmittance when irradiation is continued, a synthetic quartz glass member containing hydrogen is involved. On the other hand, hydrogen molecules have been degassed by heat treatment for a long time before use.

【0008】この水素分子を脱ガスした合成石英ガラス
は、ArFレーザ照射をしても水素分子を含有している
ときと同様な挙動は示さず、したがって照射初期の急激
な吸光度の立ち上がりが無く、これは徐々に透過率が低
下して一定のところで飽和点に達するが、水素分子を含
有していないために透過率の回復は見られない。また、
多孔質シリカ母材の溶融から作製された合成石英ガラス
部材は、水素分子を含有していないので、これと同様の
挙動を示すが、このときの吸光度の飽和点は合成石英ガ
ラスの製造方法に起因している。
This synthetic quartz glass degassed with hydrogen molecules does not show the same behavior as when it contains hydrogen molecules even when irradiated with ArF laser, and therefore, there is no rapid rise in absorbance at the beginning of irradiation, Although the transmittance gradually decreases and reaches the saturation point at a certain point, the recovery of the transmittance is not seen because it does not contain hydrogen molecules. Also,
The synthetic quartz glass member produced by melting the porous silica base material does not contain hydrogen molecules, and thus exhibits the same behavior, but the saturation point of the absorbance at this time is different from that in the method for producing synthetic quartz glass. It is due.

【0009】[0009]

【発明が解決しようとする課題】つまり、ArFエキシ
マレーザに限定してレーザ耐性を検討すると、水素分子
を多く含有した(≧5×1018molecules/cm3 )合成石英
ガラスにArFエキシマレーザを照射したときの初期
(1×104 ショット、 100Hz)透過率は急激に低下
し、これはその後(1×106 ショット、 100Hz)回復
し、さらに照射を継続するとこのものは徐々に透過率が
低下して一定値で飽和し、また水素分子を含有しない
か、または脱水素処理をした合成石英ガラスではレーザ
照射初期の急激な透過率低下は生ぜず、徐々に低下した
のち一定値で飽和する。したがって、ArFエキシマレ
ーザ用の光学部材、特にはステッパー用投影レンズ素材
のように光路長を長く必要とし、かつ優れた透過性を要
する素材には、この水素分子を含有しない、または脱水
素処理した合成石英ガラスが好適とされる。
In other words, when the laser resistance is limited to the ArF excimer laser, the synthetic quartz glass containing a large number of hydrogen molecules (≧ 5 × 10 18 molecules / cm 3 ) is irradiated with the ArF excimer laser. The initial transmittance (1 × 10 4 shots, 100Hz) dropped sharply, and then it recovered (1 × 10 6 shots, 100Hz), and when the irradiation was continued, the transmittance gradually decreased. Then, the synthetic quartz glass that does not contain hydrogen molecules or is dehydrogenated does not cause a rapid decrease in transmittance at the initial stage of laser irradiation, but gradually decreases and then saturates at a constant value. Therefore, an optical member for an ArF excimer laser, in particular, a material that requires a long optical path length such as a projection lens material for a stepper and needs excellent transparency does not contain this hydrogen molecule or is dehydrogenated. Synthetic quartz glass is preferred.

【0010】また、これが合成石英マスク基板の場合に
は、上記した光学用レンズ素材とは全く異なり、厚さが
薄い(2〜7mm)ために透過率に関しては、光路長が短
いだけでさほど影響が無く良好であるが、このマスク基
板上には微細な回路パターンが焼きつけられるために、
寸法的変化、特に反り、収縮には極めて厳しい要求が課
せられており、マスクの特殊性を考慮してこれらの要求
を満たすためには、レンズ素材用途とは特定の範囲の違
う、水素分子濃度範囲を規定することで解決できること
が解っている(特願平5-190143号明細書参考)。
In the case of a synthetic quartz mask substrate, which is completely different from the above-mentioned optical lens material, the thickness is thin (2 to 7 mm), and therefore the transmittance is affected only by the short optical path length. It is good because there is no gap, but since a fine circuit pattern is printed on this mask substrate,
Extremely strict requirements are imposed on dimensional changes, especially warpage and shrinkage, and in order to satisfy these requirements in consideration of the peculiarities of the mask, the hydrogen molecule concentration in a specific range different from the lens material application It is known that the problem can be solved by defining the range (see Japanese Patent Application No. 5-190143).

【0011】しかし、最近になってエキシマレーザリソ
グラフィーが、ステッパー方式および反射屈折系方式の
2通りになってきており、この両方式での技術競争によ
り、より精度の高い装置が開発されてきているために、
これらに使用される合成石英ガラス基板にはエネルギー
透過率についても、より高透過性を、また表面の高寸法
精度の他に屈折率の安定性が要求されてきているし、ま
た今後リソグラフィーとは別の用途でのエキシマレーザ
ーの高エネルギーを用いた加工機などの反射用基板とし
ての期待もなされているので、特にArFエキシマレー
ザに使用される合成石英ガラス基板については、レーザ
照射に伴なって生じる光透過率低下、寸法精度、屈折率
変動に係わる問題点の解決が求められている。
However, recently, there are two types of excimer laser lithography, a stepper system and a catadioptric system. Due to technical competition between these two systems, a more accurate device has been developed. for,
The synthetic quartz glass substrates used for these are required to have higher energy transmittance as well as stability of refractive index in addition to high surface dimensional accuracy. Since it is expected to be used as a reflection substrate for processing machines and the like that use high energy of excimer lasers for other purposes, synthetic quartz glass substrates used for ArF excimer lasers are accompanied by laser irradiation. It is required to solve the problems associated with the decrease in light transmittance, dimensional accuracy, and fluctuations in the refractive index.

