JPH08313842A - Lighting optical system and aligner provided with the optical system - Google Patents

Lighting optical system and aligner provided with the optical system

Info

Publication number
JPH08313842A
JPH08313842A JP7139936A JP13993695A JPH08313842A JP H08313842 A JPH08313842 A JP H08313842A JP 7139936 A JP7139936 A JP 7139936A JP 13993695 A JP13993695 A JP 13993695A JP H08313842 A JPH08313842 A JP H08313842A
Authority
JP
Japan
Prior art keywords
optical system
light
light source
illumination
dmd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7139936A
Other languages
Japanese (ja)
Inventor
Kenichi Yamamuro
研一 山室
Kazuya Okamoto
和也 岡本
Yutaka Iwasaki
豊 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7139936A priority Critical patent/JPH08313842A/en
Publication of JPH08313842A publication Critical patent/JPH08313842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE: To obtain a uniform illuminance distribution on irradiated surfaces and to obtain a lighting optical system which is compact in size and right in weight by providing the light deflecting means having many minute reflection surfaces whose directions are made to be independently changed each other. CONSTITUTION: Illuminating light from a light source 1 is guided to a mask 8 and a wafer 10 being irradiated surfaces by making all micromirrors consisting of a DMD 4 as a light deflecting means ON-states and, moreover, is guided to another optical system like an alignment system by making them OFF-states. That is, the DMD 4 serves functions of shutters and mirrors of a conventional lighting optical system. Further, this system can stitpulate the sectional form of the parallel luminous flux made incident on fly eye lenses 5 and in its turn the lighting area on the mask 8 and the wafer 10 by making only micromirrors of a specific area among micromirrors consisting of the DMD 4 ON-states by a control means 14. That is, the DMD 4 serves the function of a rectile blind in the conventional lighting optical system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照明光学系および該光学
系を備えた露光装置に関し、特に半導体素子または液晶
表示素子等を製造するための露光装置において転写用の
パターンが形成されたマスクやレチクル等を均一な照度
で照明するための照明光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical system and an exposure apparatus equipped with the optical system, and more particularly to a mask on which a transfer pattern is formed in an exposure apparatus for manufacturing a semiconductor element, a liquid crystal display element or the like. The present invention relates to an illumination optical system for illuminating a reticle or the like with uniform illuminance.

【0002】[0002]

【従来の技術】高集積半導体素子等を製造するための露
光装置に使用される照明光学系では、被照明物体面上に
おける優れた照度均一性が要求される。このため、従来
のこの種の照明光学系では、オプティカルインテグレー
タのような多光源像形成手段を介して被照射面を重畳的
に照明する構成が採用されている。
2. Description of the Related Art An illumination optical system used in an exposure apparatus for manufacturing a highly integrated semiconductor device or the like is required to have excellent illuminance uniformity on an illuminated object surface. Therefore, the conventional illumination optical system of this type employs a configuration in which the illuminated surface is superimposedly illuminated via a multi-light source image forming unit such as an optical integrator.

【0003】図5は、従来の露光装置の構成を概略的に
示す図である。図示の装置は、たとえば照明光を供給す
るための光源51を備えている。光源51から射出され
た照明光束は、楕円鏡52を介して一旦集光された後、
ミラー54に入射する。ミラー54によって図中右側に
反射された照明光は、コリメートレンズ55によって平
行光束に変換された後、オプティカルインテグレータと
してのフライアイレンズ57に入射する。
FIG. 5 is a diagram schematically showing the structure of a conventional exposure apparatus. The illustrated apparatus includes a light source 51 for supplying illumination light, for example. The illumination light flux emitted from the light source 51 is once condensed through the elliptical mirror 52, and then,
It is incident on the mirror 54. The illumination light reflected on the right side in the drawing by the mirror 54 is converted into a parallel light flux by the collimator lens 55, and then enters a fly-eye lens 57 as an optical integrator.

【0004】フライアイレンズ57を通過した照明光
は、ミラー58およびコンデンサレンズ59を介した
後、パターンが形成されたレチクル(すなわちマスク)
60を重畳的に照明する。マスク60を透過した光は、
投影光学系61を介して感光基板であるウエハ62に達
する。こうして、ウエハ62上には、レチクル60のパ
ターン像が形成される。なお、光源51とミラー54と
の間の光路中にはシャッター53が設けられている。ま
た、コリメートレンズ55とフライアイレンズ57との
間の平行光路中には、レチクルブラインド56が設けら
れている。
Illumination light that has passed through the fly-eye lens 57 passes through a mirror 58 and a condenser lens 59, and then has a pattern formed thereon, that is, a mask.
Illuminate 60 in a superimposed manner. The light transmitted through the mask 60 is
The wafer 62, which is a photosensitive substrate, is reached via the projection optical system 61. Thus, the pattern image of the reticle 60 is formed on the wafer 62. A shutter 53 is provided in the optical path between the light source 51 and the mirror 54. A reticle blind 56 is provided in the parallel optical path between the collimator lens 55 and the fly-eye lens 57.

【0005】図6は、従来の露光装置におけるシャッタ
ーの構成を概略的に示す斜視図である。図6に示すよう
に、従来のシャッターは機械羽根回転方式であり、シャ
ッター基板67と、モーター68の出力軸に連結された
回転羽根66とを備えている。シャッター基板67に
は、光源51からの照明光65を通過させてミラー54
に導くための開口部69が形成されている。この開口部
69は、モーター68に駆動された回転羽根66の回転
により随時遮蔽されるようになっている。そして、開口
部69が回転羽根66により遮蔽された状態では、光源
51からの照明光65は回転羽根66で反射され、たと
えばアライメント光学系のような他の適当な光学系に導
かれる。
FIG. 6 is a perspective view schematically showing the structure of a shutter in a conventional exposure apparatus. As shown in FIG. 6, the conventional shutter is a mechanical blade rotating type, and includes a shutter substrate 67 and a rotating blade 66 connected to an output shaft of a motor 68. The shutter substrate 67 allows the illumination light 65 from the light source 51 to pass and allows the mirror 54 to pass through.
An opening portion 69 for leading to is formed. The opening 69 is shielded at any time by the rotation of the rotary blade 66 driven by the motor 68. When the opening 69 is blocked by the rotary blade 66, the illumination light 65 from the light source 51 is reflected by the rotary blade 66 and is guided to another appropriate optical system such as an alignment optical system.

【0006】一方、図7は、従来の露光装置におけるレ
チクルブラインドの構成を概略的に示す図である。な
お、図7は、図5の光軸AXに垂直な面におけるレチク
ルブラインドの構成を示している。図7に示すように、
従来のレチクルブラインドは一対のL字型ブラインド羽
根71および72を備えている。ブラインド羽根71
は、駆動モータ73によって図中水平方向に駆動モータ
74によって鉛直方向にそれぞれガイドレール(不図
示)に沿ってスライド駆動される。
On the other hand, FIG. 7 is a diagram schematically showing the structure of a reticle blind in a conventional exposure apparatus. Note that FIG. 7 shows the configuration of the reticle blind on the plane perpendicular to the optical axis AX of FIG. As shown in FIG.
The conventional reticle blind includes a pair of L-shaped blind blades 71 and 72. Blind blade 71
Are driven to slide in the horizontal direction in the figure by the drive motor 73 and vertically in the vertical direction by the drive motor 74 along guide rails (not shown).

