JPH08313842A - Lighting optical system and aligner provided with the optical system - Google Patents

Lighting optical system and aligner provided with the optical system

Info

Publication number
JPH08313842A
JPH08313842A JP7139936A JP13993695A JPH08313842A JP H08313842 A JPH08313842 A JP H08313842A JP 7139936 A JP7139936 A JP 7139936A JP 13993695 A JP13993695 A JP 13993695A JP H08313842 A JPH08313842 A JP H08313842A
Authority
JP
Japan
Prior art keywords
optical system
means
light
light source
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7139936A
Other languages
Japanese (ja)
Inventor
Yutaka Iwasaki
Kazuya Okamoto
Kenichi Yamamuro
研一 山室
和也 岡本
豊 岩崎
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, 株式会社ニコン filed Critical Nikon Corp
Priority to JP7139936A priority Critical patent/JPH08313842A/en
Publication of JPH08313842A publication Critical patent/JPH08313842A/en
Application status is Pending legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. REMA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask

Abstract

PURPOSE: To obtain a uniform illuminance distribution on irradiated surfaces and to obtain a lighting optical system which is compact in size and right in weight by providing the light deflecting means having many minute reflection surfaces whose directions are made to be independently changed each other.
CONSTITUTION: Illuminating light from a light source 1 is guided to a mask 8 and a wafer 10 being irradiated surfaces by making all micromirrors consisting of a DMD 4 as a light deflecting means ON-states and, moreover, is guided to another optical system like an alignment system by making them OFF-states. That is, the DMD 4 serves functions of shutters and mirrors of a conventional lighting optical system. Further, this system can stitpulate the sectional form of the parallel luminous flux made incident on fly eye lenses 5 and in its turn the lighting area on the mask 8 and the wafer 10 by making only micromirrors of a specific area among micromirrors consisting of the DMD 4 ON-states by a control means 14. That is, the DMD 4 serves the function of a rectile blind in the conventional lighting optical system.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は照明光学系および該光学系を備えた露光装置に関し、特に半導体素子または液晶表示素子等を製造するための露光装置において転写用のパターンが形成されたマスクやレチクル等を均一な照度で照明するための照明光学系に関する。 BACKGROUND OF THE INVENTION This invention relates to an exposure apparatus having an illumination optical system and the optical system, Ya mask pattern to be transferred is formed in the exposure apparatus, particularly for manufacturing a semiconductor element or a liquid crystal display element, etc. an illumination optical system for illuminating a reticle or the like with a uniform illuminance.

【0002】 [0002]

【従来の技術】高集積半導体素子等を製造するための露光装置に使用される照明光学系では、被照明物体面上における優れた照度均一性が要求される。 BACKGROUND OF THE INVENTION highly integrated semiconductor device such as an illumination optical system used in an exposure apparatus for manufacturing, excellent illumination uniformity on the illuminated object surface is required. このため、従来のこの種の照明光学系では、オプティカルインテグレータのような多光源像形成手段を介して被照射面を重畳的に照明する構成が採用されている。 Therefore, in this type of conventional illumination optical system, configured to superposedly illuminate the illuminated surface through a multi-light source image forming means, such as optical integrator is employed.

【0003】図5は、従来の露光装置の構成を概略的に示す図である。 [0003] Figure 5 is a diagram schematically showing a configuration of a conventional exposure apparatus. 図示の装置は、たとえば照明光を供給するための光源51を備えている。 The depicted apparatus, for example, includes a light source 51 for supplying illumination light. 光源51から射出された照明光束は、楕円鏡52を介して一旦集光された後、 Illumination light flux emitted from the light source 51 is once condensed through the elliptical mirror 52,
ミラー54に入射する。 Incident on the mirror 54. ミラー54によって図中右側に反射された照明光は、コリメートレンズ55によって平行光束に変換された後、オプティカルインテグレータとしてのフライアイレンズ57に入射する。 The illumination light reflected on the right side in the drawing by the mirror 54 is converted into a parallel beam by a collimator lens 55, is incident on the fly-eye lens 57 as an optical integrator.

【0004】フライアイレンズ57を通過した照明光は、ミラー58およびコンデンサレンズ59を介した後、パターンが形成されたレチクル(すなわちマスク) [0004] The reticle illumination light passed through the fly-eye lens 57, which after passing through the mirror 58 and the condenser lens 59, a pattern is formed (i.e., mask)
60を重畳的に照明する。 60 to superposedly illuminate. マスク60を透過した光は、 Light transmitted through the mask 60,
投影光学系61を介して感光基板であるウエハ62に達する。 Via the projection optical system 61 reaches the wafer 62 which is a photosensitive substrate. こうして、ウエハ62上には、レチクル60のパターン像が形成される。 Thus, on the wafer 62, the pattern image of the reticle 60 is formed. なお、光源51とミラー54との間の光路中にはシャッター53が設けられている。 Incidentally, the shutter 53 is provided in the optical path between the light source 51 and the mirror 54. また、コリメートレンズ55とフライアイレンズ57との間の平行光路中には、レチクルブラインド56が設けられている。 Further, the parallel optical path between the collimating lens 55 and the fly eye lens 57, a reticle blind 56 is provided.

【0005】図6は、従来の露光装置におけるシャッターの構成を概略的に示す斜視図である。 [0005] Figure 6 is a perspective view schematically illustrating the configuration of a shutter in a conventional exposure apparatus. 図6に示すように、従来のシャッターは機械羽根回転方式であり、シャッター基板67と、モーター68の出力軸に連結された回転羽根66とを備えている。 As shown in FIG. 6, a conventional shutter is mechanically vane rotary type, and a shutter board 67, and a rotating blade 66 connected to an output shaft of the motor 68. シャッター基板67には、光源51からの照明光65を通過させてミラー54 The shutter board 67 is passed through the illumination light 65 from the light source 51 a mirror 54
に導くための開口部69が形成されている。 It is formed an opening 69 for guiding the. この開口部69は、モーター68に駆動された回転羽根66の回転により随時遮蔽されるようになっている。 The opening 69 is adapted to be shielded from time to time by the rotation of the rotary blade 66 which is driven to the motor 68. そして、開口部69が回転羽根66により遮蔽された状態では、光源51からの照明光65は回転羽根66で反射され、たとえばアライメント光学系のような他の適当な光学系に導かれる。 In a state where the opening 69 is shielded by the rotary blade 66, the illumination light 65 from the light source 51 is reflected by the rotating blades 66, for example, it led to other suitable optical system such as an alignment optical system.

【0006】一方、図7は、従来の露光装置におけるレチクルブラインドの構成を概略的に示す図である。 On the other hand, FIG. 7 is a diagram schematically showing the configuration of the reticle blind in a conventional exposure apparatus. なお、図7は、図5の光軸AXに垂直な面におけるレチクルブラインドの構成を示している。 Incidentally, FIG. 7 shows the configuration of the reticle blind on a surface perpendicular to the optical axis AX in FIG. 図7に示すように、 As shown in FIG. 7,
従来のレチクルブラインドは一対のL字型ブラインド羽根71および72を備えている。 Conventional reticle blind is provided with a pair of L-shaped blind vanes 71 and 72. ブラインド羽根71 Blind wings 71
は、駆動モータ73によって図中水平方向に駆動モータ74によって鉛直方向にそれぞれガイドレール(不図示)に沿ってスライド駆動される。 Along the respective guide rails in the vertical direction by a drive motor 74 in the horizontal direction in the drawing (not shown) is slidably driven by a drive motor 73.

