JPH0831594A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH0831594A
JPH0831594A JP6164969A JP16496994A JPH0831594A JP H0831594 A JPH0831594 A JP H0831594A JP 6164969 A JP6164969 A JP 6164969A JP 16496994 A JP16496994 A JP 16496994A JP H0831594 A JPH0831594 A JP H0831594A
Authority
JP
Japan
Prior art keywords
resistant plate
length
heat
plasma processing
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6164969A
Other languages
Japanese (ja)
Other versions
JP3502157B2 (en
Inventor
Katsuyuki Ono
勝之 小野
Shunichi Takada
俊一 高田
Takahiro Yoshiki
隆裕 吉識
Kyoichi Komachi
恭一 小町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16496994A priority Critical patent/JP3502157B2/en
Publication of JPH0831594A publication Critical patent/JPH0831594A/en
Application granted granted Critical
Publication of JP3502157B2 publication Critical patent/JP3502157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce unnecessary dielectric loss and improve a treating speed and uniformity by making the length of the short side of a heat resistant plate, for transmitting a microwave and airtightly sealing a vessel, within the range of specific times of a specimen diameter and the length of the short side of an arrangement surface. CONSTITUTION:A plasma treating device is provided with a dielectric layer 12b, for forming a microwave waveguide, and a metallic vessel 11, located opposedly to the layer 12b and airtightly sealed by a heat resistant plate 22 transmitting a microwave; and is equipped with a specimen base 23, for placing a specimen S, in the inside. The length of the short side of the heat resistant plate 22 is made larger than 0.8 times of the diameter of the specimen S and shorter than 1.3 times of the length of the short side of a surface where the plate 22 is arranged. Consequently, unnecessary dielectric loss due to the plate 22 can be reduced to keep large a plasma treating speed to the specimen S, and also the in-surface uniformity of the specimen at the time of plasma treating can be maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマ処理装置に関
し、より詳細にはマイクロ波を使用することにより発生
するプラズマを利用した半導体デバイス形成用のエッチ
ング装置、アッシング装置又はCVD装置として用いら
れるプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, and more particularly to a plasma processing used as an etching apparatus, an ashing apparatus or a CVD apparatus for forming a semiconductor device using plasma generated by using microwaves. Regarding the device.

【0002】[0002]

【従来の技術】真空近くに減圧した容器内に反応ガスと
マイクロ波を導入し、ガス放電を起こさせてプラズマを
生成させ、このプラズマを基板表面に導いてエッチング
やレジスト除去(アッシング)、CVD(Chemical Vap
or Deposition)等の処理を行なわせるプラズマ処理装置
は、高集積半導体素子等の製造において欠くことができ
ないものとなってきている。例えば、特開昭62−56
00号公報や特開昭62−99481号公報にも、レジ
スト除去装置としてこのようなプラズマ処理装置が記載
されている。
2. Description of the Related Art A reaction gas and a microwave are introduced into a container whose pressure is reduced to near vacuum, a gas discharge is caused to generate plasma, and the plasma is guided to the substrate surface to perform etching, resist removal (ashing), and CVD. (Chemical Vap
A plasma processing apparatus for performing processing such as (or Deposition) has become indispensable in manufacturing highly integrated semiconductor elements and the like. For example, JP-A-62-56
Japanese Patent Laid-Open No. 00 and Japanese Patent Laid-Open No. 62-99481 also describe such a plasma processing apparatus as a resist removing apparatus.

【0003】図5は従来のこの種のプラズマ処理装置の
一例を模式的に示した断面図であり、図中、11は中空
直方体形状の金属製容器を示している。この金属製容器
11はステンレス等の金属により形成され、その周囲壁
は二重構造となっており、その内部は冷却水流通室18
となっている。そして、装置の作動中はこの冷却水流通
室18に冷却水が流通して金属製容器11の周囲が冷却
される。
FIG. 5 is a sectional view schematically showing an example of a conventional plasma processing apparatus of this type. In FIG. 5, reference numeral 11 denotes a hollow rectangular metal container. The metal container 11 is made of a metal such as stainless steel, and the surrounding wall has a double structure.
Has become. Then, during the operation of the apparatus, the cooling water flows through the cooling water flow chamber 18 to cool the periphery of the metal container 11.