【0007】また、ブラインド羽根72は、駆動モータ
75によって図中水平方向に駆動モータ76によって鉛
直方向にそれぞれガイドレール(不図示)に沿ってスラ
イド駆動される。こうして、一対のL字型ブラインド羽
根71および72によって形成される開口部77を、所
望の矩形状にすることができる。このように、レチクル
ブラインド56は開口部が可変の視野絞りであって、そ
の開口部の形状を適宜変化させることによってレチクル
60上において所望形状の照明領域を得ることができ
る。
Further, the blind blades 72 are slid by a drive motor 75 in the horizontal direction in the figure and vertically by a drive motor 76 along a guide rail (not shown). In this way, the opening 77 formed by the pair of L-shaped blind blades 71 and 72 can be formed into a desired rectangular shape. As described above, the reticle blind 56 is a field stop having a variable opening, and an illumination area having a desired shape can be obtained on the reticle 60 by appropriately changing the shape of the opening.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
ような従来の露光装置の照明光学系では、シャッター5
3、ミラー54およびレチクルブラインド56の各部品
がそれぞれ別体に構成されている。したがって、光学系
全体として部品点数が多く、コストダウンが困難であっ
た。また、多くの部品点数分のスペースが必要となり、
装置のコンパクト化および軽量化が困難であった。しか
も、光学系の組立時において、シャッター53、ミラー
54およびレチクルブラインド56の各部品の位置決め
調整が難しく、被照射面であるレチクル60やウエハ6
2上において均一な照度分布を得ることが困難であっ
た。
However, in the illumination optical system of the conventional exposure apparatus as described above, the shutter 5 is used.
3, the mirror 54, and the reticle blind 56 are separately configured. Therefore, the total number of parts in the optical system is large and it is difficult to reduce the cost. Also, space for many parts is required,
It was difficult to make the device compact and lightweight. Moreover, during the assembly of the optical system, it is difficult to adjust the positioning of the shutter 53, the mirror 54, and the reticle blind 56, and the reticle 60 and the wafer 6 that are the irradiated surface are not adjusted.
It was difficult to obtain a uniform illuminance distribution on No. 2.

【0009】露光装置の照明光学系では、最近の超LS
Iの一層の高集積度化に伴って、照明の均一性には一段
と厳しい仕様が要求されるようになっている。しかしな
がら、上述の構成を有する照明光学系では、たとえば光
源のシフトに起因して照明の均一性が時間の経過ととも
に変化する、いわゆる照明の均一性の経時的変化が発生
する。また、フライアイレンズ等に起因して照明の均一
性が時間の経過とは無関係に損なわれるという、いわゆ
る照明の固定的不均一性が存在する。従来の照明光学系
では、上述のような照明の均一性の経時的変化および照
明の固定的不均一性を補正する手段を備えていなかっ
た。
In the illumination optical system of the exposure apparatus, the latest super LS is used.
With the further increase in the integration degree of I, more strict specifications are required for the uniformity of illumination. However, in the illumination optical system having the above-described configuration, the uniformity of illumination changes over time due to, for example, the shift of the light source, so-called change in the uniformity of illumination over time occurs. Further, there is a so-called fixed non-uniformity of the illumination that the uniformity of the illumination is impaired regardless of the passage of time due to the fly-eye lens or the like. The conventional illumination optical system has no means for correcting the above-mentioned temporal change of illumination uniformity and fixed nonuniformity of illumination.

【0010】本発明は、前述の課題に鑑みてなされたも
のであり、被照射面上において均一な照度分布を得るこ
とのできる、コンパクトで軽量な照明光学系および該光
学系を備えた露光装置を提供することを目的とする。
The present invention has been made in view of the above problems, and is a compact and lightweight illumination optical system capable of obtaining a uniform illuminance distribution on a surface to be illuminated, and an exposure apparatus provided with the optical system. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、第1の発明においては、所定の物体面をほぼ均一に
照明する照明光学系において、ほぼ平行な照明光束を供
給するための光源手段と、互いに独立に向きを変化させ
ることのできる多数の微小反射面を有し、該多数の微小
反射面の各々により前記光源手段からの照明光束を反射
して偏向するための光偏向手段と、前記光偏向手段で反
射された照明光束に基づいて複数の光源像を形成するた
めの多光源像形成手段と、前記多光源像形成手段からの
光束を集光して前記物体面上を重畳的に照明するコンデ
ンサ光学系と、を備えていることを特徴とする照明光学
系を提供する。
In order to solve the above-mentioned problems, in the first invention, a light source for supplying a substantially parallel illumination light flux in an illumination optical system for illuminating a predetermined object plane substantially uniformly. Means, and a light deflecting means having a large number of minute reflecting surfaces whose directions can be changed independently of each other, each of the plurality of minute reflecting surfaces reflecting and deflecting the illumination light flux from the light source means. A multi-light source image forming means for forming a plurality of light source images based on the illumination light flux reflected by the light deflecting means, and a light flux from the multi-light source image forming means is condensed and superposed on the object plane. The present invention provides an illumination optical system characterized by comprising: a condenser optical system for selectively illuminating.

【0012】第1の発明の好ましい態様によれば、前記
物体面上の照度分布を検出するための検出手段と、前記
物体面上の照度分布がほぼ均一になるように、前記検出
手段の出力に基づいて前記光偏向手段の多数の微小反射
面の各々の向きを制御するための制御手段と、をさらに
備えている。
According to a preferred aspect of the first invention, the detecting means for detecting the illuminance distribution on the object plane and the output of the detecting means so that the illuminance distribution on the object plane becomes substantially uniform. And a control means for controlling the orientation of each of the plurality of minute reflection surfaces of the light deflection means.

【0013】また、前記課題を解決するために、第2の
発明においては、所定のパターンが形成されたマスクを
照明するための照明光学系と、前記マスクのパターンの
像を感光基板上に形成するための投影光学系とを備えた
露光装置において、前記照明光学系は、ほぼ平行な照明
光束を供給するための光源手段と、互いに独立に向きを
変化させることのできる多数の微小反射面を有し、該多
数の微小反射面の各々により前記光源手段からの照明光
束を反射して偏向するための光偏向手段と、前記光偏向
手段で反射された照明光束に基づいて複数の光源像を形
成するための多光源像形成手段と、前記多光源像形成手
段からの光束を集光して前記物体面上を重畳的に照明す
るコンデンサ光学系と、を備えていることを特徴とする
露光装置を提供する。
In order to solve the above problems, in the second invention, an illumination optical system for illuminating a mask on which a predetermined pattern is formed, and an image of the pattern of the mask are formed on a photosensitive substrate. In the exposure apparatus including a projection optical system for performing the above, the illumination optical system includes a light source unit for supplying a substantially parallel illumination luminous flux and a large number of minute reflecting surfaces capable of changing their directions independently of each other. And a plurality of light source images based on the illumination light flux reflected by the light deflection means, and the light deflection means for reflecting and deflecting the illumination light flux from the light source means by each of the plurality of minute reflection surfaces. An exposure, comprising: a multi-light source image forming means for forming the light source; and a condenser optical system for converging a light flux from the multi-light source image forming means to illuminate the object surface in a superimposed manner. Provide equipment .