【0007】また、ブラインド羽根72は、駆動モータ75によって図中水平方向に駆動モータ76によって鉛直方向にそれぞれガイドレール(不図示)に沿ってスライド駆動される。 Further, the blind vanes 72, along the respective guide rails in the vertical direction by a drive motor 76 in the horizontal direction in the drawing (not shown) is slidably driven by a drive motor 75. こうして、一対のL字型ブラインド羽根71および72によって形成される開口部77を、所望の矩形状にすることができる。 Thus, an opening 77 which is formed by a pair of L-shaped blind vanes 71 and 72 can be the desired rectangular shape. このように、レチクルブラインド56は開口部が可変の視野絞りであって、その開口部の形状を適宜変化させることによってレチクル60上において所望形状の照明領域を得ることができる。 Thus, the reticle blind 56 is an aperture stop unit variable field of view can be obtained an illumination area having a desired shape on the reticle 60 by appropriately changing the shape of the opening.

【0008】 [0008]

【発明が解決しようとする課題】しかしながら、上述のような従来の露光装置の照明光学系では、シャッター5 [SUMMARY OF THE INVENTION However, in the illumination optical system of a conventional exposure apparatus as described above, the shutter 5
3、ミラー54およびレチクルブラインド56の各部品がそれぞれ別体に構成されている。 3, each part of the mirror 54 and the reticle blind 56 is configured separately from each other. したがって、光学系全体として部品点数が多く、コストダウンが困難であった。 Therefore, the number of parts as the entire optical system is large, cost reduction is difficult. また、多くの部品点数分のスペースが必要となり、 Also, many of the parts amount of space required,
装置のコンパクト化および軽量化が困難であった。 Compact and lightweight devices is difficult. しかも、光学系の組立時において、シャッター53、ミラー54およびレチクルブラインド56の各部品の位置決め調整が難しく、被照射面であるレチクル60やウエハ6 Moreover, during assembly of the optical system, a shutter 53, a positioning adjustment of each part of the mirror 54 and the reticle blind 56 is difficult, the reticle 60 and the wafer 6 is a surface to be illuminated
2上において均一な照度分布を得ることが困難であった。 To obtain a uniform illuminance distribution on the 2 difficult.

【0009】露光装置の照明光学系では、最近の超LS [0009] In the illumination optical system of the exposure apparatus, the recent super LS
Iの一層の高集積度化に伴って、照明の均一性には一段と厳しい仕様が要求されるようになっている。 With the further higher integration of I, so that the stricter specification is required for the uniformity of illumination. しかしながら、上述の構成を有する照明光学系では、たとえば光源のシフトに起因して照明の均一性が時間の経過とともに変化する、いわゆる照明の均一性の経時的変化が発生する。 However, in the illumination optical system having the above-described configuration, for example, homogeneity of the resulting to lighting shift of the light source changes over time, temporal change in the uniformity of a so-called illumination occurs. また、フライアイレンズ等に起因して照明の均一性が時間の経過とは無関係に損なわれるという、いわゆる照明の固定的不均一性が存在する。 Further, that the uniformity of illumination due to the fly-eye lens and the like are independently impair the passage of time, there is a fixed non-uniformity of a so-called illumination. 従来の照明光学系では、上述のような照明の均一性の経時的変化および照明の固定的不均一性を補正する手段を備えていなかった。 In a conventional illumination optical system, it did not include means for correcting a fixed non-uniformity of change over time and illumination uniformity as described above illumination.

【0010】本発明は、前述の課題に鑑みてなされたものであり、被照射面上において均一な照度分布を得ることのできる、コンパクトで軽量な照明光学系および該光学系を備えた露光装置を提供することを目的とする。 [0010] The present invention has been made in view of the problems described above can be obtained a uniform illuminance distribution on the illuminated surface, an exposure apparatus equipped with a compact and lightweight illuminating optical system and the optical system an object of the present invention is to provide a.

【0011】 [0011]

【課題を解決するための手段】前記課題を解決するために、第1の発明においては、所定の物体面をほぼ均一に照明する照明光学系において、ほぼ平行な照明光束を供給するための光源手段と、互いに独立に向きを変化させることのできる多数の微小反射面を有し、該多数の微小反射面の各々により前記光源手段からの照明光束を反射して偏向するための光偏向手段と、前記光偏向手段で反射された照明光束に基づいて複数の光源像を形成するための多光源像形成手段と、前記多光源像形成手段からの光束を集光して前記物体面上を重畳的に照明するコンデンサ光学系と、を備えていることを特徴とする照明光学系を提供する。 In order to solve the above problems SUMMARY OF THE INVENTION In the first invention, in the illumination optical system for substantially uniformly illuminating a predetermined object surface, a light source for supplying a substantially parallel illuminating light beam means, having a number of small reflecting surfaces which can change the direction independently of each other, a light deflector for deflecting and reflecting the illumination light beam from said light source means by each of the minute reflecting surface of said multiple , superimposing a multi light source image forming means for forming a plurality of light source images on the basis of the illumination light flux reflected, the above object surface a light beam converged from the multi-light source image forming means in said light deflecting means it provides an illumination optical system, characterized in that and a condenser optical system for illuminated.

【0012】第1の発明の好ましい態様によれば、前記物体面上の照度分布を検出するための検出手段と、前記物体面上の照度分布がほぼ均一になるように、前記検出手段の出力に基づいて前記光偏向手段の多数の微小反射面の各々の向きを制御するための制御手段と、をさらに備えている。 [0012] According to a preferred embodiment of the first invention, a detection means for detecting the illuminance distribution on the object plane, as the illuminance distribution on the object surface is substantially uniform, the output of said detection means and control means for controlling the number of each of the orientation of the micro reflecting surface of the light deflection means on the basis of further comprises a.

【0013】また、前記課題を解決するために、第2の発明においては、所定のパターンが形成されたマスクを照明するための照明光学系と、前記マスクのパターンの像を感光基板上に形成するための投影光学系とを備えた露光装置において、前記照明光学系は、ほぼ平行な照明光束を供給するための光源手段と、互いに独立に向きを変化させることのできる多数の微小反射面を有し、該多数の微小反射面の各々により前記光源手段からの照明光束を反射して偏向するための光偏向手段と、前記光偏向手段で反射された照明光束に基づいて複数の光源像を形成するための多光源像形成手段と、前記多光源像形成手段からの光束を集光して前記物体面上を重畳的に照明するコンデンサ光学系と、を備えていることを特徴とする露光装置を提供す [0013] In order to solve the above problems, in the second invention, an illumination optical system for illuminating a mask on which a predetermined pattern is formed, forming an image of the pattern of the mask onto the photosensitive substrate an exposure apparatus that includes a projection optical system for the illumination optical system includes a light source means for supplying a substantially parallel illuminating light bundle, a number of the micro reflecting surface which can change the direction independently of each other a, a light deflector for deflecting and reflecting the illumination light beam from said light source means by each of the minute reflecting surface of said multiple, the plurality of light source images on the basis of the illumination light beam reflected by the light deflection means a multi-light source image forming means for forming, the exposure, characterized in that with a light beam focused and a, a condenser optical system for superimposing illuminate on the object plane from a multi-light source image forming means to provide an apparatus .