【0004】また金属製容器11の上部はプラズマ生成
室20となっており、プラズマ生成室20の上部はマイ
クロ波の透過性及び耐熱性を有する石英ガラス、パイレ
ックスガラス、アルミナセラミックス等の誘電体板を用
いて形成された耐熱性板32が配設され、この耐熱性板
32により金属製容器11の内部が冷却水流通室18の
上部壁18aに配置されたOリング(図示せず)を介し
て気密状態に封止されている。従って、耐熱性板32の
一辺の大きさはプラズマ生成室20が耐熱性板32と接
する面の一辺の長さより長く、この1辺の約1.5倍程
度である。プラズマ生成室20の下方にはメッシュ構造
の仕切り板17を介して反応室21が形成されており、
反応室21内には耐熱性板32と対向する箇所に試料S
を載置するための試料台23が配設されている。また反
応室21の下部壁には図示しない排気装置に接続された
排気口14が形成されており、プラズマ生成室20の一
側壁には金属製容器11内に所要の反応ガスを供給する
ためのガス供給管13が接続されている。
The upper part of the metal container 11 is a plasma generation chamber 20, and the upper part of the plasma generation chamber 20 is a dielectric plate made of quartz glass, Pyrex glass, alumina ceramics or the like having microwave transmission and heat resistance. A heat-resistant plate 32 formed by using the heat-resistant plate 32 is provided, and the heat-resistant plate 32 causes the inside of the metal container 11 to pass through an O-ring (not shown) arranged on the upper wall 18a of the cooling water flow chamber 18. And is hermetically sealed. Therefore, the size of one side of the heat resistant plate 32 is longer than the length of one side of the surface where the plasma generation chamber 20 contacts the heat resistant plate 32, and is about 1.5 times this side. A reaction chamber 21 is formed below the plasma generation chamber 20 via a partition plate 17 having a mesh structure,
The sample S is placed in the reaction chamber 21 at a position facing the heat resistant plate 32.
Is provided with a sample table 23 for mounting. An exhaust port 14 connected to an exhaust device (not shown) is formed in the lower wall of the reaction chamber 21, and one side wall of the plasma generation chamber 20 is provided for supplying a required reaction gas into the metal container 11. The gas supply pipe 13 is connected.

【0005】一方、金属製容器11の上方には誘電体線
路12が配設されており、誘電体線路12の上部にはア
ルミニウム(Al)等を用いて形成された金属板12a
が配設され、金属板12a下面には誘電体層12bがボ
ルト等で固定されている。この誘電体層12bは誘電損
失の小さいフッ素樹脂、ポリエチレンあるいはポリスチ
レン等を用いて形成されている。誘電体線路12には導
波管15を介してマイクロ波発振器16が連結されてお
り、マイクロ波発振器16からのマイクロ波が導波管1
5を介して誘電体線路12に導入されるようになってい
る。
On the other hand, a dielectric line 12 is arranged above the metal container 11, and a metal plate 12a made of aluminum (Al) or the like is provided above the dielectric line 12.
And the dielectric layer 12b is fixed to the lower surface of the metal plate 12a with bolts or the like. The dielectric layer 12b is made of fluororesin, polyethylene, polystyrene or the like, which has a small dielectric loss. A microwave oscillator 16 is connected to the dielectric line 12 via a waveguide 15, and the microwave from the microwave oscillator 16 is coupled to the waveguide 1.
It is adapted to be introduced into the dielectric line 12 through the line 5.

【0006】このように構成されたプラズマ処理装置を
用い、例えば試料台23上に載置された半導体基板等の
試料S表面にアッシング処理やエッチング処理等を施す
場合、まず排気口14から排気を行なって金属製容器1
1内を所要の真空度に設定した後、ガス供給管13から
プラズマ生成室20内にCl2 、HBr、O2 等の反応
ガスを供給する。また装置の作動中は、冷却水を冷却水
流通室18に流して金属製容器11周辺を冷却する。次
いで、マイクロ波発振器16を作動させてマイクロ波を
発振させ、このマイクロ波を導波管15を介して誘電体
線路12に導入する。これにより誘電体線路12下方に
電界が形成され、形成された電界が耐熱性板32を通過
してプラズマ生成室20内に導入される。一方、ガス供
給管13から供給されたガスは、プラズマ生成室20内
に導入され、マイクロ波の照射によりプラズマ化され
る。このプラズマのうち電気的に中性のラジカルが主に
メッシュ状の仕切り板17を透過して反応室21内に広
がり、試料台23に載置された試料S表面に到達してア
ッシング処理やエッチング処理等が行なわれる。
When the surface of the sample S such as a semiconductor substrate mounted on the sample table 23 is subjected to an ashing process or an etching process using the plasma processing apparatus having the above-described structure, first, exhaust gas is exhausted from the exhaust port 14. Going metal container 1
After the inside of 1 is set to a required degree of vacuum, reaction gases such as Cl 2 , HBr, and O 2 are supplied from the gas supply pipe 13 into the plasma generation chamber 20. Further, during the operation of the apparatus, cooling water is caused to flow into the cooling water flow chamber 18 to cool the periphery of the metal container 11. Then, the microwave oscillator 16 is operated to oscillate the microwave, and this microwave is introduced into the dielectric line 12 via the waveguide 15. As a result, an electric field is formed below the dielectric line 12, and the formed electric field passes through the heat resistant plate 32 and is introduced into the plasma generation chamber 20. On the other hand, the gas supplied from the gas supply pipe 13 is introduced into the plasma generation chamber 20 and turned into plasma by irradiation with microwaves. Of the plasma, electrically neutral radicals mainly permeate through the mesh-shaped partition plate 17 and spread into the reaction chamber 21, reach the surface of the sample S mounted on the sample table 23, and reach ashing processing or etching. Processing etc. are performed.