【0012】[0012]

【課題を解決するための手段】本発明はこのような問題
点を解決したArFエキシマレーザリソグラフィー用合
成石英マスク基板およびその製造方法に関するもので、
このArFエキシマレーザリソグラフィー用合成石英マ
スク基板は水素分子含有量が 0.5〜4×1018molecules/
cm3 、基板面内の分布差が△H2 ≦3×1018molecules/
cm3 で塩素を含有せず、OH基含有量が 700〜1,000ppm
で基板面内分布差が△OH≦100ppmで、少なくとも一方
向脈理フリーであり、低エネルギーのArFエキシマレ
ーザを照射したときの吸光度がK≦0.008cm-1 で高エネ
ルギーのArFエキシマレーザを照射したときの屈折率
偏差量が△n≦1×10-6であることを特徴とするもので
あり、この製造方法は中心部5重管およびその周囲に複
数本のパイプ状ノズルと外殻管を設けた石英製バーナー
の中心ノズルにこの原料ガスとしてのアルコキシシラン
と酸素ガス、第2ノズルと第4ノズルに酸素ガス、第3
ノズルと第5ノズルおよび外殻管と第5ノズルとの間に
水素ガスを供給し、このアルコキシシランを火炎加水分
解させて合成石英ガラスインゴットとし、これを熱間成
型、スライス、研摩工程を経て合成石英マスク基板を製
造することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a synthetic quartz mask substrate for ArF excimer laser lithography and a method of manufacturing the same, which solves the above problems.
This synthetic quartz mask substrate for ArF excimer laser lithography has a hydrogen molecule content of 0.5 to 4 × 10 18 molecules /
cm 3 , distribution difference in the plane of the substrate is ΔH 2 ≦ 3 × 10 18 molecules /
cm 3 in containing no chlorine, OH group content 700~1,000ppm
The substrate surface distribution difference is ΔOH ≦ 100ppm, it is free of striae in at least one direction, and when the low energy ArF excimer laser is irradiated, the absorbance is K ≦ 0.008cm −1 and the high energy ArF excimer laser is irradiated. The refractive index deviation amount in this case is Δn ≦ 1 × 10 −6 , and this manufacturing method uses a central quintuple tube and a plurality of pipe-shaped nozzles and an outer shell tube around the quintuple tube. Alkoxysilane and oxygen gas as the raw material gas are provided in the center nozzle of the quartz burner provided with, and oxygen gas is provided in the second and fourth nozzles,
Hydrogen gas was supplied between the nozzle and the fifth nozzle and between the outer shell tube and the fifth nozzle to flame-hydrolyze the alkoxysilane into a synthetic quartz glass ingot, which was subjected to hot molding, slicing and polishing steps. It is characterized in that a synthetic quartz mask substrate is manufactured.

【0013】すなわち、本発明者らは特にArFエキシ
マレーザを照射したときに、レーザ照射初期に急激な透
過率低下を起さず、照射を継続して後の吸光度飽和点が
低く、かつ寸法精度および屈折率の安定したリソグラフ
ィー用合成石英ガラスマスク基板およびその製造方法を
開発すべく種々検討した結果、このArFエキシマレー
ザリソグラフィー用合成石英ガラスマスク基板について
は、合成石英ガラスマスクを水素分子含有量が 0.5〜4
×1018molecules/cm3 で基板面内の△H2 が≦3×1018
molecules/cm3 で、塩素を含有せず、OH基含有量が 7
00〜1,000ppmで基板面内分布差が△OH≦100ppmで少な
くとも一方向が脈理フリーであり、しかも低エネルギー
のArFエキシマレーザを照射したときの吸光度がK≦
0.008cm-1 で高エネルギーのArFエキシマレーザを照
射したときの屈折率偏差量が△n≦1×10-6であるもの
とすると、このものがこのような物性をもつArFエキ
シマレーザリソグラフィー用合成石英マスク基板になる
ということを見出すと共に、このような合成石英マスク
基板の製造に当っては原料ガスとして塩素を含有しない
アルコキシシランを使用することとし、これを中心部が
5重管からなり、その周囲に複数本のパイプ状ノズルと
外殻管をもつ石英製バーナを使用し、この中心ノズルに
原料ガスと酸素を供給してアルコキシシランを火炎加水
分解してシリカ微粒子とし、これから公知の直接火炎法
に準じて合成石英ガラスインゴットとしたのち、熱間成
型、スライス、研摩工程を経て、上記の物性をもつ合成
石英ガラスマスク基板を得ることができることを確認し
て本発明を完成させた。
That is, the present inventors do not cause a sudden decrease in transmittance at the initial stage of laser irradiation, particularly when the ArF excimer laser is irradiated, and the absorption saturation point after irradiation is low and the dimensional accuracy is low. As a result of various studies to develop a synthetic quartz glass mask substrate for lithography having a stable refractive index and a manufacturing method thereof, the synthetic quartz glass mask substrate for ArF excimer laser lithography has a hydrogen molecule content of 0.5 ~ 4
× 10 18 molecules / cm 3 in the substrate plane △ H 2 is ≦ 3 × 10 18
molecules / cm 3 , no chlorine, OH group content 7
In the case of 00 to 1,000 ppm, the difference in the in-plane distribution of the substrate is ΔOH ≦ 100 ppm, the striation is free in at least one direction, and the absorbance when irradiated with a low energy ArF excimer laser is K ≦.
Assuming that the refractive index deviation amount when irradiated with a high-energy ArF excimer laser at 0.008 cm −1 is Δn ≦ 1 × 10 −6 , this product has such physical properties as a composition for ArF excimer laser lithography. In addition to finding that it will be a quartz mask substrate, in the production of such a synthetic quartz mask substrate, it is decided to use chlorine-free alkoxysilane as a raw material gas, which has a quintuple tube at the center. A quartz burner with multiple pipe-shaped nozzles and an outer shell tube is used around it, and the raw material gas and oxygen are supplied to this central nozzle to flame-hydrolyze the alkoxysilane into silica fine particles. A synthetic quartz glass mask substrate having the above-mentioned physical properties after being made into a synthetic quartz glass ingot according to the flame method and then undergoing hot forming, slicing and polishing steps. It has led to the completion of the present invention to verify that it is obtained.