【0014】第2の発明の好ましい態様によれば、前記
感光基板上の照度分布を検出するための検出手段と、前
記感光基板上の照度分布がほぼ均一になるように、前記
検出手段の出力に基づいて前記光偏向手段の多数の微小
反射面の各々の向きを制御するための制御手段と、をさ
らに備えている。
According to a preferred aspect of the second aspect of the present invention, the detection means for detecting the illuminance distribution on the photosensitive substrate and the output of the detection means so that the illuminance distribution on the photosensitive substrate becomes substantially uniform. And a control means for controlling the orientation of each of the plurality of minute reflection surfaces of the light deflection means.

【0015】[0015]

【作用】本発明では、互いに独立に向きを変化させるこ
とのできる多数の微小反射面を有する光偏向手段を備
え、この多数の微小反射面の各々により光源手段からの
照明光を反射して偏向する。このような光偏向手段とし
て、例えばDMD(Digital Micromirror Deviceまたは
Deformable Micromirror Device)を使用することがで
きる
In the present invention, the light deflecting means having a large number of minute reflecting surfaces whose directions can be changed independently of each other is provided, and the illumination light from the light source means is reflected and deflected by each of the plurality of minute reflecting surfaces. To do. As such a light deflecting means, for example, a DMD (Digital Micromirror Device or
Deformable Micromirror Device) can be used

【0016】DMDは、近年新たに提案されているマイ
クロディバイスである。たとえばソリッド ステイト
テクノロジ(Solid State Technology)の1994年7
月号の第63頁乃至第68頁、エス アイ ディー(SI
D)1993年ダイジェスト版の第1012頁乃至第10
15頁、エス ピー アイ イー クリティカル レヴ
ューズ シリーズ(SPIE Critical Reviews Series)第
1150巻の第86頁乃至第102頁等に開示されてい
るように、DMDは碁盤の目状に配列された多数のマイ
クロミラー(微小反射ミラー)からなる。
The DMD is a microdevice newly proposed in recent years. For example, solid state
Technology (Solid State Technology) 1994 7
Monthly issue, pages 63 to 68, SID (SI
D) 1993 digest version, pages 1012 to 10
As disclosed in p. 15, p. 86 to p. 102 of SPIE Critical Reviews Series, Volume 1150, etc., the DMD has a large number of micromirrors arranged in a grid pattern. It consists of (a minute reflection mirror).

【0017】このように、DMDは微小なマイクロミラ
ーを集積化したものであり、各マイクロミラー毎に設け
られた電極とマイクロミラーとの間の静電引力によって
マイクロミラーの角度(すなわち向き)が変化する。す
なわち、各マイクロミラーの向きは、それぞれ個別に駆
動制御されるように構成されている。ちなみに、各マイ
クロミラーはたとえば約20μm×20μmの正方形状
であり、1つのDMDはたとえば数十万乃至数百万個の
マイクロミラーからなっている。
As described above, the DMD is an integration of minute micromirrors, and the angle (that is, the direction) of the micromirrors is changed by the electrostatic attraction between the electrodes and the micromirrors provided for each micromirror. Change. That is, the direction of each micro mirror is configured to be individually drive-controlled. Incidentally, each micromirror has a square shape of, for example, about 20 μm × 20 μm, and one DMD is composed of, for example, hundreds of thousands to millions of micromirrors.

【0018】本発明において、DMDの各マイクロミラ
ーは、光源からの照明光を反射してフライアイレンズの
ような多光源像形成手段に導くON状態と、照明光を反
射してフライアイレンズには入射させないOFF状態と
の間で、それぞれ個別に駆動制御される。したがって、
DMDを構成するすべてのマイクロミラーをON状態に
することにより光源からの照明光を被照射面に導き、す
べてのマイクロミラーをOFF状態にすることにより光
源からの照明光をアライメント系のような他の光学系に
導くことができる。すなわち、DMDは、従来の露光装
置の照明光学系におけるシャッターおよびミラーの機能
を果たすことができる。
In the present invention, each DMD micromirror reflects the illumination light from the light source and guides it to a multi-light source image forming means such as a fly-eye lens, and reflects the illumination light to a fly-eye lens. Are individually controlled to be driven in the OFF state where they are not made incident. Therefore,
By turning on all the micromirrors that make up the DMD, the illumination light from the light source is guided to the surface to be illuminated, and by turning off all the micromirrors, the illumination light from the light source can be used as in an alignment system. Can be led to the optical system. That is, the DMD can function as a shutter and a mirror in the illumination optical system of the conventional exposure apparatus.

【0019】また、DMDを構成するマイクロミラーの
うち特定の領域のマイクロミラーだけをON状態にする
ことにより、フライアイレンズに入射する平行光束の断
面形状をひいては被照射面上の照明領域を規定すること
ができる。すなわち、DMDは、従来の露光装置の照明
光学系におけるレチクルブラインドの機能を果たすこと
ができる。このように、本発明によれば、1つの光学部
品であるDMDの使用により、従来技術におけるシャッ
ター、ミラーおよびレチクルブラインドの機能を果たす
ことができる。その結果、シャッター、ミラーおよびレ
チクルブラインドの各部品の位置決め調整が不要とな
り、被照射面上において均一な照度分布を得ることがで
きる。また、コンパクトで軽量な照明光学系および該光
学系を備えた露光装置を実現することができる。
Further, among the micromirrors constituting the DMD, by turning on only the micromirrors in a specific area, the cross-sectional shape of the parallel light beam incident on the fly-eye lens and thus the illumination area on the illuminated surface is defined. can do. That is, the DMD can function as a reticle blind in the illumination optical system of the conventional exposure apparatus. Thus, according to the present invention, the functions of the shutter, the mirror and the reticle blind in the prior art can be achieved by using the DMD which is one optical component. As a result, it is not necessary to adjust the positions of the shutter, mirror, and reticle blind components, and a uniform illuminance distribution can be obtained on the illuminated surface. Further, it is possible to realize a compact and lightweight illumination optical system and an exposure apparatus equipped with the optical system.

【0020】さらに、被照射面上の照度分布を検出し、
その結果に基づいてDMDの各マイクロミラーの向きを
適宜制御することによって、被照射面上の照度分布をほ
ぼ均一に随時補正することができる。すなわち、前述し
た照明の均一性の経時的変化や照明の固定的不均一性を
随時補正することによって、被照射面上の照度分布の均
一性をさらに向上させることができる。なお、DMDの
各マイクロミラーの許容駆動回数は1.2×1010程度
であり、従来技術におけるレチクルブラインドと比較し
てはるかに高い耐久性を有する。
Furthermore, the illuminance distribution on the surface to be illuminated is detected,
By appropriately controlling the direction of each micromirror of the DMD based on the result, the illuminance distribution on the irradiated surface can be corrected almost uniformly at any time. That is, the uniformity of the illuminance distribution on the surface to be illuminated can be further improved by correcting the above-mentioned temporal change in the uniformity of illumination and the fixed nonuniformity of illumination as needed. Note that the number of permissible driving of each micromirror of the DMD is about 1.2 × 10 10 and has much higher durability than the reticle blind in the conventional technique.