【0007】[0007]

【発明が解決しようとする課題】このようなプラズマ処
理装置においては、最近、アッシング処理やエッチング
処理等(以下、プラズマ処理ともいう)を施す対象とな
る半導体基板の大型化に伴い、金属製容器11内のプラ
ズマ生成室20、及び反応室21も大きくなってきてお
り、それにつれて耐熱性板32の面積も大きくなってき
ている。
In such a plasma processing apparatus, a metal container has recently become larger as a semiconductor substrate to be subjected to ashing processing, etching processing and the like (hereinafter, also referred to as plasma processing) becomes larger. The plasma generation chamber 20 and the reaction chamber 21 in 11 are also increasing in size, and the area of the heat resistant plate 32 is also increasing accordingly.

【0008】このように耐熱性板32の面積が大きくな
るに従い、大きな耐熱性板32を製造するのが難しいと
いう製作上の問題の他、半導体基板等の試料Sにプラズ
マ処理を施す際に、プラズマ処理速度が思うように上が
らず、また試料Sに対するプラズマ処理の面内均一性が
劣化するという課題が生じてきた。
As described above, as the area of the heat-resistant plate 32 increases, it is difficult to manufacture a large heat-resistant plate 32. In addition, when the sample S such as a semiconductor substrate is subjected to plasma treatment, There has been a problem that the plasma processing rate does not increase as expected and the in-plane uniformity of the plasma processing on the sample S deteriorates.

【0009】またプラズマ生成室20自体の大きさが大
きくなったため、半導体基板等の試料Sにプラズマ処理
を施す際に、時間が経過するにつれて試料Sの場所によ
りプラズマ処理の程度が不均一になったり、プラズマ処
理速度が変化する、いわゆるプロセス性能の時間的な変
化の発生という課題が生じてきた。
Further, since the size of the plasma generation chamber 20 itself is increased, when the sample S such as the semiconductor substrate is subjected to the plasma processing, the degree of the plasma processing becomes uneven depending on the location of the sample S as time elapses. However, there has been a problem that the plasma processing rate changes, that is, the so-called process performance changes with time.

【0010】本発明はこのような課題に鑑みなされたも
のであり、効率よくプラズマ処理を行うことができると
ともに、均一的なプラズマ処理性能に優れ、さらにはプ
ロセス性能の時間的な変化を生じることのないプラズマ
処理装置を提供することを目的としている。
The present invention has been made in view of the above problems, and is capable of efficiently performing plasma processing, excellent in uniform plasma processing performance, and causing temporal change in process performance. It is an object of the present invention to provide a plasma processing apparatus that does not have the above.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係るプラズマ処理装置は、マイクロ波導波路
を形成すべく配置された誘電体層と、該誘電体層に対向
配置され、マイクロ波を透過する耐熱性板で気密に封止
された金属製容器とを備え、該金属製容器内に試料を載
置する試料台が配設されたプラズマ処理装置において、
前記耐熱性板の短辺の長さが試料の直径の0.8倍より
大きく、かつ前記金属製容器内部の耐熱性板が配設され
た面の短辺の長さの1.3倍より小さいことを特徴とし
ている(1)。
In order to achieve the above object, a plasma processing apparatus according to the present invention comprises a dielectric layer arranged to form a microwave waveguide, and a dielectric layer arranged to face the dielectric layer. In a plasma processing apparatus comprising a metal container hermetically sealed with a heat-resistant plate that transmits waves, and a sample table for mounting a sample in the metal container is provided.
The length of the short side of the heat resistant plate is greater than 0.8 times the diameter of the sample, and 1.3 times the length of the short side of the surface of the metal container on which the heat resistant plate is disposed. It is characterized by being small (1).

【0012】また、本発明に係るプラズマ処理装置は、
マイクロ波導波路を形成すべく配置された誘電体層と、
該誘電体層に対向配置され、マイクロ波を透過する耐熱
性板で気密に封止された金属製容器とを備え、該金属製
容器内に試料を載置する試料台が配設されたプラズマ処
理装置において、前記耐熱性板の短辺の長さが試料の直
径の0.8倍より大きく、かつ1.2倍より小さいこと
を特徴としている(2)。
Further, the plasma processing apparatus according to the present invention is
A dielectric layer arranged to form a microwave waveguide,
Plasma provided with a metal container which is arranged facing the dielectric layer and hermetically sealed with a heat-resistant plate that transmits microwaves, and a sample table for mounting a sample in the metal container is arranged. In the processing apparatus, the length of the short side of the heat resistant plate is larger than 0.8 times and smaller than 1.2 times the diameter of the sample (2).