【0014】[0014]

【作用】まず、本願発明によるArFエキシマレーザリ
ソグラフィー用合成石英マスク基板の製造方法はアルコ
キシシランを酸水素火炎により火炎加水分解させてシリ
カ微粒子を生成させ、これを3〜100rpmで回転している
耐熱性担体上に堆積と同時に溶融ガラス化させて合成石
英ガラスインゴットとし、ついでこれをマスクに加工す
るものであるが、ここに使用する原料としての有機けい
素化合物を四塩化けい素(SiCl4 )、メチルトリクロロ
シラン(CH3SiCl3)とすると、合成石英ガラス中に塩素
が含有されてSiClの関与が与えられ、水素分子濃度が4
×1018molecules/cm3 であっても、ArFレーザ照射初
期の透過率低下が大きく、50mJ/cm2・P、 100Hzでの吸
光度が0.05cm-1以上となって好ましくないので、これは
塩素原子を含有しない化学式 RnSi(OR)4-n(Rは同一ま
たは異種の脂肪酸1価炭化水素基、nは0〜3の整数)
で示されるアルコキシシランとする必要がある。
First, according to the method for producing a synthetic quartz mask substrate for ArF excimer laser lithography according to the present invention, alkoxysilane is flame-hydrolyzed by an oxyhydrogen flame to generate silica fine particles, which are rotated at 3 to 100 rpm. A synthetic quartz glass ingot is formed by melting and vitrifying it on a crystalline carrier at the same time as it is processed into a mask. The organosilicon compound used as the raw material here is silicon tetrachloride (SiCl 4 ). , Methyltrichlorosilane (CH 3 SiCl 3 ), chlorine is contained in the synthetic quartz glass and SiCl is involved, and the hydrogen molecule concentration is 4
Even with × 10 18 molecules / cm 3 , the decrease in transmittance at the initial stage of ArF laser irradiation is large, and the absorbance at 50 mJ / cm 2 · P, 100 Hz is 0.05 cm −1 or more, which is not preferable. Chemical formula containing no atoms R n Si (OR) 4-n (R is the same or different fatty acid monovalent hydrocarbon group, n is an integer of 0 to 3)
It is necessary to use an alkoxysilane represented by

【0015】このアルコキシシランを用いる合成石英ガ
ラス部材の製造は例えば図1に示した装置で行なわれ
る。この図1(a)はアルコキシシランの酸水素火炎に
よる火炎加水分解で合成石英ガラスを製造する装置の縦
断面図、図1(b)はここに使用される酸水素火炎バー
ナーの横断面図を示したものであるが、この図1(a)
において原料としてのアルコキシシランはシラン収納容
器1に収納されており、これはガス入口2から供給され
るアルゴンガス、窒素ガスなどの不活性ガスに同伴さ
れ、流量計15を経て酸水素火炎バーナー12の中心ノズル
に供給される。この酸水素火炎バーナー12は図1(b)
に示したように中心部に直管20〜24からなる5重管19を
位置させ、その周囲にこれを囲繞する複数本のノズル26
およびその外側に外殻管25を有する構造のものとされる
が、この中心ノズル20にはアルコキシシランと酸素ガス
供給管7からの酸素ガスおよびガス入口2から供給され
るアルゴンガスが供給され、これにはその第2ノズル2
1、第4ノズル23にも酸素ガス供給管8,9から酸素ガ
スが、この第3ノズル22、第5ノズル24およびこれらと
外殻管25との間には水素ガス供給管4,5,6から水素
ガスが供給される。
The production of the synthetic quartz glass member using the alkoxysilane is carried out, for example, by the apparatus shown in FIG. FIG. 1 (a) is a vertical sectional view of an apparatus for producing synthetic quartz glass by flame hydrolysis of an alkoxysilane with an oxyhydrogen flame, and FIG. 1 (b) is a horizontal sectional view of an oxyhydrogen flame burner used here. As shown, this Figure 1 (a)
In the above, the alkoxysilane as a raw material is stored in the silane storage container 1, which is entrained by an inert gas such as argon gas or nitrogen gas supplied from the gas inlet 2, and passes through the flow meter 15 and the oxyhydrogen flame burner 12 Is supplied to the central nozzle of the. This oxyhydrogen flame burner 12 is shown in Fig. 1 (b).
As shown in FIG. 5, a quintuple pipe 19 composed of straight pipes 20 to 24 is located in the center, and a plurality of nozzles 26 surrounding the quintuple pipe 19 are provided.
And a structure having an outer shell tube 25 on the outside thereof, the central nozzle 20 is supplied with alkoxysilane, oxygen gas from the oxygen gas supply tube 7 and argon gas supplied from the gas inlet 2. This is the second nozzle 2
1. Oxygen gas is also supplied to the first and fourth nozzles 23 from the oxygen gas supply pipes 8 and 9, and the hydrogen gas supply pipes 4, 5, and 5 are provided between the third nozzle 22, the fifth nozzle 24 and the outer shell pipe 25. Hydrogen gas is supplied from 6.