【0014】第2の発明の好ましい態様によれば、前記感光基板上の照度分布を検出するための検出手段と、前記感光基板上の照度分布がほぼ均一になるように、前記検出手段の出力に基づいて前記光偏向手段の多数の微小反射面の各々の向きを制御するための制御手段と、をさらに備えている。 [0014] According to a preferred embodiment of the second invention, the detecting means for detecting the illuminance distribution on the photosensitive substrate, as the illuminance distribution on the photosensitive substrate becomes substantially uniform, the output of said detection means and control means for controlling the number of each of the orientation of the micro reflecting surface of the light deflection means on the basis of further comprises a.

【0015】 [0015]

【作用】本発明では、互いに独立に向きを変化させることのできる多数の微小反射面を有する光偏向手段を備え、この多数の微小反射面の各々により光源手段からの照明光を反射して偏向する。 In the present invention, it includes a light deflector having a large number of micro reflecting surface which can change the direction independently of each other, reflects the illumination light from the light source means by each of the plurality of micro reflecting surface deflection to. このような光偏向手段として、例えばDMD(Digital Micromirror Deviceまたは As such an optical deflection means, for example, DMD (Digital Micromirror Device or
Deformable Micromirror Device)を使用することができる Can be used Deformable Micromirror Device)

【0016】DMDは、近年新たに提案されているマイクロディバイスである。 [0016] The DMD is a micro-devices that have been newly proposed in recent years. たとえばソリッド ステイト For example, Solid State
テクノロジ(Solid State Technology)の1994年7 1994 technology (Solid State Technology) 7
月号の第63頁乃至第68頁、エス アイ ディー(SI 63 pp to 68 pages No. month, S. IDC (SI
D)1993年ダイジェスト版の第1012頁乃至第10 D) the first of the 1993 Digest version of 1012 pages to tenth
15頁、エス ピー アイ イー クリティカル レヴューズ シリーズ(SPIE Critical Reviews Series)第1150巻の第86頁乃至第102頁等に開示されているように、DMDは碁盤の目状に配列された多数のマイクロミラー(微小反射ミラー)からなる。 15 pp., S. P. Ai E. Critical Revuyuzu series (SPIE Critical Reviews Series) as disclosed in the 86 page, second page 102, etc. of the 1150 volume, numerous micromirrors DMD is arranged in a grid pattern consisting of (micro-reflection mirror).

【0017】このように、DMDは微小なマイクロミラーを集積化したものであり、各マイクロミラー毎に設けられた電極とマイクロミラーとの間の静電引力によってマイクロミラーの角度(すなわち向き)が変化する。 [0017] Thus, DMD is obtained by integrating a tiny micro-mirrors, the angle of the micromirror by electrostatic attraction between the electrodes and the micro mirror provided in each micro-mirror (i.e. orientation) of Change. すなわち、各マイクロミラーの向きは、それぞれ個別に駆動制御されるように構成されている。 That is, the orientation of the micromirrors are respectively configured to be individually driven and controlled. ちなみに、各マイクロミラーはたとえば約20μm×20μmの正方形状であり、1つのDMDはたとえば数十万乃至数百万個のマイクロミラーからなっている。 Incidentally, each micro-mirror is, for example, about 20 [mu] m × 20 [mu] m square, one DMD consists several hundreds of thousand to several millions of micro mirrors, for example.

【0018】本発明において、DMDの各マイクロミラーは、光源からの照明光を反射してフライアイレンズのような多光源像形成手段に導くON状態と、照明光を反射してフライアイレンズには入射させないOFF状態との間で、それぞれ個別に駆動制御される。 [0018] In the present invention, each of the micromirrors of the DMD, the ON state leading to multi-light source image forming means, such as a fly-eye lens and reflects the illumination light from the light source, the fly-eye lens and reflects the illumination light in between the OFF state of not incident, each of which is individually driven and controlled. したがって、 Therefore,
DMDを構成するすべてのマイクロミラーをON状態にすることにより光源からの照明光を被照射面に導き、すべてのマイクロミラーをOFF状態にすることにより光源からの照明光をアライメント系のような他の光学系に導くことができる。 All micro mirrors constituting the DMD leads to illumination light from the light source by the ON state to the illuminated surface, others like alignment system illumination light from a light source by all the micromirrors in the OFF state it can be guided in the optical system. すなわち、DMDは、従来の露光装置の照明光学系におけるシャッターおよびミラーの機能を果たすことができる。 That, DMD can serve shutter and mirrors in the illumination optical system of a conventional exposure apparatus.

【0019】また、DMDを構成するマイクロミラーのうち特定の領域のマイクロミラーだけをON状態にすることにより、フライアイレンズに入射する平行光束の断面形状をひいては被照射面上の照明領域を規定することができる。 Further, defined by only the ON state micro-mirrors of a particular area of ​​the micro mirrors constituting the DMD, the illumination area on the cross section and thus the illuminated surface of the parallel light beam incident on the fly eye lens can do. すなわち、DMDは、従来の露光装置の照明光学系におけるレチクルブラインドの機能を果たすことができる。 That, DMD can serve reticle blind in the illumination optical system of a conventional exposure apparatus. このように、本発明によれば、1つの光学部品であるDMDの使用により、従来技術におけるシャッター、ミラーおよびレチクルブラインドの機能を果たすことができる。 Thus, according to the present invention, by use of one of an optical component DMD, it is possible to shutter in the prior art, the function of the mirror and the reticle blind play. その結果、シャッター、ミラーおよびレチクルブラインドの各部品の位置決め調整が不要となり、被照射面上において均一な照度分布を得ることができる。 As a result, the shutter, positioning adjustment of each part of the mirror and the reticle blind is not required, it is possible to obtain a uniform illuminance distribution on the surface to be illuminated. また、コンパクトで軽量な照明光学系および該光学系を備えた露光装置を実現することができる。 Further, it is possible to realize an exposure apparatus having a light illumination optical system and the optical system compact.