【0021】[0021]

【実施例】本発明の実施例を、添付図面に基づいて説明
する。図1は、本発明の実施例にかかる照明光学系およ
び該光学系を備えた露光装置の構成を概略的に示す図で
ある。図示の露光装置は、たとえば超高圧水銀ランプか
らなる光源1を備えている。光源1は、楕円鏡2の第1
焦点位置に位置決めされている。光源1から射出された
照明光束は楕円鏡2の第2焦点位置に向かって集光され
る途中で、コリメートレンズ3に入射する。そして、コ
リメートレンズ3によって平行光束に変換された照明光
束は、DMD4に入射する。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing the configuration of an illumination optical system and an exposure apparatus having the optical system according to an embodiment of the present invention. The illustrated exposure apparatus is provided with a light source 1 which is, for example, an ultrahigh pressure mercury lamp. The light source 1 is the first of the elliptical mirror 2.
It is positioned at the focal position. The illumination light flux emitted from the light source 1 enters the collimator lens 3 while being condensed toward the second focal position of the elliptical mirror 2. Then, the illumination light flux converted into the parallel light flux by the collimator lens 3 enters the DMD 4.

【0022】DMD4を構成する各マイクロミラーは、
制御系14によってON状態とOFF状態との間でそれ
ぞれ個別に駆動制御されるようになっている。そして、
ON状態のマイクロミラーによって反射された光束が図
中右側水平方向に、OFF状態のマイクロミラーによっ
て反射された光束が図中破線Aで示す方向にそれぞれ導
かれる。DMD4で図中破線Aで示す方向に反射された
光は、たとえばアライメント系のような他の適当な光学
系(不図示)に導かれる。一方、DMD4で図中水平方
向に反射された光は、フライアイレンズ5に入射する。
Each micromirror that constitutes the DMD 4 is
The control system 14 individually controls the driving between the ON state and the OFF state. And
The light beam reflected by the micro mirror in the ON state is guided in the horizontal direction on the right side in the figure, and the light beam reflected by the micro mirror in the OFF state is guided in the direction indicated by the broken line A in the figure. The light reflected by the DMD 4 in the direction indicated by the broken line A in the figure is guided to another suitable optical system (not shown) such as an alignment system. On the other hand, the light reflected by the DMD 4 in the horizontal direction in the figure enters the fly-eye lens 5.

【0023】フライアイレンズ5に入射した光束は、フ
ライアイレンズ5を構成する複数のレンズエレメントに
より二次元的に分割され、フライアイレンズ5の後側焦
点位置に複数の光源像を形成する。このように、フライ
アイレンズ5は、DMD4からの光束に基づいて複数の
光源像を形成する多光源形成手段を構成している。
The light beam incident on the fly-eye lens 5 is two-dimensionally divided by a plurality of lens elements constituting the fly-eye lens 5 to form a plurality of light source images at the rear focal position of the fly-eye lens 5. In this way, the fly-eye lens 5 constitutes a multi-light source forming unit that forms a plurality of light source images based on the light flux from the DMD 4.

【0024】複数の光源像からの光束は、図示を省略し
た開口絞りにより制限された後、折り曲げミラー6で図
中下方に反射される。折り曲げミラー6で反射された光
束は、コンデンサーレンズ7により集光され、レチクル
のようなマスク8を重畳的に照明する。このように、光
源1、楕円鏡2、コリメートレンズ3、DMD4、フラ
イアイレンズ5、折り曲げミラー6およびコンデンサー
レンズ7は、マスク8を均一に照明するための照明光学
系を構成している。
Light fluxes from a plurality of light source images are limited by an aperture stop (not shown), and then reflected by the bending mirror 6 downward in the drawing. The light flux reflected by the folding mirror 6 is condensed by the condenser lens 7 and illuminates the mask 8 such as a reticle in a superimposed manner. As described above, the light source 1, the elliptic mirror 2, the collimating lens 3, the DMD 4, the fly-eye lens 5, the bending mirror 6 and the condenser lens 7 constitute an illumination optical system for uniformly illuminating the mask 8.

【0025】マスク8を透過した光束は、投影光学系9
を介して、感光基板であるウエハ10に達する。こうし
て、ウエハ10上には、マスク8のパターン像が形成さ
れる。ウエハ10は、投影光学系9の光軸に対して垂直
な平面内において二次元的に移動可能なウエハステージ
11上に支持されている。ウエハステージ11は、さら
に定盤12上に支持されている。したがって、ウエハ1
0を二次元的に移動させながら露光を行うことにより、
ウエハ10の各露光領域にマスク8のパターンを逐次転
写することができる。
The light flux transmitted through the mask 8 is projected by the projection optical system 9.
The wafer 10 which is a photosensitive substrate is reached through the. Thus, the pattern image of the mask 8 is formed on the wafer 10. The wafer 10 is supported on a wafer stage 11 which is two-dimensionally movable in a plane perpendicular to the optical axis of the projection optical system 9. The wafer stage 11 is further supported on the surface plate 12. Therefore, the wafer 1
By performing exposure while moving 0 two-dimensionally,
The pattern of the mask 8 can be sequentially transferred to each exposure region of the wafer 10.

【0026】図1の露光装置は、ウエハ10の露光表面
すなわち投影光学系9の像面における照度分布を検出す
るための検出手段として照度センサー13を備えてい
る。照度センサー13は、ウエハ10を保持して二次元
移動可能なウエハステージ11上に設けられている。照
度センサー13において検出された照度分布は、制御手
段14に送られる。
The exposure apparatus of FIG. 1 is equipped with an illuminance sensor 13 as a detection means for detecting the illuminance distribution on the exposure surface of the wafer 10, that is, the image plane of the projection optical system 9. The illuminance sensor 13 is provided on the wafer stage 11 that holds the wafer 10 and is two-dimensionally movable. The illuminance distribution detected by the illuminance sensor 13 is sent to the control means 14.

【0027】本実施例では、DMD4の各マイクロミラ
ーは、制御手段14により、光源1からの照明光を反射
してフライアイレンズ5に導くON状態と、照明光を反
射してフライアイレンズ5には入射させないOFF状態
との間で、それぞれ個別に駆動制御される。したがっ
て、DMD4を構成するすべてのマイクロミラーをON
状態にすることにより光源1からの照明光を被照射面で
あるマスク8やウエハ10に導き、マイクロミラーをO
FF状態にすることにより光源1からの照明光をアライ
メント系のような他の光学系に導くことができる。すな
わち、DMD4は、従来の露光装置の照明光学系におけ
るシャッターおよびミラーの機能を果たしている。
In the present embodiment, each micromirror of the DMD 4 is turned on by the control means 14 so as to reflect the illumination light from the light source 1 to the fly-eye lens 5, and the fly-eye lens 5 to reflect the illumination light. The drive is controlled individually between the OFF state in which the light is not incident on. Therefore, turn on all the micromirrors that make up the DMD4.
In this state, the illumination light from the light source 1 is guided to the mask 8 or the wafer 10, which is the surface to be illuminated, and the micromirror is turned on
By setting the FF state, the illumination light from the light source 1 can be guided to another optical system such as an alignment system. That is, the DMD 4 functions as a shutter and a mirror in the illumination optical system of the conventional exposure apparatus.