【0016】このアルコキシシランは酸水素火炎バーナ
ー12からの酸水素火炎13中での火炎加水分解でシリカ微
粒子14となり、これが3〜100rpmで回転している耐熱性
担体上11に堆積と同時に溶融されて合成石英ガラス部材
18となる。このときの原料アルコキシシラン化合物と水
素ガスが必要とする酸素理論量と酸素実流量との流量比
率が 0.7未満では水素分子濃子が4×1018molecules/cm
3を越えて高くなり、通常の熱処理工程では中心部の水
素ガスが抜け難く高濃度で残存し、レーザ照射初期の吸
収が大きく、透過率低下を引き起こすので好ましいもの
ではなく、またこの比率が 1.0を越えると水素分子含有
量が、5×1017molecules/cm3 以下となり、目的とする
合成石英マスクを安定して製造することができないの
で、これは 0.7〜1.0 の範囲とすればよい。
This alkoxysilane is subjected to flame hydrolysis in the oxyhydrogen flame 13 from the oxyhydrogen flame burner 12 to form silica fine particles 14, which are melted at the same time as being deposited on the heat-resistant carrier 11 rotating at 3 to 100 rpm. Synthetic quartz glass member
Will be 18. At this time, when the flow rate ratio between the theoretical amount of oxygen and the actual flow rate of oxygen required by the raw material alkoxysilane compound and hydrogen gas is less than 0.7, the hydrogen molecule concentration is 4 × 10 18 molecules / cm 3.
3 Beyond high, in a normal heat treatment process remains at a high concentration difficult hydrogen gas escapes at the center, increase the absorption of laser radiation early, not preferred because cause decrease in transmittance, and this ratio 1.0 If it exceeds, the hydrogen molecule content will be 5 × 10 17 molecules / cm 3 or less, and the intended synthetic quartz mask cannot be stably manufactured. Therefore, this should be set in the range of 0.7 to 1.0.

【0017】また、この場合シリカ溶融成長面の表面温
度変化を20℃以下に制御すると、合成石英ガラスを 150
mmφ×500mmLで重量が19kgのインゴットとすることがで
きるが、この合成石英ガラスインゴットは水素分子含有
量が2〜4×1018molecules/cm3 、OH基含有量が 700
〜780ppmで、インゴットの軸方向からまた屈折率の局部
的変位の軌跡である脈理の存在しないものとすることが
できる。
Further, in this case, if the surface temperature change of the fused silica growth surface is controlled to 20 ° C. or less, the synthetic quartz glass is
An ingot with a diameter of mmφ × 500 mmL and a weight of 19 kg can be obtained. This synthetic quartz glass ingot has a hydrogen molecule content of 2 to 4 × 10 18 molecules / cm 3 and an OH group content of 700.
At ˜780 ppm, there can be no striae, which is the locus of local displacement of the refractive index from the axial direction of the ingot.

【0018】この合成石英ガラスインゴットからの合成
石英マスク基板の製造は、このインゴットをカーボン製
ルツボ中に据え、電気溶解炉中においてアルゴンガス雰
囲気下の 200torrで 1,800℃まで昇温して1時間保持
し、冷却後除歪のために焼鈍炉で大気雰囲気下に 1,180
℃まで昇温し、2時間保持したのちに、 950℃まで10℃
/分で冷却して6”角のインゴット6”角×360mmLのも
のとし、ついでこのインゴットを内周刃で 6.5mmの厚さ
にスライスしてから研磨により鏡面仕上げしたところ、
6”角×6.3mmtの合成石英マスク基板とすることができ
たが、このもののガラス基板中の水素分子含有量は 1.5
〜4×1018molecules/cm3 となる。
The production of a synthetic quartz mask substrate from this synthetic quartz glass ingot was carried out by placing the ingot in a carbon crucible and heating it to 1,800 ° C. under an argon gas atmosphere at 200 torr in an electric melting furnace and holding it for 1 hour. After cooling, remove the strain in an annealing furnace in an atmosphere of 1,180 for strain relief.
After raising the temperature to ℃ and holding it for 2 hours, 10 ℃ to 950 ℃
It was cooled at a rate of 1 minute / minute to make a 6 "square ingot 6" square x 360mmL, and then this ingot was sliced to a thickness of 6.5mm with an inner peripheral blade and then mirror-finished by polishing.
A synthetic quartz mask substrate of 6 "square x 6.3 mmt could be used, but the hydrogen molecule content in this glass substrate was 1.5.
-4 × 10 18 molecules / cm 3 .