【0020】さらに、被照射面上の照度分布を検出し、 Furthermore, to detect the illuminance distribution on the illuminated surface,
その結果に基づいてDMDの各マイクロミラーの向きを適宜制御することによって、被照射面上の照度分布をほぼ均一に随時補正することができる。 By appropriately controlling the direction of each of the micromirrors of the DMD based on the result, it is possible to substantially uniformly occasionally correct the illuminance distribution on the illuminated surface. すなわち、前述した照明の均一性の経時的変化や照明の固定的不均一性を随時補正することによって、被照射面上の照度分布の均一性をさらに向上させることができる。 That is, by from time to time correcting the fixed heterogeneity of temporal change and lighting uniformity of illumination as described above, it is possible to further improve the uniformity of the illuminance distribution on the illuminated surface. なお、DMDの各マイクロミラーの許容駆動回数は1.2×10 10程度であり、従来技術におけるレチクルブラインドと比較してはるかに高い耐久性を有する。 Incidentally, the allowable number of times of driving the micromirrors in the DMD is approximately 1.2 × 10 10, has a much higher durability compared to the reticle blind in the prior art.

【0021】 [0021]

【実施例】本発明の実施例を、添付図面に基づいて説明する。 Examples of EXAMPLES The invention will be described with reference to the accompanying drawings. 図1は、本発明の実施例にかかる照明光学系および該光学系を備えた露光装置の構成を概略的に示す図である。 Figure 1 is a diagram schematically showing a configuration of an exposure apparatus with such an illumination optical system and the optical system in the embodiment of the present invention. 図示の露光装置は、たとえば超高圧水銀ランプからなる光源1を備えている。 Exposing the illustrated apparatus, for example, comprises a light source 1 consisting of ultra-high pressure mercury lamp. 光源1は、楕円鏡2の第1 The light source 1, the first ellipsoidal mirror 2
焦点位置に位置決めされている。 It is positioned at the focal point. 光源1から射出された照明光束は楕円鏡2の第2焦点位置に向かって集光される途中で、コリメートレンズ3に入射する。 Illumination light flux emitted from the light source 1 in the course of being focused towards a second focal point of the elliptical mirror 2 and enters the collimator lens 3. そして、コリメートレンズ3によって平行光束に変換された照明光束は、DMD4に入射する。 Then, the illumination light beam is converted into a parallel beam by the collimator lens 3 is incident on DMD4.

【0022】DMD4を構成する各マイクロミラーは、 [0022] each of the micro mirrors constituting the DMD4 is,
制御系14によってON状態とOFF状態との間でそれぞれ個別に駆動制御されるようになっている。 So that the each of which is individually driven and controlled between an ON state and an OFF state by the control system 14. そして、 And,
ON状態のマイクロミラーによって反射された光束が図中右側水平方向に、OFF状態のマイクロミラーによって反射された光束が図中破線Aで示す方向にそれぞれ導かれる。 Light beams reflected by the micromirrors in the ON state in the right horizontal direction in the drawing, the light flux reflected by the micromirrors in the OFF state is respectively guided in the direction indicated by the broken line in the drawing A. DMD4で図中破線Aで示す方向に反射された光は、たとえばアライメント系のような他の適当な光学系(不図示)に導かれる。 Light reflected in the direction indicated by the broken line in the drawing A in DMD4 is guided, for example other suitable optical system such as alignment system (not shown). 一方、DMD4で図中水平方向に反射された光は、フライアイレンズ5に入射する。 On the other hand, the light reflected in a horizontal direction in the drawing in DMD4 enters the fly's eye lens 5.

【0023】フライアイレンズ5に入射した光束は、フライアイレンズ5を構成する複数のレンズエレメントにより二次元的に分割され、フライアイレンズ5の後側焦点位置に複数の光源像を形成する。 The light beam incident on the fly-eye lens 5 is divided into a plurality of the lens elements two-dimensionally constituting the fly's eye lens 5, a plurality of light source images in the back focal position of the fly-eye lens 5. このように、フライアイレンズ5は、DMD4からの光束に基づいて複数の光源像を形成する多光源形成手段を構成している。 Thus, the fly-eye lens 5 constitute a multi-source forming means for forming a plurality of light source images on the basis of the light beam from DMD4.

【0024】複数の光源像からの光束は、図示を省略した開口絞りにより制限された後、折り曲げミラー6で図中下方に反射される。 The light beam from the plurality of light source images, after being limited by the aperture stop which is not shown, is reflected downward in the figure by the folding mirror 6. 折り曲げミラー6で反射された光束は、コンデンサーレンズ7により集光され、レチクルのようなマスク8を重畳的に照明する。 The light beam reflected by the folding mirror 6 is focused by the condenser lens 7 to superposedly illuminate the mask 8 such as a reticle. このように、光源1、楕円鏡2、コリメートレンズ3、DMD4、フライアイレンズ5、折り曲げミラー6およびコンデンサーレンズ7は、マスク8を均一に照明するための照明光学系を構成している。 Thus, the light source 1, the elliptical mirror 2, a collimator lens 3, DMD4, fly's eye lens 5, the folding mirror 6 and the condenser lens 7 constitute an illumination optical system for uniformly illuminating the mask 8.

【0025】マスク8を透過した光束は、投影光学系9 [0025] The light beam which has passed through the mask 8, the projection optical system 9
を介して、感光基板であるウエハ10に達する。 Through, reaching the wafer 10 which is a photosensitive substrate. こうして、ウエハ10上には、マスク8のパターン像が形成される。 Thus, on the wafer 10, the pattern image of the mask 8 is formed. ウエハ10は、投影光学系9の光軸に対して垂直な平面内において二次元的に移動可能なウエハステージ11上に支持されている。 Wafer 10 is supported on a two-dimensionally movable wafer stage 11 in a plane perpendicular to the optical axis of the projection optical system 9. ウエハステージ11は、さらに定盤12上に支持されている。 Wafer stage 11 is further supported on the surface plate 12. したがって、ウエハ1 Thus, the wafer 1
0を二次元的に移動させながら露光を行うことにより、 0 by making an exposure while moving two-dimensionally,
ウエハ10の各露光領域にマスク8のパターンを逐次転写することができる。 Pattern of the mask 8 to each exposure area of ​​the wafer 10 can be sequentially transferred.

【0026】図1の露光装置は、ウエハ10の露光表面すなわち投影光学系9の像面における照度分布を検出するための検出手段として照度センサー13を備えている。 The exposure apparatus in FIG 1 is provided with an illuminance sensor 13 as a detecting means for detecting the illuminance distribution on the exposure surface or image plane of the projection optical system 9 of the wafer 10. 照度センサー13は、ウエハ10を保持して二次元移動可能なウエハステージ11上に設けられている。 Illumination sensor 13 holds the wafer 10 provided on the two-dimensional movable wafer stage 11. 照度センサー13において検出された照度分布は、制御手段14に送られる。 Detected illuminance distribution in an illumination sensor 13 is sent to the control means 14.