【0028】また、制御手段14により、DMD4を構
成するマイクロミラーのうち特定の領域のマイクロミラ
ーだけをON状態にすることにより、フライアイレンズ
5に入射する平行光束の断面形状をひいてはマスク7や
ウエハ10上の照明領域を規定することができる。すな
わち、DMD4は、従来の露光装置の照明光学系におけ
るレチクルブラインドの機能を果たしている。このよう
に、本実施例によれば、DMD4のような光偏向手段の
使用により、従来技術におけるシャッター、ミラーおよ
びレチクルブラインドの機能を果たすことができる。そ
の結果、これらの部品の位置決め調整が不要となり、マ
スク7やウエハ10上の照明領域において均一な照度分
布を得ることができる。また、照明光学系のコンパクト
化および軽量化が可能になる。
Further, the control means 14 turns on only the micromirrors in a specific region among the micromirrors constituting the DMD 4, so that the cross-sectional shape of the parallel light flux incident on the fly-eye lens 5 and thus the mask 7 and the like. An illuminated area on the wafer 10 can be defined. That is, the DMD 4 functions as a reticle blind in the illumination optical system of the conventional exposure apparatus. As described above, according to this embodiment, the functions of the shutter, the mirror, and the reticle blind in the related art can be achieved by using the light deflecting means such as the DMD 4. As a result, it becomes unnecessary to adjust the positioning of these components, and a uniform illuminance distribution can be obtained in the illumination area on the mask 7 or the wafer 10. Further, the illumination optical system can be made compact and lightweight.

【0029】図2は、DMDの各マイクロミラーの構成
を概略的に示す斜視図である。また、図3は、図2に対
応する図であって、DMD基板上に並んで形成された各
マイクロミラーの構成を概略的に示す断面図である。図
2および図3に示すように、図中上面が反射面(鏡面)
に形成されたマイクロミラー21がヒンジ部材22によ
って支持されている。ヒンジ部材22の両端は、一対の
支柱部材23の上端において揺動可能に支持されてい
る。
FIG. 2 is a perspective view schematically showing the structure of each micromirror of the DMD. 3 is a view corresponding to FIG. 2 and is a cross-sectional view schematically showing the configuration of each micromirror formed side by side on the DMD substrate. As shown in FIGS. 2 and 3, the upper surface in the figure is a reflective surface (mirror surface).
The micro mirror 21 formed on the substrate is supported by the hinge member 22. Both ends of the hinge member 22 are swingably supported at the upper ends of the pair of column members 23.

【0030】この場合、揺動軸線はヒンジ部材22の長
手方向と一致しており、長手方向と直交し且つ反射面に
平行な方向に沿ってヒンジ部材22から4つの電極24
が突出するように形成されている。また、DMD基板2
5上において4つの電極24にそれぞれ対応する位置に
は4つの電極26が形成されている。こうして、対応す
る電極24と26との間に電位差を付与し、電極間の電
位差に基づいて作用する静電力によって、ヒンジ部材2
2をひいてはマイクロミラー21をON状態とOFF状
態との間で適宜揺動させることができる。
In this case, the swing axis line coincides with the longitudinal direction of the hinge member 22, and the four electrodes 24 from the hinge member 22 are arranged along the direction orthogonal to the longitudinal direction and parallel to the reflecting surface.
Are formed so as to project. Also, the DMD substrate 2
Four electrodes 26 are formed on the position 5 corresponding to the four electrodes 24. In this way, a potential difference is applied between the corresponding electrodes 24 and 26, and the hinge member 2 is caused by the electrostatic force acting based on the potential difference between the electrodes.
Therefore, the micro mirror 21 can be appropriately swung between the ON state and the OFF state.

【0031】図2および図3に示すDMDでは、各マイ
クロミラーが縦横に互いに近接するように配置されてい
る。したがって、DMD全体として高い均一な反射率を
確保することができる。また、各ヒンジ部材が対応する
マイクロミラーによって遮蔽されるようになっているの
で、マイクロミラーに対するエネルギ照射によるヒンジ
部材の損傷を最小限に抑えることができる。このよう
に、図2および図3に示すDMDの構成は、本実施例の
ような照明光学系および該光学系を備えた露光装置に最
適である。
In the DMD shown in FIGS. 2 and 3, the micromirrors are arranged vertically and horizontally close to each other. Therefore, it is possible to secure a high uniform reflectance as the entire DMD. Further, since each hinge member is shielded by the corresponding micromirror, damage to the hinge member due to energy irradiation to the micromirror can be minimized. As described above, the DMD configurations shown in FIGS. 2 and 3 are optimal for the illumination optical system and the exposure apparatus including the optical system as in the present embodiment.

【0032】上述したように、DMD4は多数のマイク
ロミラーを有する。そして、DMD4上の反射領域の一
部分である1つの分割反射領域に含まれるマイクロミラ
ー群によって反射された照明光が、投影光学系9の像面
上の照明領域の一部分である1つの分割照明領域に対応
している。したがって、照度センサーによって検出され
た照度分布を参照し、照度が高い特定の分割照明領域に
対応するDMD4のマイクロミラー群において所定数の
マイクロミラーを所定の分布でOFF状態にすることに
より、照度を所望の値まで低下させることができる。
As mentioned above, the DMD 4 has a large number of micromirrors. Then, the illumination light reflected by the micromirror group included in one divided reflection area that is a part of the reflection area on the DMD 4 is one divided illumination area that is a part of the illumination area on the image plane of the projection optical system 9. It corresponds to. Therefore, by referring to the illuminance distribution detected by the illuminance sensor, and turning off a predetermined number of micromirrors in a predetermined distribution in the micromirror group of the DMD 4 corresponding to the specific divided illumination area with high illuminance, It can be reduced to the desired value.

【0033】換言すれば、各分割照明領域に対応する各
マイクロミラー群のうちOFF状態にあるマイクロミラ
ーの数をそれぞれ制御することにより、投影光学系9の
像面上の照明領域の全体に亘って照度分布を均一にする
ことができる。すなわち、本実施例では、投影光学系9
の像面における照度分布を検出することによって、光源
のシフトに起因する照明の均一性の経時的変化やフライ
アイレンズ等に起因する照明の固定的不均一性を随時補
正することができる。その結果、ウエハ10上の照明領
域における照度分布の均一性をさらに向上させることが
できる。
In other words, by controlling the number of micromirrors in the OFF state in each micromirror group corresponding to each divided illumination area, the entire illumination area on the image plane of the projection optical system 9 is controlled. The illuminance distribution can be made uniform. That is, in this embodiment, the projection optical system 9
By detecting the illuminance distribution on the image plane, it is possible to correct the temporal change in the uniformity of the illumination due to the shift of the light source and the fixed nonuniformity of the illumination due to the fly-eye lens or the like. As a result, it is possible to further improve the uniformity of the illuminance distribution in the illumination area on the wafer 10.