【0013】[0013]

【作用】本発明者らが、半導体基板等にプラズマ処理を
施す際のプラズマ処理速度について検討したところ、耐
熱性板がプラズマ生成室より不必要に大きな面積(体
積)を有していると、誘電体線路より放射されたマイク
ロ波が耐熱性板を通過する際に誘電損失により消費さ
れ、プラズマ処理能力が小さくなることがわかった。従
って、このような誘電損失を減少させるためには、耐熱
性板の面積(体積)を減少させればよいが、耐熱性板を
プラズマ生成室に比べて余りにも小さくすると、マイク
ロ波が耐熱性板を通過してプラズマ生成室に導入される
際に急に広げら、試料の場所によりプラズマ処理速度が
異なるようになり、いわゆる面内均一性が悪化する。こ
のようなマイクロ波の作用を考慮して検討した結果、耐
熱性板の短辺の長さを試料の直径の0.8倍より大き
く、かつプラズマ生成室の耐熱性板が配設された面の短
辺の長さの1.3倍より小さい範囲の長さにするのが好
ましいことがわかった。なお、試料の直径は、通常プラ
ズマ生成室の短辺の長さの0.4〜0.7倍程度であ
る。
The present inventors have examined the plasma processing rate when performing plasma processing on a semiconductor substrate, etc., and find that the heat-resistant plate has an area (volume) unnecessarily larger than that of the plasma generation chamber. It was found that the microwave radiated from the dielectric line was consumed by the dielectric loss when passing through the heat-resistant plate, and the plasma processing capacity was reduced. Therefore, in order to reduce such dielectric loss, it is sufficient to reduce the area (volume) of the heat-resistant plate, but if the heat-resistant plate is made too small compared to the plasma generation chamber, the microwave heat resistance is reduced. If it is suddenly expanded when passing through the plate and introduced into the plasma generation chamber, the plasma processing rate becomes different depending on the location of the sample, and so-called in-plane uniformity deteriorates. As a result of studying in consideration of the action of such microwaves, the length of the short side of the heat resistant plate is larger than 0.8 times the diameter of the sample, and the surface on which the heat resistant plate of the plasma generation chamber is arranged. It has been found that it is preferable to set the length to a range smaller than 1.3 times the length of the short side of the. The diameter of the sample is usually about 0.4 to 0.7 times the length of the short side of the plasma generation chamber.

【0014】すなわち本発明に係るプラズマ処理装置
(1)によれば、前記耐熱性板の短辺の長さが試料の直
径の0.8倍より大きく、かつ前記金属製容器内部の耐
熱性板が配設された面の短辺の長さの1.3倍より小さ
いので、耐熱性板に起因する不要な誘電損失が減少し、
試料に対するプラズマ処理速度が大きくなるとともに、
プラズマ処理の際の試料の面内均一性が維持される。
That is, according to the plasma processing apparatus (1) of the present invention, the length of the short side of the heat resistant plate is larger than 0.8 times the diameter of the sample, and the heat resistant plate inside the metal container is used. Since it is less than 1.3 times the length of the short side of the surface on which is arranged, unnecessary dielectric loss due to the heat resistant plate is reduced,
As the plasma processing speed for the sample increases,
The in-plane uniformity of the sample during plasma processing is maintained.

【0015】また、上記のように耐熱性板の大きさを調
整した場合においても、プラズマ生成室が大きくなると
プロセス性能に時間的な変化が生じる場合があり、この
原因が試料の直径に対して耐熱性板が大きすぎるためで
あることがわかった。そこで、耐熱性板の大きさについ
て検討した結果、時間的経過を伴うプロセス性能の安定
化を図るためには、その長さを試料の直径の0.8倍よ
り大きく1.2倍より小さい範囲にすればよいことがわ
かった。
Even when the size of the heat resistant plate is adjusted as described above, the process performance may change with time when the size of the plasma generating chamber becomes large, and this is due to the diameter of the sample. It was found that this was because the heat resistant plate was too large. Therefore, as a result of studying the size of the heat-resistant plate, in order to stabilize the process performance with the passage of time, the length of the heat-resistant plate should be in a range of more than 0.8 times and less than 1.2 times the diameter of the sample. I found that I should do it.

【0016】すなわち本発明に係るプラズマ処理装置
(2)によれば、前記耐熱性板の短辺の長さが試料の直
径の0.8倍より大きく、かつ1.2倍より小さいの
で、上記装置(1)について記載した効果の他、プロセ
ス性能の時間的変化がより小さくなり、プロセス性能が
安定化する。
That is, according to the plasma processing apparatus (2) of the present invention, since the length of the short side of the heat resistant plate is larger than 0.8 times and smaller than 1.2 times the diameter of the sample, In addition to the effects described for the device (1), the temporal change of the process performance becomes smaller and the process performance is stabilized.

【0017】なお、上記(1)又は(2)記載のプラズ
マ処理装置においては、金属製容器の内部形状が直方体
形状である場合を前提とした表現となっているが、前記
金属製容器の内部形状は直方体形状に限定されるもので
はなく、円柱形状でもよく、同様に耐熱性板も円板状の
ものでもよく、試料Sも矩形のものであってもよい。そ
してこのような場合においては、金属製容器内部の耐熱
性板が配設された面の短辺の長さに代わってその直径
を、前記耐熱性板の短辺の長さに代わってその直径を、
試料の直径に代わってその短辺の長さを、それぞれ用い
ればよい。
In the plasma processing apparatus described in (1) or (2) above, the expression is based on the assumption that the internal shape of the metal container is a rectangular parallelepiped shape. The shape is not limited to the rectangular parallelepiped shape, and may be a columnar shape, similarly the heat-resistant plate may be a disk-shaped one, and the sample S may be a rectangular one. And in such a case, the diameter of the heat-resistant plate inside the metal container instead of the length of the short side of the surface, the diameter of the heat-resistant plate instead of the length of the short side of the surface. To
The length of the short side may be used instead of the diameter of the sample.