【0019】つぎに、この合成石英マスク基板からサン
プルとして20×75×6.3mmtのガラス板を3枚切り出し、
各面内基板の分布も考慮してその水素分子濃度を確認し
たところ、これらは2〜4×1018molecules/cm3 の範囲
内にあり、さらにArFエキシマレーザをエネルギー密
度50mJ/cm2・P、 100Hz、1×106shotsの条件下で照射
したところ、照射初期の吸光度が 0.008cm-1であり、ま
た吸光度のバラツキは0.0005cm-1以下であった。
Next, three 20 × 75 × 6.3 mmt glass plates were cut out from this synthetic quartz mask substrate as samples,
When the hydrogen molecule concentration was confirmed in consideration of the distribution of each in-plane substrate, it was found that these were within the range of 2 to 4 × 10 18 molecules / cm 3 , and the ArF excimer laser had an energy density of 50 mJ / cm 2 · P. When irradiated under the conditions of 100 Hz and 1 × 10 6 shots, the absorbance at the initial stage of irradiation was 0.008 cm −1 , and the variation in the absorbance was 0.0005 cm −1 or less.

【0020】しかし、この場合このものの水素分子濃度
が4×1018molecules/cm3 を越えていると、ArFエキ
シマレーザを高エネルギー密度、例えば 200mJ/cm2・P、
100Hzで照射すると、透過率低下が引き起こされる
し、屈折率変動も大きくなり、干渉計による測定で△n
>1×10-6になってしまい、この水素分子濃度が5×10
17molecules/cm3 より低い場合も同様に屈折率変動が生
ずるので、この水素分子濃度は2〜4×1018molecules/
cm3 の範囲のものとすることが必要とされる。なお、こ
れは主としてradiation compactionと呼ばれる石英ガラ
スの収縮によってもたらされるもので、照射された部分
で0.04μm程度の収縮が確認されており、これは水素濃
度に起因するものと考えられている。
However, in this case, when the hydrogen molecule concentration of this product exceeds 4 × 10 18 molecules / cm 3 , the ArF excimer laser has a high energy density, for example, 200 mJ / cm 2 · P,
Irradiation at 100 Hz causes a decrease in transmittance and a large fluctuation in the refractive index.
> 1 × 10 -6 , and this hydrogen molecule concentration is 5 × 10
Even if it is lower than 17 molecules / cm 3 , the refractive index fluctuation similarly occurs, so that the hydrogen molecule concentration is 2 to 4 × 10 18 molecules / cm 3.
It is required to be in the cm 3 range. This is mainly caused by the contraction of quartz glass called radiation compaction, and it is confirmed that the irradiated part contracts by about 0.04 μm, which is considered to be caused by the hydrogen concentration.

【0021】[0021]

【実施例】つぎに本発明の実施例、比較例をあげるが、
例中における水素分子含有量および透過率は下記による
値を示したものである。 (水素分子含有量)ラマン分光光度計・NR 1,100[日
本分光工業(株)製商品名]を用いて、励起波長 488nm
のArレーザ光で出力700mWのホトマル・R943-02[浜
松ホトニクス(株)製商品名]を使用するホストカウン
ティング法で行なった。なお、この水素分子含有量はこ
のときのラマン散乱スペクトルで 800cm-1に観察される
SiO2の散乱バンドと水素の 4,135〜4,140cm-1 に観察さ
れる散乱バンドの面積強度比を濃度に換算して求めた
が、換算定数は文献値 4,135cm-1/ 800cm-1×1.22×10
21を使用した。 (透過率)透過率測定はArFレーザ光(193nm) でのレ
ーザエネルギー透過量(出射エネルギー量/入射エネル
ギー量)から算出した値である。
EXAMPLES Examples of the present invention and comparative examples will now be described.
The hydrogen molecule content and transmittance in the examples show the following values. (Hydrogen molecule content) Raman spectrophotometer NR 1,100 [trade name of JASCO Corporation], excitation wavelength 488 nm
Was carried out by a host counting method using Photomar R943-02 [trade name of Hamamatsu Photonics KK] having an output of 700 mW with Ar laser light. The hydrogen molecule content is observed at 800 cm -1 in the Raman scattering spectrum at this time.
The area intensity ratio of the scattering band of SiO 2 and the scattering band observed at 4,135 to 4,140 cm −1 of hydrogen was converted into concentration, and the conversion constant was the reference value 4,135 cm −1 / 800 cm −1 × 1.22 × Ten
21 was used. (Transmittance) The transmittance measurement is a value calculated from the amount of laser energy transmission (amount of emitted energy / amount of incident energy) of ArF laser light (193 nm).

【0022】実施例1〜3、比較例1〜4 原料シラン化合物としてメチルトリメトキシシラン[CH3
Si(OCH3)3]、四塩化けい素(SiCl4) 、メチルトリクロロ
シラン(CH3SiCl3)を使用し、これを酸素ガス、水素ガス
およびアルゴンガスと共に、表1に示した量で酸水素火
炎バーナーに供給し、このシラン化合物の火炎加水分解
で生成したシリカ微粒子を回転している耐熱性担体上に
堆積すると同時に溶融ガラス化して、 150mmφ×500mmL
の合成石英ガラスインゴット19kgを作製した。
Examples 1 to 3, Comparative Examples 1 to 4 Methyltrimethoxysilane [CH 3 as a raw material silane compound
Si (OCH 3 ) 3 ], silicon tetrachloride (SiCl 4 ), and methyltrichlorosilane (CH 3 SiCl 3 ) are used together with oxygen gas, hydrogen gas and argon gas in the amounts shown in Table 1. It is supplied to a hydrogen flame burner, and the silica fine particles produced by flame hydrolysis of this silane compound are deposited on a rotating heat-resistant carrier and, at the same time, fused and vitrified, 150 mmφ × 500 mmL
A synthetic quartz glass ingot of 19 kg was produced.