【0034】また、前述したように、DMD4は互いに
独立に向きを制御することが可能な多数のマイクロミラ
ーからなる。したがって、DMD4の特定のマイクロミ
ラーをOFF状態にすることにより、ウエハ面において
遮光部を形成することにより、図4に示すような数字や
文字やパターンを付加的に露光することができる。な
お、ウエハ10に形成された数字や文字やパターンを、
製品のロット番号等の表示として利用することができ
る。この場合、ウエハ10上においてシャープな(解像
力の高い)数字や文字やパターンを得るために、ウエハ
10と光学的に共役な位置、すなわちフライアイレンズ
5の入射面の近傍にDMD4を位置決めするのが好まし
い。
Further, as described above, the DMD 4 comprises a large number of micromirrors whose directions can be controlled independently of each other. Therefore, by turning off a specific micromirror of the DMD 4 to form a light-shielding portion on the wafer surface, it is possible to additionally expose the numbers, letters, and patterns as shown in FIG. In addition, the numbers, letters, and patterns formed on the wafer 10 are
It can be used as an indication of the product lot number. In this case, in order to obtain a sharp (high-resolution) number, character, or pattern on the wafer 10, the DMD 4 is positioned at a position optically conjugate with the wafer 10, that is, near the incident surface of the fly-eye lens 5. Is preferred.

【0035】なお、上述の実施例では、超高圧水銀ラン
プを光源とする露光装置に本発明を適用した例を示した
が、たとえばエキシマレーザー等の他の光源を使用した
一般の露光装置に本発明を適用することができる。ま
た、上述の実施例では、投影光学系の像面において照度
分布を検出しているが、本発明を一般の照明光学系に適
用する場合にはマスク面に対応する面において照度分布
を検出して照度分布の均一化を図ることができる。
In the above embodiments, the present invention is applied to an exposure apparatus using an ultrahigh pressure mercury lamp as a light source, but the present invention is applied to a general exposure apparatus using another light source such as an excimer laser. The invention can be applied. Further, in the above embodiment, the illuminance distribution is detected on the image plane of the projection optical system, but when the present invention is applied to a general illumination optical system, the illuminance distribution is detected on the surface corresponding to the mask surface. Therefore, the illuminance distribution can be made uniform.

【0036】[0036]

【効果】以上説明したように、本発明によれば、光偏向
手段としてDMDを使用することにより、従来技術にお
けるシャッター、ミラーおよびレチクルブラインドが不
要となる。したがって、被照射面上において均一な照度
分布を得ることのできる、コンパクトで軽量な照明光学
系および該光学系を備えた露光装置を実現することがで
きる。さらに、被照射面上における照度分布を検出し、
検出結果に基づいてDMDの各マイクロミラーの向きを
適宜制御することによって、被照射面上の照度分布をほ
ぼ均一に随時補正することができる。
As described above, according to the present invention, by using the DMD as the light deflecting means, the shutter, the mirror and the reticle blind in the prior art are unnecessary. Therefore, it is possible to realize a compact and lightweight illumination optical system capable of obtaining a uniform illuminance distribution on the illuminated surface and an exposure apparatus equipped with the optical system. Furthermore, it detects the illuminance distribution on the illuminated surface,
By appropriately controlling the direction of each micromirror of the DMD based on the detection result, the illuminance distribution on the irradiated surface can be corrected almost uniformly at any time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる照明光学系および該光
学系を備えた露光装置の構成を概略的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of an illumination optical system and an exposure apparatus having the optical system according to an embodiment of the present invention.

【図2】図1のDMDの各マイクロミラーの構成を概略
的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a configuration of each micromirror of the DMD shown in FIG.

【図3】図2に対応する図であって、DMD基板上に並
んで形成された各マイクロミラーの構成を概略的に示す
断面図である。
FIG. 3 is a cross-sectional view corresponding to FIG. 2 and schematically showing the configuration of each micromirror formed side by side on the DMD substrate.

【図4】DMDの作用によりウエハ上に形成された数字
や文字やパターンを示す図である。
FIG. 4 is a diagram showing numbers, characters, and patterns formed on a wafer by the action of DMD.

【図5】従来の露光装置の構成を概略的に示す図であ
る。
FIG. 5 is a diagram schematically showing a configuration of a conventional exposure apparatus.

【図6】従来の露光装置におけるシャッターの構成を概
略的に示す斜視図である。
FIG. 6 is a perspective view schematically showing the structure of a shutter in a conventional exposure apparatus.

【図7】従来の露光装置におけるレチクルブラインドの
構成を概略的に示す図である。
FIG. 7 is a diagram schematically showing a configuration of a reticle blind in a conventional exposure apparatus.

【符号の説明】[Explanation of symbols]

1 光源 2 楕円鏡 3 コリメートレンズ 4 DMD 5 フライアイレンズ 6 折り曲げミラー 7 コンデンサレンズ 8 マスク 9 投影光学系 10 ウエハ 11 ウエハステージ 12 定盤 13 照度センサー 14 制御系 1 Light Source 2 Elliptical Mirror 3 Collimating Lens 4 DMD 5 Fly-eye Lens 6 Bending Mirror 7 Condenser Lens 8 Mask 9 Projection Optical System 10 Wafer 11 Wafer Stage 12 Surface Plate 13 Illuminance Sensor 14 Control System