【0018】[0018]

【実施例及び比較例】以下、本発明に係るプラズマ処理
装置の実施例を図面に基づいて説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the plasma processing apparatus according to the present invention will be described below with reference to the drawings.

【0019】図1は実施例に係るプラズマ処理装置を模
式的に示した断面図である。図1に示したプラズマ処理
装置においては、プラズマ生成室20の上部の構造及び
耐熱性板22の大きさ以外は、図5に示した従来のプラ
ズマ処理装置と同様に構成されているので、ここでは他
の部分の詳しい説明は省略する。
FIG. 1 is a sectional view schematically showing a plasma processing apparatus according to an embodiment. The plasma processing apparatus shown in FIG. 1 has the same configuration as the conventional plasma processing apparatus shown in FIG. 5, except for the structure of the upper part of the plasma generation chamber 20 and the size of the heat-resistant plate 22, so that here Then, detailed description of other parts is omitted.

【0020】実施例に係るプラズマ処理装置の金属製容
器11の上部はプラズマ生成室20となっており、プラ
ズマ生成室20の上部に、一部に貫通孔20bを有する
上部壁20aが形成されている。そして、耐熱性板22
がOリング(図示せず)を介して上部壁20a上に気密
状態を保って配設されている。なお、本実施例に係るプ
ラズマ処理装置においては、プラズマ生成室20に上部
壁20aが形成されているが、プラズマ生成室20上部
の耐熱性板22が配設された面より耐熱性板22の方が
大きい場合は、従来と同様に耐熱性板22を冷却水流通
室18の上部壁18a上にOリングを介して配設しても
よい。
The upper part of the metal container 11 of the plasma processing apparatus according to the embodiment is a plasma generating chamber 20, and an upper wall 20a having a through hole 20b is formed in the upper part of the plasma generating chamber 20. There is. And the heat resistant plate 22
Is provided on the upper wall 20a via an O-ring (not shown) in an airtight manner. Although the upper wall 20a is formed in the plasma generation chamber 20 in the plasma processing apparatus according to the present embodiment, the heat-resistant plate 22 is formed above the surface of the plasma generation chamber 20 where the heat-resistant plate 22 is disposed. If it is larger, the heat-resistant plate 22 may be arranged on the upper wall 18a of the cooling water flow chamber 18 via an O-ring as in the conventional case.

【0021】次に、耐熱性板22として、正方形形状の
主面の一辺の長さが120mm、160mm、200m
m、240mm、280mm、340mm、400mm
で、その厚さが20mmの大きさが異なるアルミナ製の
耐熱性板22をそれぞれ作製してプラズマ生成室20の
上部に配設し、これら耐熱性板22が配設されたそれぞ
れのプラズマ処理装置において、以下に説明するプラズ
マ処理を行った。なお、プラズマ生成室20の耐熱性板
22が配設された面は、260mm×260mmの大き
さを有しており、誘電体線路12の誘電体層12bの形
成には、厚さ20mm、長さ500mm、幅300mm
のフッ素樹脂を用いた。
Next, as the heat resistant plate 22, the length of one side of the square-shaped main surface is 120 mm, 160 mm, and 200 m.
m, 240 mm, 280 mm, 340 mm, 400 mm
Then, heat-resistant plates 22 made of alumina having different thicknesses of 20 mm are prepared and arranged on the upper part of the plasma generation chamber 20, and the respective plasma processing apparatuses on which the heat-resistant plates 22 are arranged are arranged. In, the plasma treatment described below was performed. The surface of the plasma generation chamber 20 on which the heat-resistant plate 22 is arranged has a size of 260 mm × 260 mm, and the dielectric layer 12 b of the dielectric line 12 is formed with a thickness of 20 mm and a long length. 500 mm in width and 300 mm in width
The fluororesin of was used.

【0022】上記したプラズマ処理装置を使用して、ま
ず、試料Sとして8インチ(約200mm)のSiウエ
ハの表面にフォトレジスト層が3μmの厚さで形成され
たものを用い、試料台23上に試料Sを載置した後、排
気口14から排気を行なって金属製容器11内を2To
rrに設定した。その後、ガス供給管13からプラズマ
生成室20内に、O2 を95vol%及びN2 を5vo
l%含有する混合ガスを、ガス流量1slmで供給し
た。次に、マイクロ波パワーを1.5kWに設定してマ
イクロ波を反応室21内に導入し、前記Siウエハの表
面に形成されたフォトレジストのアッシング処理を3分
間行った。
Using the plasma processing apparatus described above, first, as the sample S, an 8-inch (about 200 mm) Si wafer having a photoresist layer formed on the surface with a thickness of 3 μm was used. After the sample S is placed on the metal container 11, the gas is exhausted from the exhaust port 14 to move the inside of the metal container 11 to 2To.
set to rr. Then, 95 vol% of O 2 and 5 vo of N 2 were introduced into the plasma generation chamber 20 from the gas supply pipe 13.
A mixed gas containing 1% was supplied at a gas flow rate of 1 slm. Next, the microwave power was set to 1.5 kW, microwaves were introduced into the reaction chamber 21, and the photoresist formed on the surface of the Si wafer was ashed for 3 minutes.