【0023】ついで、この合成石英ガラスインゴットを
円筒研削したのち、6”角のカーボン製ルツボ中に据
え、電気溶解炉にてアルゴンガス 200torr下に 1,800℃
まで昇温し、1時間保持して6”角×380mmLの角型イン
ゴットを成型したのち、このときの熱歪を除歪するため
に大気雰囲気下に焼鈍炉中で 1,180℃まで昇温したのち
2時間保持し、 950℃まで10℃/時の降温速度で冷却し
てから、内周刃で6.5mmtの厚さにスライスし、研磨機で
鏡面に仕上げて6”角×6.3mmtの合成石英マスク基板を
作製した。つぎに、このようにして得た合成石英マスク
基板については、これにエキシマレーザを照射したとき
の吸光度(K)、屈折率偏差量(△n)、水素分子含有
量および△H2 、OH基含有量および△OHをしらべた
ところ、表1に示したとおりの結果が得られた。また、
上記実施例2、3および比較例2で得られた合成石英マ
スク基板に、ArFエキシマレーザをエネルギー密度
5、または50mJ/cm2-p、周波数 100Hzで1×105 ショ
ット照射したときの、 193nmでの吸光度変化を図2、3
に示した。
Then, this synthetic quartz glass ingot was cylindrically ground and then placed in a 6 "square carbon crucible and placed in an electric melting furnace under an argon gas of 200 torr at 1,800 ° C.
After heating to 1 hour and holding for 1 hour to form a 6 ”square × 380 mmL square ingot, the temperature was raised to 1,180 ° C in an annealing furnace in an air atmosphere to remove the thermal strain at this time. Hold for 2 hours, cool to 950 ° C at a cooling rate of 10 ° C / hour, then slice into 6.5mmt thick with an inner peripheral blade and polish to a mirror surface with a polishing machine, 6 "square x 6.3mmt synthetic quartz A mask substrate was produced. Next, regarding the synthetic quartz mask substrate thus obtained, the absorbance (K), the refractive index deviation amount (Δn), the hydrogen molecule content and the ΔH 2 , OH group when the excimer laser was irradiated on the substrate. When the content and ΔOH were examined, the results shown in Table 1 were obtained. Also,
When the synthetic quartz mask substrates obtained in Examples 2 and 3 and Comparative Example 2 above were irradiated with ArF excimer laser at an energy density of 5 or 50 mJ / cm 2 -p at a frequency of 100 Hz for 1 × 10 5 shots, 193 nm. Changes in absorbance at
It was shown to.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明はArFエキシマレーザリソグラ
フィー用合成石英マスク基板およびその製造方法に関す
るものであり、この合成石英マスク基板は水素分子含有
量が 0.5〜4×1018molecules/cm3 で塩素を含有せず、
OH基含有量が 700〜1,000ppmで少なくとも1方向脈理
がフリーであり、低エネルギーのArFエキシマレーザ
を照射したときの吸光度がK≦0.008cm-1 で高エネルギ
ーのArFエキシマレーザを照射したときの屈折率偏差
量が△n≦1×10-6であるものであり、この製造方法は
アルコキシシランを中心部5重管の酸水素火炎バーナー
中で火炎加水分解して得たシリカ微粒子から製作したも
のとするものであるが、このマスクにはArFレーザの
照射初期に急激な透過率低下が起きず、照射を継続した
のちの吸光度飽和点も低く、かつ寸法精度、屈折率の安
定したものになるという有利性が与えられる。
The present invention relates to a synthetic quartz mask substrate for ArF excimer laser lithography and a method for producing the same. The synthetic quartz mask substrate has a hydrogen molecule content of 0.5 to 4 × 10 18 molecules / cm 3 and contains chlorine. Does not contain
When the OH group content is 700 to 1,000 ppm, the striae are free in at least one direction, and the absorbance when irradiated with a low-energy ArF excimer laser is K ≦ 0.008 cm -1 and when irradiated with a high-energy ArF excimer laser. The refractive index deviation amount of Δn ≦ 1 × 10 −6 is used. This manufacturing method is made from silica fine particles obtained by flame hydrolysis of alkoxysilane in an oxyhydrogen flame burner with a central quintuple tube. However, this mask does not show a sharp decrease in transmittance in the early stage of ArF laser irradiation, has a low absorbance saturation point after irradiation, and has stable dimensional accuracy and refractive index. The advantage is that

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の方法によるアルコキシシラン
からの合成石英ガラス製造装置の縦断面図、(b)はこ
こに使用される酸水素火炎バーナーの横断面図を示した
ものである。
FIG. 1 (a) is a vertical sectional view of an apparatus for producing synthetic quartz glass from alkoxysilane by the method of the present invention, and FIG. 1 (b) is a horizontal sectional view of an oxyhydrogen flame burner used therein. .

【図2】合成石英マスク基板にArFエキシマレーザを
エネルギー密度50mJ/cm2-p、周波数 100Hzで1×105
ショット照射した時のショット数と、波長 193nmでの吸
光度変化との関係図を示したものである。
2] ArF excimer laser on synthetic quartz mask substrate with energy density of 50 mJ / cm 2 -p and frequency of 100 Hz, 1 × 10 5
FIG. 3 is a diagram showing the relationship between the number of shots when shot is irradiated and the change in absorbance at a wavelength of 193 nm.