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定の物体面をほぼ均一に照明する照明
光学系において、 ほぼ平行な照明光束を供給するための光源手段と、 互いに独立に向きを変化させることのできる多数の微小
反射面を有し、該多数の微小反射面の各々により前記光
源手段からの照明光束を反射して偏向するための光偏向
手段と、 前記光偏向手段で反射された照明光束に基づいて複数の
光源像を形成するための多光源像形成手段と、 前記多光源像形成手段からの光束を集光して前記物体面
上を重畳的に照明するコンデンサ光学系と、 を備えていることを特徴とする照明光学系。
1. An illumination optical system for illuminating a predetermined object plane substantially uniformly, comprising: a light source means for supplying a substantially parallel illumination light flux; and a large number of minute reflecting surfaces capable of changing their directions independently of each other. And a plurality of light source images based on the illumination light flux reflected by the light deflection means, and the light deflection means for reflecting and deflecting the illumination light flux from the light source means by each of the plurality of minute reflection surfaces. An illumination characterized by comprising: a multi-light source image forming means for forming the light source; and a condenser optical system for condensing a light flux from the multi-light source image forming means to illuminate the object surface in a superimposed manner. Optical system.
【請求項2】 前記物体面上の照度分布を検出するため
の検出手段と、 前記物体面上の照度分布がほぼ均一になるように、前記
検出手段の出力に基づいて前記光偏向手段の多数の微小
反射面の各々の向きを制御するための制御手段と、 をさらに備えていることを特徴とする請求項1に記載の
照明光学系。
2. A detecting means for detecting an illuminance distribution on the object plane, and a plurality of the light deflecting means based on the output of the detecting means so that the illuminance distribution on the object plane becomes substantially uniform. The illumination optical system according to claim 1, further comprising: a control unit for controlling the orientation of each of the minute reflection surfaces of.
【請求項3】 前記光偏向手段はDMDであり、該DM
Dは前記多光源像形成手段の近傍に位置決めされている
ことを特徴とする請求項1または2に記載の照明光学
系。
3. The light deflecting means is a DMD, and the DM
The illumination optical system according to claim 1 or 2, wherein D is positioned near the multi-light source image forming means.
【請求項4】 所定のパターンが形成されたマスクを照
明するための照明光学系と、前記マスクのパターンの像
を感光基板上に形成するための投影光学系とを備えた露
光装置において、 前記照明光学系は、 ほぼ平行な照明光束を供給するための光源手段と、 互いに独立に向きを変化させることのできる多数の微小
反射面を有し、該多数の微小反射面の各々により前記光
源手段からの照明光束を反射して偏向するための光偏向
手段と、 前記光偏向手段で反射された照明光束に基づいて複数の
光源像を形成するための多光源像形成手段と、 前記多光源像形成手段からの光束を集光して前記物体面
上を重畳的に照明するコンデンサ光学系と、 を備えていることを特徴とする露光装置。
4. An exposure apparatus comprising an illumination optical system for illuminating a mask on which a predetermined pattern is formed, and a projection optical system for forming an image of the pattern of the mask on a photosensitive substrate, The illumination optical system has a light source means for supplying a substantially parallel illumination light flux, and a plurality of minute reflecting surfaces whose directions can be changed independently of each other. The light source means is provided by each of the plurality of minute reflecting surfaces. A light deflecting means for reflecting and deflecting the illumination light flux from the light source, a multi-light source image forming means for forming a plurality of light source images based on the illumination light flux reflected by the light deflecting means, and the multi-light source image An exposure apparatus comprising: a condenser optical system that condenses a light beam from the forming unit and illuminates the object surface in a superimposed manner.
【請求項5】 前記感光基板上の照度分布を検出するた
めの検出手段と、 前記感光基板上の照度分布がほぼ均一になるように、前
記検出手段の出力に基づいて前記光偏向手段の多数の微
小反射面の各々の向きを制御するための制御手段と、 をさらに備えていることを特徴とする請求項4に記載の
露光装置。
5. A detector for detecting an illuminance distribution on the photosensitive substrate, and a plurality of the light deflectors based on the output of the detector so that the illuminance distribution on the photosensitive substrate becomes substantially uniform. 5. The exposure apparatus according to claim 4, further comprising: a control unit for controlling the direction of each of the minute reflection surfaces of.
【請求項6】 前記光偏向手段はDMDであり、該DM
Dは前記多光源像形成手段の近傍に位置決めされている
ことを特徴とする請求項4または5に記載の露光装置。
6. The light deflecting means is a DMD, and the DM
The exposure apparatus according to claim 4, wherein D is positioned near the multi-light source image forming means.
JP7139936A 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system Pending JPH08313842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7139936A JPH08313842A (en) 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7139936A JPH08313842A (en) 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system

Publications (1)

Publication Number Publication Date
JPH08313842A true JPH08313842A (en) 1996-11-29

Family

ID=15257126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7139936A Pending JPH08313842A (en) 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system

Country Status (1)

Country Link
JP (1) JPH08313842A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775570A3 (en) * 1995-11-21 1997-08-20 Cmet Inc Intensity homogenized surface exposure type photo-solidification modeling apparatus
US6288830B1 (en) * 1998-05-13 2001-09-11 Ricoh Microelectronics Company, Ltd. Optical image forming method and device, image forming apparatus and aligner for lithography
JP2002119468A (en) * 2000-10-13 2002-04-23 Olympus Optical Co Ltd Endoscope
EP1262836A1 (en) * 2001-06-01 2002-12-04 Asml Lithographic apparatus
US7015491B2 (en) 2001-06-01 2006-03-21 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
JP2006216951A (en) * 2005-01-31 2006-08-17 Asml Holding Nv System and method for performing imaging emphasizing by calculating customized optimum pupil field and lighting mode
WO2006085626A1 (en) * 2005-02-14 2006-08-17 Nikon Corporation Exposure method and system, and method for fabricating device
WO2007066679A1 (en) 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007114024A1 (en) 2006-04-03 2007-10-11 Nikon Corporation Projection optical system, aligner, and method for fabricating device
WO2007116752A1 (en) 2006-04-05 2007-10-18 Nikon Corporation Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007138834A1 (en) 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
WO2008001871A1 (en) 2006-06-30 2008-01-03 Nikon Corporation Maintenance method, exposure method and apparatus and device manufacturing method
WO2008007633A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
WO2008007632A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
JP2008118131A (en) * 2006-10-31 2008-05-22 Asml Netherlands Bv Lithography apparatus and method
WO2009026947A1 (en) * 2007-08-30 2009-03-05 Carl Zeiss Smt Ag Illumination system for illuminating a mask in a microlithographic projection exposure apparatus
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JP2009105378A (en) * 2007-08-17 2009-05-14 Asml Holding Nv Real time telecentricity measurement
WO2009078224A1 (en) * 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US7557997B2 (en) 2006-09-28 2009-07-07 Nikon Corporation Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element
US20100102487A1 (en) * 2008-10-28 2010-04-29 Molecular Imprints, Inc. Optical System for Use in Stage Control
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR20100095566A (en) * 2007-11-06 2010-08-31 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US7842525B2 (en) 1999-11-24 2010-11-30 Micronic Mydata AB Method and apparatus for personalization of semiconductor
JP2010272640A (en) * 2009-05-20 2010-12-02 Nikon Corp Lighting apparatus, exposure apparatus and device manufacturing method
JP2010271685A (en) * 2009-04-25 2010-12-02 National Institute Of Advanced Industrial Science & Technology Illumination apparatus and illumination method for obtaining illuminance with high uniformity
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
JP2011138048A (en) * 2009-12-28 2011-07-14 Nikon Corp Spatial light modulator, exposure device and method of manufacturing them
JP2011528856A (en) * 2008-07-22 2011-11-24 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for correcting polarization distribution in microlithography projection exposure apparatus and microlithography projection exposure apparatus
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8144308B2 (en) 2007-11-08 2012-03-27 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US20130050796A1 (en) * 1997-05-12 2013-02-28 Light And Sound Design Ltd. Electronically Controlled Stage Lighting System
US8665418B2 (en) 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
JP2014110408A (en) * 2012-12-04 2014-06-12 Canon Inc Exposure method, exposure device, and method of manufacturing article
US8792081B2 (en) 2007-11-06 2014-07-29 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9235127B2 (en) 2010-03-05 2016-01-12 Mycronic AB Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2020112419A (en) * 2019-01-10 2020-07-27 株式会社エスケーエレクトロニクス Spatial optical modulation element inspection device and inspection method
WO2022215692A1 (en) * 2021-04-09 2022-10-13 株式会社ニコン Exposure apparatus, method for manufacturing device, method for manufacturing flat panel display, and exposure method