【0027】本実施例では、DMD4の各マイクロミラーは、制御手段14により、光源1からの照明光を反射してフライアイレンズ5に導くON状態と、照明光を反射してフライアイレンズ5には入射させないOFF状態との間で、それぞれ個別に駆動制御される。 [0027] In this embodiment, each micro mirror of DMD4 by the control unit 14, the ON state leading to the fly-eye lens 5 reflects the illumination light from the light source 1, the fly-eye lens and reflects the illumination light 5 in between the OFF state of not incident, each of which is individually driven and controlled to. したがって、DMD4を構成するすべてのマイクロミラーをON Thus, ON and all of the micro mirrors constituting the DMD4
状態にすることにより光源1からの照明光を被照射面であるマスク8やウエハ10に導き、マイクロミラーをO By the condition leads to illumination light from the light source 1 to the mask 8 and the wafer 10 is a surface to be illuminated, a micromirror O
FF状態にすることにより光源1からの照明光をアライメント系のような他の光学系に導くことができる。 The illumination light from the light source 1 can be guided to other optical systems such as alignment system by the FF state. すなわち、DMD4は、従来の露光装置の照明光学系におけるシャッターおよびミラーの機能を果たしている。 That, DMD4 plays the function of a shutter and the mirror in the illumination optical system of a conventional exposure apparatus.

【0028】また、制御手段14により、DMD4を構成するマイクロミラーのうち特定の領域のマイクロミラーだけをON状態にすることにより、フライアイレンズ5に入射する平行光束の断面形状をひいてはマスク7やウエハ10上の照明領域を規定することができる。 Further, the control unit 14, by only the ON state micro-mirrors of a particular area of ​​the micromirrors constituting the DMD4, hence mask 7 Ya sectional shape of the parallel light beam incident on the fly-eye lens 5 it can be defined an illumination area on the wafer 10. すなわち、DMD4は、従来の露光装置の照明光学系におけるレチクルブラインドの機能を果たしている。 That, DMD4 plays the function of the reticle blind in the illumination optical system of a conventional exposure apparatus. このように、本実施例によれば、DMD4のような光偏向手段の使用により、従来技術におけるシャッター、ミラーおよびレチクルブラインドの機能を果たすことができる。 Thus, according to this embodiment, it is possible to perform by use of a light deflector such as DMD4, the shutter in the prior art, the function of the mirror and the reticle blind. その結果、これらの部品の位置決め調整が不要となり、マスク7やウエハ10上の照明領域において均一な照度分布を得ることができる。 As a result, it is possible to position the adjustment of these parts is not required to obtain a uniform illuminance distribution in the illumination region on the mask 7 and the wafer 10. また、照明光学系のコンパクト化および軽量化が可能になる。 Further, it is possible to compact and weight of the illumination optical system.

【0029】図2は、DMDの各マイクロミラーの構成を概略的に示す斜視図である。 FIG. 2 is a perspective view schematically illustrating a configuration of each of the micromirrors of the DMD. また、図3は、図2に対応する図であって、DMD基板上に並んで形成された各マイクロミラーの構成を概略的に示す断面図である。 Further, FIG. 3 is a view corresponding to FIG. 2 is a cross-sectional view schematically showing the configuration of each micro mirror formed side by side on DMD substrate. 図2および図3に示すように、図中上面が反射面(鏡面) As shown in FIGS. 2 and 3, upper surface in the figure is reflecting surface (mirror surface)
に形成されたマイクロミラー21がヒンジ部材22によって支持されている。 Is supported by the hinge member 22 is a micro-mirror 21 formed on. ヒンジ部材22の両端は、一対の支柱部材23の上端において揺動可能に支持されている。 Both ends of the hinge member 22 is pivotably supported at the upper end of the pair of strut members 23.

【0030】この場合、揺動軸線はヒンジ部材22の長手方向と一致しており、長手方向と直交し且つ反射面に平行な方向に沿ってヒンジ部材22から4つの電極24 [0030] In this case, the longitudinal direction coincides, four electrodes 24 from the hinge member 22 along a direction parallel to and reflective surface perpendicular to the longitudinal direction of the swing axis hinge member 22
が突出するように形成されている。 There are formed so as to protrude. また、DMD基板2 In addition, DMD substrate 2
5上において4つの電極24にそれぞれ対応する位置には4つの電極26が形成されている。 The positions corresponding to the four electrodes 26 are formed on the four electrodes 24 on 5. こうして、対応する電極24と26との間に電位差を付与し、電極間の電位差に基づいて作用する静電力によって、ヒンジ部材2 Thus, a potential difference is applied between the corresponding electrodes 24 and 26, by an electrostatic force acting on the basis of the potential difference between the electrodes, the hinge member 2
2をひいてはマイクロミラー21をON状態とOFF状態との間で適宜揺動させることができる。 2 and hence the micro mirror 21 can be swung appropriately between the ON and OFF states.

【0031】図2および図3に示すDMDでは、各マイクロミラーが縦横に互いに近接するように配置されている。 [0031] In DMD 2 and 3, the micromirrors are arranged adjacent to each other vertically and horizontally. したがって、DMD全体として高い均一な反射率を確保することができる。 Therefore, it is possible to secure a high uniform reflectivity as a whole DMD. また、各ヒンジ部材が対応するマイクロミラーによって遮蔽されるようになっているので、マイクロミラーに対するエネルギ照射によるヒンジ部材の損傷を最小限に抑えることができる。 Further, since each hinge member is adapted to be shielded by the corresponding micro-mirror, it is possible to minimize the damage to the hinge member by energy irradiation to the micro-mirror. このように、図2および図3に示すDMDの構成は、本実施例のような照明光学系および該光学系を備えた露光装置に最適である。 Thus, the configuration of the DMD shown in FIG. 2 and FIG. 3 is optimal exposure apparatus having an illumination optical system and the optical system as in this embodiment.

【0032】上述したように、DMD4は多数のマイクロミラーを有する。 [0032] As described above, DMD4 has a number of micromirrors. そして、DMD4上の反射領域の一部分である1つの分割反射領域に含まれるマイクロミラー群によって反射された照明光が、投影光学系9の像面上の照明領域の一部分である1つの分割照明領域に対応している。 The illumination light reflected by the micromirror group included in one divided reflective region is a portion of the reflective area on DMD4 is, one divided illumination areas is a portion of the illumination area on the image plane of the projection optical system 9 It corresponds to. したがって、照度センサーによって検出された照度分布を参照し、照度が高い特定の分割照明領域に対応するDMD4のマイクロミラー群において所定数のマイクロミラーを所定の分布でOFF状態にすることにより、照度を所望の値まで低下させることができる。 Thus, with reference to the illuminance distribution detected by the illuminance sensor, by the OFF state a predetermined number of micromirrors in a predetermined distribution in the micro mirrors of DMD4 illuminance corresponds to a high specific division illumination area, the illumination it can be reduced to a desired value.

【0033】換言すれば、各分割照明領域に対応する各マイクロミラー群のうちOFF状態にあるマイクロミラーの数をそれぞれ制御することにより、投影光学系9の像面上の照明領域の全体に亘って照度分布を均一にすることができる。 [0033] In other words, by controlling the number of micromirrors in the OFF state of the micromirrors groups corresponding to the divided illumination areas respectively, over the entire illumination area on the image plane of the projection optical system 9 it can be made uniform illuminance distribution Te. すなわち、本実施例では、投影光学系9 That is, in this embodiment, the projection optical system 9
の像面における照度分布を検出することによって、光源のシフトに起因する照明の均一性の経時的変化やフライアイレンズ等に起因する照明の固定的不均一性を随時補正することができる。 By detecting the illuminance distribution on the image plane, it is possible to correct a fixed illumination nonuniformities due to illumination uniformity of change over time and the fly-eye lens due to the shift of the light source or the like at any time. その結果、ウエハ10上の照明領域における照度分布の均一性をさらに向上させることができる。 As a result, the uniformity of the illuminance distribution in the illumination area on the wafer 10 can be further improved.