【図3】合成石英マスク基板にArFエキシマレーザを
エネルギー密度5mJ/cm2-p、周波数 100Hzで1×105
ショット照射した時のショット数と、波長 193nmでの吸
光度変化との関係図を示したものである。
FIG. 3: ArF excimer laser on synthetic quartz mask substrate with energy density of 5 mJ / cm 2 -p and frequency of 100 Hz, 1 × 10 5
FIG. 3 is a diagram showing the relationship between the number of shots when shot is irradiated and the change in absorbance at a wavelength of 193 nm.

【符号の説明】[Explanation of symbols]

1…アルコキシシラン収納容器 2…ガス入口 3…不活性ガス入口 4,5,6…水素ガス供給管 7,8,9…酸素ガス供給管 10…耐火レンガ 11…耐熱性担体 12…酸水素火炎バーナー 13…酸水素火炎 14…シリカ微粒子 15…流量計 17…のぞき窓 18…多孔質ガラス母材 19…5重管バーナー 20,21,22,23,24…第1〜第5ノズル 25…外殻管 26…ノズル 1 ... Alkoxysilane storage container 2 ... Gas inlet 3 ... Inert gas inlet 4, 5, 6 ... Hydrogen gas supply pipe 7, 8, 9 ... Oxygen gas supply pipe 10 ... Refractory brick 11 ... Heat-resistant carrier 12 ... Oxyhydrogen flame Burner 13 ... Oxyhydrogen flame 14 ... Silica fine particles 15 ... Flowmeter 17 ... Peephole 18 ... Porous glass base material 19 ... Five-tube burner 20, 21, 22, 23, 24 ... 1st-5th nozzle 25 ... Outside Shell tube 26 ... Nozzle

フロントページの続き (72)発明者 滝田 政俊 新潟県中頸城郡頸城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内Front page continuation (72) Inventor Masatoshi Takita 28, Nishi-Fukushima, Kubiki-mura, Nakabuki-gun, Niigata Prefecture 1 Shin-Etsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素分子含有量が 0.5〜4×1018molecu
les/cm3 で基板面内の分布差が△H2 ≦3×1018molecu
les/cm3 で、塩素を含有せず、OH基含有量が 700〜1,
000ppmで基板面内分布差が△OH≦100ppmで、少なくと
も一方向脈理フリーであり、低エネルギーのArFエキ
シマレーザを照射したときの吸光度がK≦0.008cm-1
で、高エネルギーのArFエキシマレーザを照射したと
きの屈折率偏差量が△n≦1×10-6であることを特徴と
するArFエキシマレーザリソグラフィー用合成石英マ
スク基板。
1. A hydrogen molecule content of 0.5 to 4 × 10 18 molecu
The distribution difference in the substrate plane is les / cm 3 △ H 2 ≦ 3 × 10 18 molecu
les / cm 3 , chlorine-free, OH group content 700 ~ 1,
At 000 ppm, the difference in the in-plane distribution of the substrate is ΔOH ≦ 100 ppm, and at least one direction is free of striae, and the absorbance when irradiated with a low energy ArF excimer laser is K ≦ 0.008 cm −1.
The synthetic quartz mask substrate for ArF excimer laser lithography, wherein the refractive index deviation amount when irradiated with a high energy ArF excimer laser is Δn ≦ 1 × 10 −6 .
【請求項2】 ArFエキシマレーザの低エネルギー密
度が50mJ/cm2・P以下、周波数が 100Hzである請求項1
に記載したArFエキシマレーザリソグラフィー用石英
マスク基板。
2. The ArF excimer laser has a low energy density of 50 mJ / cm 2 · P or less and a frequency of 100 Hz.
The quartz mask substrate for ArF excimer laser lithography described in 1.
【請求項3】 ArFエキシマレーザの高エネルギー密
度が 200mJ/cm2・P、周波数が 100Hzである請求項1に
記載したArFエキシマレーザリソグラフィー用合成石
英マスク基板。
3. The synthetic quartz mask substrate for ArF excimer laser lithography according to claim 1, wherein the ArF excimer laser has a high energy density of 200 mJ / cm 2 · P and a frequency of 100 Hz.
【請求項4】 中心部5重管およびその周囲に複数本の
パイプ状ノズルと外殻管を設けた石英製バーナーの中心
ノズルに原料ガスとしてのアルコキシシランと酸素ガ
ス、第2ノズルと第4ノズルに酸素ガス、第3ノズルと
第5ノズルおよび外殻管と第5ノズルとの間に水素ガス
を供給して、このアルコキシシランを火炎加水分解させ
て合成石英ガラスインゴットとし、これを熱間成型、ス
ライス、研摩工程を経て合成石英マスク基板を製造する
ことを特徴とするArFエキシマレーザリソグラフィー
用合成石英マスク基板の製造方法。
4. A central nozzle of a quartz burner having a central quintuple tube and a plurality of pipe-shaped nozzles and an outer shell tube around the central quintuple tube, an alkoxysilane and oxygen gas as a source gas, a second nozzle and a fourth nozzle. Oxygen gas was supplied to the nozzles, and hydrogen gas was supplied between the third nozzle and the fifth nozzle and between the outer shell tube and the fifth nozzle to flame-hydrolyze the alkoxysilane into a synthetic quartz glass ingot, which was hot-pressed. A method of manufacturing a synthetic quartz mask substrate for ArF excimer laser lithography, which comprises manufacturing a synthetic quartz mask substrate through molding, slicing, and polishing steps.
JP16347394A 1994-07-15 1994-07-15 Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same Expired - Lifetime JP3071362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16347394A JP3071362B2 (en) 1994-07-15 1994-07-15 Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16347394A JP3071362B2 (en) 1994-07-15 1994-07-15 Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0831723A true JPH0831723A (en) 1996-02-02
JP3071362B2 JP3071362B2 (en) 2000-07-31