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775570A3 (en) * 1995-11-21 1997-08-20 Cmet Inc Intensity homogenized surface exposure type photo-solidification modeling apparatus
US9036245B2 (en) * 1997-05-12 2015-05-19 Production Resource Group, Llc Electronically controlled stage lighting system
US20130050796A1 (en) * 1997-05-12 2013-02-28 Light And Sound Design Ltd. Electronically Controlled Stage Lighting System
US6288830B1 (en) * 1998-05-13 2001-09-11 Ricoh Microelectronics Company, Ltd. Optical image forming method and device, image forming apparatus and aligner for lithography
US7842525B2 (en) 1999-11-24 2010-11-30 Micronic Mydata AB Method and apparatus for personalization of semiconductor
JP2002119468A (en) * 2000-10-13 2002-04-23 Olympus Optical Co Ltd Endoscope
JP4610713B2 (en) * 2000-10-13 2011-01-12 オリンパス株式会社 Endoscope device
EP1262836A1 (en) * 2001-06-01 2002-12-04 Asml Lithographic apparatus
US6737662B2 (en) 2001-06-01 2004-05-18 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product
US7015491B2 (en) 2001-06-01 2006-03-21 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US8634060B2 (en) 2004-03-16 2014-01-21 Carl Zeiss Smt Gmbh Method for a multiple exposure, microlithography projection exposure installation and a projection system
JP2006216951A (en) * 2005-01-31 2006-08-17 Asml Holding Nv System and method for performing imaging emphasizing by calculating customized optimum pupil field and lighting mode
WO2006085626A1 (en) * 2005-02-14 2006-08-17 Nikon Corporation Exposure method and system, and method for fabricating device
WO2007066679A1 (en) 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8027020B2 (en) 2006-02-16 2011-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
US7916270B2 (en) 2006-03-03 2011-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007114024A1 (en) 2006-04-03 2007-10-11 Nikon Corporation Projection optical system, aligner, and method for fabricating device
WO2007116752A1 (en) 2006-04-05 2007-10-18 Nikon Corporation Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007138834A1 (en) 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
WO2008001871A1 (en) 2006-06-30 2008-01-03 Nikon Corporation Maintenance method, exposure method and apparatus and device manufacturing method
WO2008007632A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8325324B2 (en) 2006-07-12 2012-12-04 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
WO2008007633A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US7557997B2 (en) 2006-09-28 2009-07-07 Nikon Corporation Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element
JP2008118131A (en) * 2006-10-31 2008-05-22 Asml Netherlands Bv Lithography apparatus and method
US8665418B2 (en) 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US7999939B2 (en) 2007-08-17 2011-08-16 Asml Holding N.V. Real time telecentricity measurement
JP2009105378A (en) * 2007-08-17 2009-05-14 Asml Holding Nv Real time telecentricity measurement
US9007563B2 (en) 2007-08-30 2015-04-14 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
WO2009026947A1 (en) * 2007-08-30 2009-03-05 Carl Zeiss Smt Ag Illumination system for illuminating a mask in a microlithographic projection exposure apparatus
US10241416B2 (en) 2007-08-30 2019-03-26 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9946162B2 (en) 2007-11-06 2018-04-17 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
KR20160090916A (en) * 2007-11-06 2016-08-01 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
US8792081B2 (en) 2007-11-06 2014-07-29 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9551942B2 (en) 2007-11-06 2017-01-24 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US10261421B2 (en) 2007-11-06 2019-04-16 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
KR20150032755A (en) * 2007-11-06 2015-03-27 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
US9268235B2 (en) 2007-11-06 2016-02-23 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20100095566A (en) * 2007-11-06 2010-08-31 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8144308B2 (en) 2007-11-08 2012-03-27 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8953147B2 (en) 2007-11-08 2015-02-10 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009078224A1 (en) * 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9128389B2 (en) 2008-07-22 2015-09-08 Carl Zeiss Smt Gmbh Method for modifying a polarization distribution in microlithographic projection exposure apparatus, and microlithographic projection exposure apparatus
JP2011528856A (en) * 2008-07-22 2011-11-24 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for correcting polarization distribution in microlithography projection exposure apparatus and microlithography projection exposure apparatus
JP2012507173A (en) * 2008-10-28 2012-03-22 モレキュラー・インプリンツ・インコーポレーテッド Optical system for stage control
US8345242B2 (en) * 2008-10-28 2013-01-01 Molecular Imprints, Inc. Optical system for use in stage control
US20100102487A1 (en) * 2008-10-28 2010-04-29 Molecular Imprints, Inc. Optical System for Use in Stage Control
JP2010271685A (en) * 2009-04-25 2010-12-02 National Institute Of Advanced Industrial Science & Technology Illumination apparatus and illumination method for obtaining illuminance with high uniformity
JP2010272640A (en) * 2009-05-20 2010-12-02 Nikon Corp Lighting apparatus, exposure apparatus and device manufacturing method
JP2011138048A (en) * 2009-12-28 2011-07-14 Nikon Corp Spatial light modulator, exposure device and method of manufacturing them
US9235127B2 (en) 2010-03-05 2016-01-12 Mycronic AB Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
JP2014110408A (en) * 2012-12-04 2014-06-12 Canon Inc Exposure method, exposure device, and method of manufacturing article
JP2020112419A (en) * 2019-01-10 2020-07-27 株式会社エスケーエレクトロニクス Spatial optical modulation element inspection device and inspection method
WO2022215692A1 (en) * 2021-04-09 2022-10-13 株式会社ニコン Exposure apparatus, method for manufacturing device, method for manufacturing flat panel display, and exposure method

Similar Documents

Publication Publication Date Title
JPH08313842A (en) Lighting optical system and aligner provided with the optical system
JP5326259B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP3158691B2 (en) Exposure apparatus and method, and illumination optical apparatus
JP6086267B2 (en) Illumination optical system, illumination method, exposure apparatus, and device manufacturing method
WO2007058188A1 (en) Exposure apparatus, exposure method and device manufacturing method
US5798824A (en) Exposure apparatus correcting illuminance distribution
KR19980703208A (en) Scanning lithography system with double pass wine-dyson optics
KR19980703209A (en) Scaling for Small Field Scanning
JP3531297B2 (en) Projection exposure apparatus and projection exposure method
JP3743576B2 (en) Projection exposure apparatus and method for manufacturing semiconductor element or liquid crystal display element using the same
JP5700272B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR19980703210A (en) Scanning Lithography System with Reverse Motion
JP2000269114A (en) Illuminating device, aligner and exposure method
US7528932B2 (en) SLM direct writer
JP2003075768A (en) Optical system for projector
JP5360379B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
KR100481756B1 (en) Scanning exposure method and scanning exposure apparatus
JPH08139009A (en) Illumination optical apparatus
JP5515323B2 (en) Projection optical apparatus, exposure apparatus, and device manufacturing method
JP2011222841A (en) Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
JP5055649B2 (en) Projection optical apparatus, exposure apparatus, device manufacturing method, image plane information detection apparatus, and projection optical system adjustment method
TW202340878A (en) Exposure device
JPH10209019A (en) Exposure pattern projection device and aligner
JP2011029596A (en) Lighting optical system, exposure apparatus, and device manufacturing method
JP2010199561A (en) Exposure apparatus, exposure method, and method of manufacturing device