【0034】また、前述したように、DMD4は互いに独立に向きを制御することが可能な多数のマイクロミラーからなる。 Further, as described above, DMD4 being composed of a number of micromirrors capable of controlling the direction independently of each other. したがって、DMD4の特定のマイクロミラーをOFF状態にすることにより、ウエハ面において遮光部を形成することにより、図4に示すような数字や文字やパターンを付加的に露光することができる。 Therefore, by the particular micro mirror DMD4 the OFF state, by forming a light-shielding portion in the wafer surface, it is possible to additionally expose the numbers and letters or patterns as shown in FIG. なお、ウエハ10に形成された数字や文字やパターンを、 In addition, the numbers and letters and patterns formed on the wafer 10,
製品のロット番号等の表示として利用することができる。 It can be used as a display, such as product lot number. この場合、ウエハ10上においてシャープな(解像力の高い)数字や文字やパターンを得るために、ウエハ10と光学的に共役な位置、すなわちフライアイレンズ5の入射面の近傍にDMD4を位置決めするのが好ましい。 In this case, (high resolution) sharp on the wafer 10 in order to obtain the numbers, characters or patterns, the wafer 10 and the optically conjugate position, i.e. to position the DMD4 near the incident surface of the fly's eye lens 5 It is preferred.

【0035】なお、上述の実施例では、超高圧水銀ランプを光源とする露光装置に本発明を適用した例を示したが、たとえばエキシマレーザー等の他の光源を使用した一般の露光装置に本発明を適用することができる。 [0035] The present the in the above embodiment, an example of applying the present invention to an exposure apparatus whose light source an ultra-high pressure mercury lamp, for example a general exposure apparatus using the other light source such as an excimer laser it can be applied to the invention. また、上述の実施例では、投影光学系の像面において照度分布を検出しているが、本発明を一般の照明光学系に適用する場合にはマスク面に対応する面において照度分布を検出して照度分布の均一化を図ることができる。 Further, in the above embodiment, detects the illuminance distribution in the image plane of the projection optical system, when applying the present invention to a general illumination optical system detects the illuminance distribution in a surface corresponding to the mask surface it can be made uniform illuminance distribution Te.

【0036】 [0036]

【効果】以上説明したように、本発明によれば、光偏向手段としてDMDを使用することにより、従来技術におけるシャッター、ミラーおよびレチクルブラインドが不要となる。 [Effect] As described above, according to the present invention, by using a DMD as a light deflector, a shutter in the prior art, the mirrors and reticle blind is not required. したがって、被照射面上において均一な照度分布を得ることのできる、コンパクトで軽量な照明光学系および該光学系を備えた露光装置を実現することができる。 Therefore, it is possible to realize an exposure apparatus equipped with the capable of obtaining a uniform illuminance distribution on the irradiation surface, lightweight illuminating optical system and the optical system compact. さらに、被照射面上における照度分布を検出し、 Furthermore, to detect the illuminance distribution on the surface to be illuminated,
検出結果に基づいてDMDの各マイクロミラーの向きを適宜制御することによって、被照射面上の照度分布をほぼ均一に随時補正することができる。 By appropriately controlling the direction of each of the micromirrors of the DMD based on the detection result, it is possible to substantially uniformly occasionally correct the illuminance distribution on the illuminated surface.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例にかかる照明光学系および該光学系を備えた露光装置の構成を概略的に示す図である。 1 is a diagram schematically showing a configuration of an exposure apparatus with such an illumination optical system and the optical system in the embodiment of the present invention.

【図2】図1のDMDの各マイクロミラーの構成を概略的に示す斜視図である。 The configuration of each of the micromirrors of the DMD of FIG. 1; FIG is a perspective view schematically showing.

【図3】図2に対応する図であって、DMD基板上に並んで形成された各マイクロミラーの構成を概略的に示す断面図である。 [Figure 3] A view corresponding to FIG. 2 is a cross-sectional view schematically showing the configuration of each micro mirror formed side by side on DMD substrate.

【図4】DMDの作用によりウエハ上に形成された数字や文字やパターンを示す図である。 4 is a diagram showing the numbers formed on a wafer, characters and patterns by the action of DMD.

【図5】従来の露光装置の構成を概略的に示す図である。 5 is a diagram schematically showing the structure of a conventional exposure apparatus.

【図6】従来の露光装置におけるシャッターの構成を概略的に示す斜視図である。 6 is a perspective view schematically illustrating the configuration of a shutter in a conventional exposure apparatus.

【図7】従来の露光装置におけるレチクルブラインドの構成を概略的に示す図である。 7 is a diagram schematically showing the configuration of the reticle blind in a conventional exposure apparatus.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 光源 2 楕円鏡 3 コリメートレンズ 4 DMD 5 フライアイレンズ 6 折り曲げミラー 7 コンデンサレンズ 8 マスク 9 投影光学系 10 ウエハ 11 ウエハステージ 12 定盤 13 照度センサー 14 制御系 1 light source 2 Elliptical mirror 3 collimator lens 4 DMD 5 fly's eye lens 6 folding mirror 7 condenser lens 8 mask 9 projection optical system 10 the wafer 11 wafer stage 12 surface plate 13 illumination sensor 14 the control system