【0023】各プラズマ処理装置において、このような
アッシング処理を3枚のSiウエハについて同じ条件で
行い、アッシング速度及びアッシング処理の面内均一性
を測定した。アッシング処理の面内均一性については、
フォトレジストのアッシング深さをSiウエハの複数の
場所(17箇所)において測定し、平均のアッシング深
さに対して最もアッシング深さが大きいもの、又は最も
アッシング深さが小さいものを面内均一性(バラツキ)
の値として用いた。
In each plasma processing apparatus, such an ashing process was performed on three Si wafers under the same conditions, and the ashing speed and the in-plane uniformity of the ashing process were measured. For in-plane uniformity of the ashing process,
The ashing depth of the photoresist is measured at a plurality of places (17 places) on the Si wafer, and the one having the largest ashing depth or the smallest ashing depth with respect to the average ashing depth is in-plane uniformity. (Variation)
Was used as the value of.

【0024】図2は、前記実施例の結果を示したもの
で、耐熱性板の一辺の長さと、前記Siウエハ上のフォ
トレジストのアッシング速度又は面内均一性との関係を
示したグラフである。
FIG. 2 is a graph showing the result of the above-mentioned embodiment, which is a graph showing the relationship between the length of one side of the heat-resistant plate and the ashing rate or in-plane uniformity of the photoresist on the Si wafer. is there.

【0025】図2より明らかなように、耐熱性板22の
一辺の長さが160mmより長く、340mmよりも短
い範囲で、フォトレジストのアッシング速度が1400
nm/minと大きく、しかもアッシングの際の面内均
一性が7%以内とバラツキが非常に小さくなっている。
この耐熱性板22の長さをSiウエハの直径と比べる
と、0.8倍〜1.7倍の範囲となり、プラズマ生成室
20の耐熱性板22が配設される面の一辺(260m
m)と比べると、0.62倍〜1.31倍の範囲とな
る。
As is apparent from FIG. 2, when the length of one side of the heat resistant plate 22 is longer than 160 mm and shorter than 340 mm, the photoresist ashing speed is 1400.
nm / min, and the in-plane uniformity during ashing is 7% or less, which is a very small variation.
Compared with the diameter of the Si wafer, the length of the heat resistant plate 22 is in the range of 0.8 times to 1.7 times, which is one side (260 m) of the surface of the plasma generation chamber 20 on which the heat resistant plate 22 is disposed.
Compared with m), the range is 0.62 times to 1.31 times.

【0026】次に、前記した装置と同様に大きさの異な
る耐熱性板22が配設されたプラズマ処理装置を用い、
圧力を1Torrとした他は同様の条件で、5分間づ
つ、繰り返してアッシング処理を行い、累積時間の経過
によるアッシング速度の変化及び面内均一性の変化を測
定した。
Next, using a plasma processing apparatus in which heat-resistant plates 22 having different sizes are arranged as in the above-mentioned apparatus,
Under the same conditions except that the pressure was set to 1 Torr, ashing treatment was repeatedly performed for 5 minutes, and changes in the ashing rate and changes in the in-plane uniformity with the passage of cumulative time were measured.

【0027】図3及び図4はその結果を示したグラフで
あり、図3はアッシング処理の累積時間とアッシング速
度との関係を示しており、図4はアッシング処理の累積
時間とアッシング処理の際のSiウエハの面内均一性を
示している。また、図3及び図4においてグラフに記載
された数値は、使用された耐熱性板22の一辺の長さを
示したものである。
3 and 4 are graphs showing the results. FIG. 3 shows the relationship between the cumulative time of the ashing process and the ashing speed, and FIG. 4 shows the cumulative time of the ashing process and the ashing process. 2 shows the in-plane uniformity of the Si wafer. The numerical values shown in the graphs of FIGS. 3 and 4 indicate the length of one side of the heat resistant plate 22 used.

【0028】図3より明らかなように、耐熱性板22の
一辺の長さが120mm〜240mmの範囲では、アッ
シング処理の累積時間が200分にまで及んだ場合であ
っても、フォトレジストのアッシング処理速度が減少せ
ず、ほぼ一定の大きなアッシング速度が維持されてい
る。また、図4より明らかなように、耐熱性板22の一
辺の長さが160mm〜240mmの範囲では、アッシ
ング処理の累積時間が200分にまで及んだ場合であっ
ても、アッシング処理の面内均一性は10%以内と高い
均一性を維持している。
As is apparent from FIG. 3, when the length of one side of the heat resistant plate 22 is in the range of 120 mm to 240 mm, even if the cumulative time of the ashing process reaches 200 minutes, the photoresist The ashing processing speed does not decrease, and a substantially constant large ashing speed is maintained. Further, as is clear from FIG. 4, when the length of one side of the heat resistant plate 22 is in the range of 160 mm to 240 mm, even if the cumulative time of the ashing process reaches 200 minutes, the surface of the ashing process is The inner uniformity maintains a high uniformity of 10% or less.