Family

ID=15774547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16347394A Expired - Lifetime JP3071362B2 (en) 1994-07-15 1994-07-15 Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3071362B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635544B2 (en) 2004-09-13 2009-12-22 Hoya Corporation Transparent substrate for mask blank and mask blank
US7700244B2 (en) 2004-09-16 2010-04-20 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US7898650B2 (en) 2005-02-18 2011-03-01 Hoya Corporation Inspection method for transparent article
US7901840B2 (en) 2005-02-25 2011-03-08 Hoya Corporation Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
EP2322490A1 (en) 2009-11-16 2011-05-18 Shin-Etsu Chemical Co., Ltd. Titania and sulfur co-doped quartz glass member and making method
US7972702B2 (en) 2005-06-10 2011-07-05 Hoya Corporation Defect inspection method for a glass substrate for a mask blank, glass substrate for a mask blank, mask blank, exposure mask, method of producing a glass substrate for a mask blank, method of producing a mask blank, and method of producing an exposure mask
EP2341036A1 (en) 2008-07-07 2011-07-06 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass member and making method
EP2757078A1 (en) 2013-01-22 2014-07-23 Shin-Etsu Chemical Co., Ltd. Euv lithography member, making method, and titania-doped quartz glass

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635544B2 (en) 2004-09-13 2009-12-22 Hoya Corporation Transparent substrate for mask blank and mask blank
US7700244B2 (en) 2004-09-16 2010-04-20 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US7998644B2 (en) 2004-09-16 2011-08-16 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US8318388B2 (en) 2004-09-16 2012-11-27 Hoya Corporation Mask blank providing system, mask blank providing method, mask blank transparent substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
US8107063B2 (en) 2005-02-18 2012-01-31 Hoya Corporation Transparent article
US7898650B2 (en) 2005-02-18 2011-03-01 Hoya Corporation Inspection method for transparent article
US7901840B2 (en) 2005-02-25 2011-03-08 Hoya Corporation Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
TWI454835B (en) * 2005-02-25 2014-10-01 Hoya Corp Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
US8026025B2 (en) 2005-02-25 2011-09-27 Hoya Corporation Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
US7972702B2 (en) 2005-06-10 2011-07-05 Hoya Corporation Defect inspection method for a glass substrate for a mask blank, glass substrate for a mask blank, mask blank, exposure mask, method of producing a glass substrate for a mask blank, method of producing a mask blank, and method of producing an exposure mask
US8377612B2 (en) 2008-07-07 2013-02-19 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass member and making method
US8105734B2 (en) 2008-07-07 2012-01-31 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass member and making method
EP2341036A1 (en) 2008-07-07 2011-07-06 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass member and making method
US8629071B2 (en) 2009-11-16 2014-01-14 Shin-Etsu Chemical Co., Ltd. Titania and sulfur co-doped quartz glass member and making method
EP2322490A1 (en) 2009-11-16 2011-05-18 Shin-Etsu Chemical Co., Ltd. Titania and sulfur co-doped quartz glass member and making method
EP2757078A1 (en) 2013-01-22 2014-07-23 Shin-Etsu Chemical Co., Ltd. Euv lithography member, making method, and titania-doped quartz glass
US9278881B2 (en) 2013-01-22 2016-03-08 Shin-Etsu Chemical Co., Ltd. EUV lithography member, making method, and titania-doped quartz glass

Also Published As

Publication number Publication date
JP3071362B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US8650912B2 (en) Burner and method for the manufacture of synthetic quartz glass
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
JP2859095B2 (en) Synthetic quartz mask substrate for excimer laser lithography
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
TW515782B (en) Silica glass and its manufacturing method
JP2005255423A (en) Synthetic quartz glass-made photomask substrate and photomask
JP4158009B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass
EP1067096B1 (en) Quartz glass members for excimer laser, and their method of manufacture
EP1462717A2 (en) Burner for the manufacture of synthetic quartz glass
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2006516525A (en) Method for producing synthetic silica glass
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JP2003183037A (en) Quartz glass blank for optical part and use thereof
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
EP1127857B1 (en) Fluorine-containing synthetic quartz glass and method of production
EP0976687B1 (en) Synthetic fused silica member, method for producing the same and optical member for excimer laser
US6946416B2 (en) Fused silica having improved index homogeneity
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JPH0742133B2 (en) Synthetic quartz glass optical member for ultraviolet laser
JP3944759B2 (en) Synthetic quartz glass for optics, manufacturing method thereof, and optical member for excimer laser
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JP5418428B2 (en) Heat treatment method for synthetic quartz glass block
JP2001180963A (en) SYNTHESIZED QUARTZ GLASS MEMBER FOR HIGH POWER ArF EXCIMER LASER AND MANUFACTURING METHOD THEREOF
JPH06234545A (en) Synthetic quartz glass for light transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

EXPY Cancellation because of completion of term