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 所定の物体面をほぼ均一に照明する照明光学系において、 ほぼ平行な照明光束を供給するための光源手段と、 互いに独立に向きを変化させることのできる多数の微小反射面を有し、該多数の微小反射面の各々により前記光源手段からの照明光束を反射して偏向するための光偏向手段と、 前記光偏向手段で反射された照明光束に基づいて複数の光源像を形成するための多光源像形成手段と、 前記多光源像形成手段からの光束を集光して前記物体面上を重畳的に照明するコンデンサ光学系と、 を備えていることを特徴とする照明光学系。 1. A lighting optical system for substantially uniformly illuminating a predetermined object surface, and a light source means for supplying a substantially parallel illuminating light bundle, a number of the micro reflecting surface which can change the direction independently of each other a, a light deflector for deflecting and reflecting the illumination light beam from said light source means by each of the minute reflecting surface of said multiple, the plurality of light source images on the basis of the illumination light beam reflected by the light deflection means a multi-light source image forming means for forming, illumination, characterized in that it comprises a and a condenser optical system for superimposing illuminate on the object surface by condensing a light beam from the multi-light source image forming means Optical system.
  2. 【請求項2】 前記物体面上の照度分布を検出するための検出手段と、 前記物体面上の照度分布がほぼ均一になるように、前記検出手段の出力に基づいて前記光偏向手段の多数の微小反射面の各々の向きを制御するための制御手段と、 をさらに備えていることを特徴とする請求項1に記載の照明光学系。 Wherein a detecting means for detecting the illuminance distribution on the object plane, as the illuminance distribution on the object surface is substantially uniform, a large number of the light deflection means on the basis of an output of said detecting means the illumination optical system according to claim 1, characterized in that the further comprises a control means for controlling each of the orientations of the micro reflecting surface.
  3. 【請求項3】 前記光偏向手段はDMDであり、該DM Wherein the light deflecting means is a DMD, the DM
    Dは前記多光源像形成手段の近傍に位置決めされていることを特徴とする請求項1または2に記載の照明光学系。 D illumination optical system according to claim 1 or 2, characterized in that it is positioned in the vicinity of the multi-light source image forming means.
  4. 【請求項4】 所定のパターンが形成されたマスクを照明するための照明光学系と、前記マスクのパターンの像を感光基板上に形成するための投影光学系とを備えた露光装置において、 前記照明光学系は、 ほぼ平行な照明光束を供給するための光源手段と、 互いに独立に向きを変化させることのできる多数の微小反射面を有し、該多数の微小反射面の各々により前記光源手段からの照明光束を反射して偏向するための光偏向手段と、 前記光偏向手段で反射された照明光束に基づいて複数の光源像を形成するための多光源像形成手段と、 前記多光源像形成手段からの光束を集光して前記物体面上を重畳的に照明するコンデンサ光学系と、 を備えていることを特徴とする露光装置。 4. an illumination optical system for illuminating a mask on which a predetermined pattern is formed, in an exposure apparatus having a projection optical system for forming an image of the pattern of the mask on the photosensitive substrate, wherein illumination optical system includes a light source means for supplying a substantially parallel illuminating light beam has a number of small reflecting surfaces which can change the direction independently of each other, said light source means by each of the minute reflecting surface of said multiple a multi-light source image forming means for forming a plurality of light source images and the light deflecting means for reflecting to deflect the illumination light beam, based on the illumination light beam reflected by the light deflection means from the multi-source image exposure apparatus characterized by comprising a condenser optical system, the superimposing illuminate the above with a light beam focused the object surface from the forming means.
  5. 【請求項5】 前記感光基板上の照度分布を検出するための検出手段と、 前記感光基板上の照度分布がほぼ均一になるように、前記検出手段の出力に基づいて前記光偏向手段の多数の微小反射面の各々の向きを制御するための制御手段と、 をさらに備えていることを特徴とする請求項4に記載の露光装置。 A detecting means for detecting 5. illuminance distribution on the photosensitive substrate, wherein as illuminance distribution on the photosensitive substrate becomes substantially uniform, a large number of the light deflection means on the basis of an output of said detecting means an apparatus according to claim 4, characterized in that the further comprises a control means for controlling each of the orientations of the micro reflecting surface.
  6. 【請求項6】 前記光偏向手段はDMDであり、該DM Wherein said optical deflecting means is a DMD, the DM
    Dは前記多光源像形成手段の近傍に位置決めされていることを特徴とする請求項4または5に記載の露光装置。 D is an exposure apparatus according to claim 4 or 5, characterized in that it is positioned in the vicinity of the multi-light source image forming means.
JP7139936A 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system Pending JPH08313842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7139936A JPH08313842A (en) 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7139936A JPH08313842A (en) 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system

Publications (1)

Publication Number Publication Date
JPH08313842A true JPH08313842A (en) 1996-11-29

Family

ID=15257126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7139936A Pending JPH08313842A (en) 1995-05-15 1995-05-15 Lighting optical system and aligner provided with the optical system

Country Status (1)

Country Link
JP (1) JPH08313842A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775570A3 (en) * 1995-11-21 1997-08-20 Cmet Inc Intensity homogenized surface exposure type photo-solidification modeling apparatus
US6288830B1 (en) * 1998-05-13 2001-09-11 Ricoh Microelectronics Company, Ltd. Optical image forming method and device, image forming apparatus and aligner for lithography
JP2002119468A (en) * 2000-10-13 2002-04-23 Olympus Optical Co Ltd Endoscope
EP1262836A1 (en) * 2001-06-01 2002-12-04 Asml Lithographic apparatus
US7015491B2 (en) 2001-06-01 2006-03-21 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
JP2006216951A (en) * 2005-01-31 2006-08-17 Asml Holding Nv System and method for performing imaging emphasizing by calculating customized optimum pupil field and lighting mode
WO2006085626A1 (en) * 2005-02-14 2006-08-17 Nikon Corporation Exposure method and system, and method for fabricating device
WO2007066679A1 (en) 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007114024A1 (en) 2006-04-03 2007-10-11 Nikon Corporation Projection optical system, aligner, and method for fabricating device
WO2007116752A1 (en) 2006-04-05 2007-10-18 Nikon Corporation Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007138834A1 (en) 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
WO2008001871A1 (en) 2006-06-30 2008-01-03 Nikon Corporation Maintenance method, exposure method and apparatus and device manufacturing method
WO2008007633A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
WO2008007632A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
JP2008118131A (en) * 2006-10-31 2008-05-22 Asml Netherlands Bv Lithography apparatus and method
WO2009026947A1 (en) * 2007-08-30 2009-03-05 Carl Zeiss Smt Ag Illumination system for illuminating a mask in a microlithographic projection exposure apparatus
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JP2009105378A (en) * 2007-08-17 2009-05-14 Asml Holding Nv Real time telecentricity measurement
WO2009078224A1 (en) * 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US7557997B2 (en) 2006-09-28 2009-07-07 Nikon Corporation Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element
US20100102487A1 (en) * 2008-10-28 2010-04-29 Molecular Imprints, Inc. Optical System for Use in Stage Control
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR20100095566A (en) * 2007-11-06 2010-08-31 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US7842525B2 (en) 1999-11-24 2010-11-30 Micronic Mydata AB Method and apparatus for personalization of semiconductor
JP2010271685A (en) * 2009-04-25 2010-12-02 National Institute Of Advanced Industrial Science & Technology Illumination apparatus and illumination method for obtaining illuminance with high uniformity
JP2010272640A (en) * 2009-05-20 2010-12-02 Nikon Corp Lighting apparatus, exposure apparatus and device manufacturing method
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
JP2011138048A (en) * 2009-12-28 2011-07-14 Nikon Corp Spatial light modulator, exposure device and method of manufacturing them
JP2011528856A (en) * 2008-07-22 2011-11-24 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for correcting polarization distribution in microlithography projection exposure apparatus and microlithography projection exposure apparatus
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8144308B2 (en) 2007-11-08 2012-03-27 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US20130050796A1 (en) * 1997-05-12 2013-02-28 Light And Sound Design Ltd. Electronically Controlled Stage Lighting System
US8665418B2 (en) 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
JP2014110408A (en) * 2012-12-04 2014-06-12 Canon Inc Exposure method, exposure device, and method of manufacturing article
US8792081B2 (en) 2007-11-06 2014-07-29 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9235127B2 (en) 2010-03-05 2016-01-12 Mycronic AB Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775570A3 (en) * 1995-11-21 1997-08-20 Cmet Inc Intensity homogenized surface exposure type photo-solidification modeling apparatus
US9036245B2 (en) * 1997-05-12 2015-05-19 Production Resource Group, Llc Electronically controlled stage lighting system
US20130050796A1 (en) * 1997-05-12 2013-02-28 Light And Sound Design Ltd. Electronically Controlled Stage Lighting System
US6288830B1 (en) * 1998-05-13 2001-09-11 Ricoh Microelectronics Company, Ltd. Optical image forming method and device, image forming apparatus and aligner for lithography
US7842525B2 (en) 1999-11-24 2010-11-30 Micronic Mydata AB Method and apparatus for personalization of semiconductor
JP2002119468A (en) * 2000-10-13 2002-04-23 Olympus Optical Co Ltd Endoscope
JP4610713B2 (en) * 2000-10-13 2011-01-12 オリンパス株式会社 Endoscope device
US6737662B2 (en) 2001-06-01 2004-05-18 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product
US7015491B2 (en) 2001-06-01 2006-03-21 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
EP1262836A1 (en) * 2001-06-01 2002-12-04 Asml Lithographic apparatus
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US8634060B2 (en) 2004-03-16 2014-01-21 Carl Zeiss Smt Gmbh Method for a multiple exposure, microlithography projection exposure installation and a projection system
JP2006216951A (en) * 2005-01-31 2006-08-17 Asml Holding Nv System and method for performing imaging emphasizing by calculating customized optimum pupil field and lighting mode
WO2006085626A1 (en) * 2005-02-14 2006-08-17 Nikon Corporation Exposure method and system, and method for fabricating device
WO2007066679A1 (en) 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8027020B2 (en) 2006-02-16 2011-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US7916270B2 (en) 2006-03-03 2011-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007114024A1 (en) 2006-04-03 2007-10-11 Nikon Corporation Projection optical system, aligner, and method for fabricating device
WO2007116752A1 (en) 2006-04-05 2007-10-18 Nikon Corporation Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007138834A1 (en) 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
WO2008001871A1 (en) 2006-06-30 2008-01-03 Nikon Corporation Maintenance method, exposure method and apparatus and device manufacturing method
WO2008007632A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
WO2008007633A1 (en) 2006-07-12 2008-01-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8325324B2 (en) 2006-07-12 2012-12-04 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US7557997B2 (en) 2006-09-28 2009-07-07 Nikon Corporation Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element
JP2008118131A (en) * 2006-10-31 2008-05-22 Asml Netherlands Bv Lithography apparatus and method
US8665418B2 (en) 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US7999939B2 (en) 2007-08-17 2011-08-16 Asml Holding N.V. Real time telecentricity measurement
JP2009105378A (en) * 2007-08-17 2009-05-14 Asml Holding Nv Real time telecentricity measurement
US10241416B2 (en) 2007-08-30 2019-03-26 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
WO2009026947A1 (en) * 2007-08-30 2009-03-05 Carl Zeiss Smt Ag Illumination system for illuminating a mask in a microlithographic projection exposure apparatus
US9007563B2 (en) 2007-08-30 2015-04-14 Carl Zeiss Smt Gmbh Illumination system having a beam deflection array for illuminating a mask in a microlithographic projection exposure apparatus
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20100095566A (en) * 2007-11-06 2010-08-31 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
KR20160090916A (en) * 2007-11-06 2016-08-01 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
US8792081B2 (en) 2007-11-06 2014-07-29 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9268235B2 (en) 2007-11-06 2016-02-23 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9551942B2 (en) 2007-11-06 2017-01-24 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
KR20150032755A (en) * 2007-11-06 2015-03-27 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
US9946162B2 (en) 2007-11-06 2018-04-17 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US10261421B2 (en) 2007-11-06 2019-04-16 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US8953147B2 (en) 2007-11-08 2015-02-10 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8144308B2 (en) 2007-11-08 2012-03-27 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009078224A1 (en) * 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2011528856A (en) * 2008-07-22 2011-11-24 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for correcting polarization distribution in microlithography projection exposure apparatus and microlithography projection exposure apparatus
US9128389B2 (en) 2008-07-22 2015-09-08 Carl Zeiss Smt Gmbh Method for modifying a polarization distribution in microlithographic projection exposure apparatus, and microlithographic projection exposure apparatus
US20100102487A1 (en) * 2008-10-28 2010-04-29 Molecular Imprints, Inc. Optical System for Use in Stage Control
US8345242B2 (en) * 2008-10-28 2013-01-01 Molecular Imprints, Inc. Optical system for use in stage control
JP2012507173A (en) * 2008-10-28 2012-03-22 モレキュラー・インプリンツ・インコーポレーテッド Optical system for stage control
JP2010271685A (en) * 2009-04-25 2010-12-02 National Institute Of Advanced Industrial Science & Technology Illumination apparatus and illumination method for obtaining illuminance with high uniformity
JP2010272640A (en) * 2009-05-20 2010-12-02 Nikon Corp Lighting apparatus, exposure apparatus and device manufacturing method
JP2011138048A (en) * 2009-12-28 2011-07-14 Nikon Corp Spatial light modulator, exposure device and method of manufacturing them
US9235127B2 (en) 2010-03-05 2016-01-12 Mycronic AB Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
JP2014110408A (en) * 2012-12-04 2014-06-12 Canon Inc Exposure method, exposure device, and method of manufacturing article

Similar Documents

Publication Publication Date Title
KR100411833B1 (en) Illumination system having spatially separate vertical and horizontal image planes for use in photolithography
US4851882A (en) Illumination optical system
CN1273871C (en) Photoetching device and method for manufacturing photoetching device
US5691541A (en) Maskless, reticle-free, lithography
US20080225259A1 (en) Illumination system with variable adjustment of the illumination
JP2946950B2 (en) Illumination apparatus and an exposure apparatus using the same
KR100524002B1 (en) Pattern writing apparatus and pattern writing method
TWI479271B (en) An exposure apparatus and an exposure method, and an element manufacturing method
JP5582287B2 (en) Illumination optical apparatus and exposure apparatus
KR0171439B1 (en) Projecting exposure apparatus and manufacture of device using the same apparatus
JP4309980B2 (en) Annular surface reduction projection optical system
JP3005203B2 (en) Illumination device, an exposure apparatus and device manufacturing method
KR101562073B1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP4032658B2 (en) Projection display
JP3102076B2 (en) Illumination device and a projection exposure apparatus using the same
JP2007505488A (en) Illumination system for microlithographic projection exposure equipment
EP2388649B1 (en) Illumination system for illuminating a mask in a microlithographic exposure apparatus
JP3339149B2 (en) Scanning exposure apparatus and exposure method
US7196841B2 (en) Lighting system, particularly for use in extreme ultraviolet (EUV) lithography
CN1141609C (en) Reflective projector
US20090091730A1 (en) Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JPWO2006082738A1 (en) Optical integrator, illumination optical apparatus, exposure apparatus, and exposure method
JP2007517261A (en) Aperture with improved contrast and brightness for illuminated displays
US9268235B2 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
JP2006216917A (en) Illumination optical system, exposure device, and manufacturing method thereof