【0029】以上の結果より、図3及び図4に示した両
方の結果を考慮すると、アッシング処理を行う際の時間
経過に伴うプロセス性能の変化が少ない耐熱性板22の
一辺の長さの適切な範囲は、160〜240mmとな
る。前記範囲を、Siウエハの直径と比較すると、Si
ウエハに対して0.8倍〜1.2倍の範囲となる。
From the above results, considering both the results shown in FIG. 3 and FIG. 4, the length of one side of the heat-resistant plate 22 which is less likely to change the process performance with the passage of time during the ashing process is appropriate. The range is 160 to 240 mm. Comparing the above range with the diameter of the Si wafer,
The range is 0.8 times to 1.2 times that of the wafer.

【0030】[0030]

【発明の効果】以上詳述したように本発明に係るプラズ
マ処理装置(1)にあっては、マイクロ波導波路を形成
すべく配置された誘電体層と、該誘電体層に対向配置さ
れ、マイクロ波を透過する耐熱性板で気密に封止された
金属製容器とを備え、該金属製容器内に試料を載置する
試料台が配設されたプラズマ処理装置において、前記耐
熱性板の短辺の長さが試料の直径の0.8倍より大き
く、かつ前記金属製容器内部の耐熱性板が配設された面
の短辺の長さの1.3倍より小さいので、耐熱性板によ
る不要な誘電損失を減少させることができ、試料に対す
るプラズマ処理速度を大きく保つことができるととも
に、プラズマ処理の際の試料の面内均一性を維持するこ
とができる。
As described in detail above, in the plasma processing apparatus (1) according to the present invention, a dielectric layer arranged to form a microwave waveguide, and a dielectric layer opposed to the dielectric layer, A plasma processing apparatus comprising: a metal container hermetically sealed with a heat-resistant plate that transmits microwaves; and a sample stage for mounting a sample in the metal container. Since the length of the short side is greater than 0.8 times the diameter of the sample and less than 1.3 times the length of the short side of the surface of the metal container on which the heat resistant plate is disposed, heat resistance Unnecessary dielectric loss due to the plate can be reduced, the plasma processing rate for the sample can be kept large, and in-plane uniformity of the sample during plasma processing can be maintained.

【0031】また本発明に係るプラズマ処理装置(2)
にあっては、マイクロ波導波路を形成すべく配置された
誘電体層と、該誘電体層に対向配置され、マイクロ波を
透過する耐熱性板で気密に封止された金属製容器とを備
え、該金属製容器内に試料を載置する試料台が配設され
たプラズマ処理装置において、前記耐熱性板の短辺の長
さが試料の直径の0.8倍より大きく、かつ1.2倍よ
り小さいので、上記装置(1)に記載した効果の他、プ
ロセス性能の時間的変化をより小さくすることができ、
プロセス性能を安定化させることができる。
A plasma processing apparatus (2) according to the present invention
In that case, it is provided with a dielectric layer arranged to form a microwave waveguide, and a metal container arranged to face the dielectric layer and hermetically sealed with a heat-resistant plate that transmits microwaves. In a plasma processing apparatus in which a sample table for placing a sample is placed in the metal container, the length of the short side of the heat resistant plate is larger than 0.8 times the diameter of the sample, and 1.2 Since it is less than double, in addition to the effect described in the above device (1), it is possible to further reduce the temporal change in process performance,
The process performance can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るプラズマ処理装置を模式
的に示した断面図である。
FIG. 1 is a sectional view schematically showing a plasma processing apparatus according to an embodiment of the present invention.

【図2】実施例及び比較例に係るプラズマ処理装置を用
いてその表面にフォトレジストが形成されたSiウエハ
のアッシング処理を行った際の、耐熱性板の一辺の長さ
と、アッシング速度及び面内均一性との関係を示したグ
ラフである。
FIG. 2 shows the length of one side of a heat-resistant plate, the ashing speed, and the surface when an ashing process is performed on a Si wafer having a photoresist formed on the surface thereof using the plasma processing apparatus according to the example and the comparative example. It is a graph which showed the relation with inner uniformity.

【図3】実施例及び比較例に係るプラズマ処理装置を用
いてその表面にフォトレジストが形成されたSiウエハ
のアッシング処理を行った際の、アッシング処理の累積
時間とアッシング速度との関係を示したグラフである。
FIG. 3 shows the relationship between the cumulative time of the ashing process and the ashing speed when the ashing process is performed on the Si wafer having the photoresist formed on the surface thereof using the plasma processing apparatus according to the example and the comparative example. It is a graph.

【図4】実施例及び比較例に係るプラズマ処理装置を用
いてその表面にフォトレジストが形成されたSi基板の
アッシング処理を行った際の、アッシング処理の累積時
間と面内均一性との関係を示したグラフである。
FIG. 4 shows the relationship between the cumulative time of ashing processing and the in-plane uniformity when performing ashing processing on a Si substrate having a photoresist formed on its surface using the plasma processing apparatus according to the example and the comparative example. It is a graph showing.

【図5】従来のプラズマ処理装置を模式的に示した断面
図である。
FIG. 5 is a sectional view schematically showing a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

11 金属製容器 12 誘電体線路 12a 金属板 12b 誘電体層 16 マイクロ波発振器 20 プラズマ生成室 22 耐熱性板 23 試料台 11 Metal Container 12 Dielectric Line 12a Metal Plate 12b Dielectric Layer 16 Microwave Oscillator 20 Plasma Generation Chamber 22 Heat-Resistant Plate 23 Sample Stand

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/205 21/3065 (72)発明者 小町 恭一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical indication location H01L 21/205 21/3065 (72) Inventor Kyoichi Komachi 4-5 Kitahama, Chuo-ku, Osaka-shi, Osaka No. 33 Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波導波路を形成すべく配置され
た誘電体層と、該誘電体層に対向配置され、マイクロ波
を透過する耐熱性板で気密に封止された金属製容器とを
備え、該金属製容器内に試料を載置する試料台が配設さ
れたプラズマ処理装置において、前記耐熱性板の短辺の
長さが試料の直径の0.8倍より大きく、かつ前記金属
製容器内部の耐熱性板が配設された面の短辺の長さの
1.3倍より小さいことを特徴とするプラズマ処理装
置。
1. A dielectric layer arranged to form a microwave waveguide, and a metal container arranged to face the dielectric layer and hermetically sealed with a heat-resistant plate that transmits microwaves. In a plasma processing apparatus in which a sample table for mounting a sample in the metal container is arranged, the length of the short side of the heat resistant plate is larger than 0.8 times the diameter of the sample, and the metal plate is made of metal. A plasma processing apparatus characterized in that the length is shorter than 1.3 times the length of the short side of the surface of the container on which the heat resistant plate is disposed.
【請求項2】 マイクロ波導波路を形成すべく配置され
た誘電体層と、該誘電体層に対向配置され、マイクロ波
を透過する耐熱性板で気密に封止された金属製容器とを
備え、該金属製容器内に試料を載置する試料台が配設さ
れたプラズマ処理装置において、前記耐熱性板の短辺の
長さが試料の直径の0.8倍より大きく、かつ1.2倍
より小さいことを特徴とするプラズマ処理装置。
2. A dielectric layer arranged to form a microwave waveguide, and a metal container arranged to face the dielectric layer and hermetically sealed with a heat-resistant plate that transmits microwaves. In a plasma processing apparatus in which a sample table for placing a sample is placed in the metal container, the length of the short side of the heat resistant plate is larger than 0.8 times the diameter of the sample, and 1.2 A plasma processing apparatus characterized by being smaller than double.
JP16496994A 1994-07-18 1994-07-18 Plasma processing equipment Expired - Fee Related JP3502157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16496994A JP3502157B2 (en) 1994-07-18 1994-07-18 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16496994A JP3502157B2 (en) 1994-07-18 1994-07-18 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH0831594A true JPH0831594A (en) 1996-02-02
JP3502157B2 JP3502157B2 (en) 2004-03-02

Family

ID=15803323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16496994A Expired - Fee Related JP3502157B2 (en) 1994-07-18 1994-07-18 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3502157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087843A1 (en) * 2007-01-15 2008-07-24 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE468626T1 (en) 2006-04-10 2010-06-15 Hitachi Metals Ltd BROADBAND ANTENNA WITH A U-SHAPED ANTENNA CONDUCTOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087843A1 (en) * 2007-01-15 2008-07-24 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium
JP2008172168A (en) * 2007-01-15 2008-07-24 Tokyo Electron Ltd Plasma treatment apparatus, plasma treatment method, and storage medium
US8636871B2 (en) 2007-01-15 2014-01-28 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium
US9252001B2 (en) 2007-01-15 2016-02-02 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium

Also Published As

Publication number Publication date
JP3502157B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JP3288490B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP7079686B2 (en) Film formation method and film formation equipment
JP4352234B2 (en) Reactor assembly and processing method
US4988644A (en) Method for etching semiconductor materials using a remote plasma generator
KR100787019B1 (en) An enhanced resist strip in a dielectric etcher using downstream plasma
JP2004172397A (en) Processing system and processing method for plasma
JP2007281225A (en) Processing device and processing method
JP2009532873A (en) Gas injection system with reduced contamination and method of use thereof
JP3502157B2 (en) Plasma processing equipment
JP2023053351A (en) Plasma processing apparatus
JP3077516B2 (en) Plasma processing equipment
JP3164188B2 (en) Plasma processing equipment
JP2967681B2 (en) Microwave plasma processing equipment
JPH05326453A (en) Microwave plasma treatment equipment
JP3373466B2 (en) Plasma processing apparatus and plasma processing method
WO2022264829A1 (en) Cleaning method and plasma processing device
JP2005064120A (en) Apparatus and method for plasma treatment
JPH07106300A (en) Electrostatic chuck equipment
JPS6234834B2 (en)
JPH06275566A (en) Microwave plasma treating device
JPH01211921A (en) Dry etching apparatus
JPS62131520A (en) Dry etching device
JPH05347282A (en) Ashing device and method
JPH06163466A (en) Thin film removing method
JP3092383B2 (en) Microwave plasma processing equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees