JPH08313818A - Lightweight mirror - Google Patents

Lightweight mirror

Info

Publication number
JPH08313818A
JPH08313818A JP7148223A JP14822395A JPH08313818A JP H08313818 A JPH08313818 A JP H08313818A JP 7148223 A JP7148223 A JP 7148223A JP 14822395 A JP14822395 A JP 14822395A JP H08313818 A JPH08313818 A JP H08313818A
Authority
JP
Japan
Prior art keywords
mirror
plate
partition
mirror surface
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7148223A
Other languages
Japanese (ja)
Inventor
Masato Shibuya
眞人 渋谷
Susumu Ichikawa
晋 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7148223A priority Critical patent/JPH08313818A/en
Publication of JPH08313818A publication Critical patent/JPH08313818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To uniformize the temp. distribution on the mirror surface and to provide a lightweight mirror without causing the deformation of the mirror surface by forming the front surface of a partition like a mirror surface. CONSTITUTION: A surface plate 1 is heated by solar light 4 made incident on the mirror surface 1a on the side of the front surface, but heat is transferred from the plate 1 to a rear surface plate 2 by heat conduction 5 and heat radiation 6 and the whole lightweight mirror is cooled. Heat radiation to a partition 3 among the heat radiation 6 radiated from the rear surface 1b of the plate 1 is reflected by the front surface of the partition 3 and, since the front surface of the partition 3 is formed like a mirror surface, finally travels to the rear surface 2b of the plate 2. Since temp. of the rear surface 2b is lower than the surface temp. of the partition 3, the heat radiation 6 radiated from the rear surface 1b of the plate 1 is increased compared with the case when the surface of the partition 3 is not provided with a mirror surface. Consequently, Temp. of the part of the mirror surface 1a whose rear surface has not the partition 3 is decreased and the temp. distribution of the mirror surface 1a is made to be uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として人工衛星に搭
載して太陽を観察するための大型反射望遠鏡に関し、特
に該反射望遠鏡に使用する軽量化ミラーに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large reflecting telescope mainly mounted on an artificial satellite for observing the sun, and more particularly to a lightweight mirror used in the reflecting telescope.

【0002】[0002]

【従来の技術】宇宙空間に設置する反射望遠鏡では、打
上げコストを削減するために従来より軽量化ミラーを使
用している。この軽量化ミラーは、表面プレートと、該
表面プレートとの間に間隙をあけて配置した裏面プレー
トと、これらの両プレートを連結する複数の隔壁とを有
し、表面プレートの表面側にミラー面を形成したもので
あった。この軽量化ミラーでは、ミラー面に太陽光が入
射するとミラーの温度が上昇し、ミラー面の正確な寸法
が維持できなくなり、したがって正確な観測を行うこと
ができなくなる。そこで軽量化ミラーの裏面側、すなわ
ち裏面プレートの表面側を一様に冷却するようにしてい
る。
2. Description of the Related Art Reflective telescopes installed in outer space use lighter weight mirrors than before in order to reduce launch costs. This weight-reducing mirror has a front plate, a back plate disposed with a gap between the front plate and a plurality of partition walls connecting these plates, and a mirror surface is provided on the front side of the front plate. Was formed. In this lightweight mirror, when sunlight is incident on the mirror surface, the temperature of the mirror rises, and the accurate dimension of the mirror surface cannot be maintained, so that accurate observation cannot be performed. Therefore, the back side of the weight-reducing mirror, that is, the front side of the back plate is uniformly cooled.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の軽量化ミラーでは、表面プレートと裏面プレートとの
間の間隙を熱放射によって伝わる熱よりも、表面プレー
トと裏面プレートとの間の隔壁を熱伝導で伝わる熱の方
が大きく、したがってミラー面の温度は、裏面に隔壁が
ない部分では余り冷却されないために温度が高く、裏面
に隔壁がある部分では良く冷却されるために温度が低く
なり、こうしてミラー面に温度分布が生じてその変形を
招き、反射望遠鏡の光学性能が劣化するという問題点が
あった。本発明はこのような従来の問題点に鑑みてなさ
れたものであり、ミラー面の温度分布を均一にし、もっ
てミラー面の変形を招くことのない軽量化ミラーを提供
することを目的とする。
However, in the above-mentioned conventional lightweight mirror, the partition wall between the front plate and the back plate is more thermally conducted than the heat transmitted through the gap between the front plate and the back plate by thermal radiation. Therefore, the temperature of the mirror surface is high because it is not cooled so much in the part without the partition on the back surface, and the temperature is low because it is well cooled in the part with the partition on the back surface. There is a problem in that a temperature distribution is generated on the mirror surface and the deformation is caused, which deteriorates the optical performance of the reflecting telescope. The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a lightweight mirror in which the temperature distribution on the mirror surface is made uniform and thus the mirror surface is not deformed.

【0004】[0004]

【課題を解決するための手段】本発明は、隔壁の表面を
鏡面状に形成することにより、上記課題を解決したもの
である。その際、表面プレートの裏面プレートに対向し
た裏面と、裏面プレートの表面プレートに対向した裏面
とを、粗面状に形成することができる。
The present invention solves the above-mentioned problems by forming the surface of the partition wall into a mirror surface. At this time, the back surface of the front plate facing the back plate and the back surface of the back plate facing the front plate can be formed into a rough surface.

【0005】[0005]

【作用】表面プレートの裏面より放出される熱放射は、
隔壁の表面と裏面プレートの裏面とに伝達されるが、こ
のうち隔壁に向かう熱放射は、隔壁の表面が鏡面状に形
成されているから、隔壁の表面によって1回又は多数回
にわたって反射されて、最終的に裏面プレートの裏面に
向かう。しかるに裏面プレートの裏面の温度は隔壁の表
面温度よりも低いから、表面プレートの裏面より放出さ
れる熱放射は、隔壁の表面を鏡面状に形成しない場合に
比較して増大し、したがって裏面に隔壁がない部分での
ミラー面の温度は低下し、こうしてミラー面の温度分布
を均一にすることができる。
[Function] The heat radiation emitted from the back surface of the front plate is
Although transmitted to the front surface of the partition wall and the back surface of the back surface plate, the heat radiation toward the partition wall is reflected once or many times by the surface of the partition wall because the surface of the partition wall is formed into a mirror surface. , Finally head to the back of the back plate. However, since the temperature of the back surface of the back plate is lower than the surface temperature of the partition wall, the heat radiation radiated from the back surface of the front plate increases compared to the case where the surface of the partition wall is not formed into a mirror surface, and therefore the partition wall is formed on the back surface. The temperature of the mirror surface in the portion where there is no drop is lowered, and thus the temperature distribution of the mirror surface can be made uniform.

【0006】[0006]

【実施例】本発明の実施例を図面によって説明する。図
1は本発明の一実施例を示し、この軽量化ミラーは表面
プレート1と、表面プレート1との間に間隙をあけて配
置した裏面プレート2と、これらの両プレート1,2を
連結する複数の隔壁3とを有する。本実施例の表面プレ
ート1は全体に湾曲して形成されており、その湾曲の方
向は、表面側のミラー面1aが内方に向くように湾曲し
ている。ミラー面1aは鏡面状に形成されており、こう
してミラー面1aに入射した太陽光4を反射して、1点
に集光するように形成されている。裏面プレート2の表
面2a側、すなわち表面プレート1とは反対側には、図
示しない冷却手段が配置されており、この冷却手段によ
って裏面プレート2の表面2aは一様に冷却されてい
る。表面プレート1の裏面1b、すなわち裏面プレート
2に対向する側の面と、裏面プレート2の裏面2b、す
なわち表面プレート1に対向する側の面とは、熱放射率
が高くなるように粗面状に形成されており、各隔壁3の
表面は、正反射率が高くなるように鏡面状に形成されて
いる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention. This weight-reducing mirror connects a front plate 1 and a back plate 2 arranged with a gap between the front plate 1 and both plates 1 and 2 to each other. It has a plurality of partition walls 3. The surface plate 1 of the present embodiment is formed to be curved as a whole, and the curved direction is curved so that the mirror surface 1a on the surface side faces inward. The mirror surface 1a is formed in a mirror surface shape, and is formed so as to reflect the sunlight 4 incident on the mirror surface 1a and focus it at one point. On the surface 2a side of the back plate 2, that is, on the side opposite to the surface plate 1, a cooling unit (not shown) is arranged, and the cooling unit uniformly cools the surface 2a of the back plate 2. The back surface 1b of the front surface plate 1, that is, the surface facing the back surface plate 2, and the back surface 2b of the back surface plate 2, that is, the surface facing the front surface plate 1, are rough so that the heat emissivity is high. The surface of each partition wall 3 is formed into a mirror surface so as to have a high regular reflectance.

【0007】本実施例は以上のように形成されており、
表面プレート1は、表面側のミラー面1aに入射する太
陽光4によって加熱されるが、表面プレート1から裏面
プレート2には、熱伝導5と熱放射6とによって伝熱さ
れて、軽量化ミラーの全体が冷却される。表面プレート
の裏面1bより放出される熱放射6のうち、隔壁3に向
かう熱放射は、隔壁3の表面が鏡面状に形成されている
から、隔壁3の表面によって反射されて、最終的に裏面
プレートの裏面2bに向かう。しかるに裏面プレートの
裏面2bの温度は、隔壁3の表面温度よりも低いから、
表面プレートの裏面1bより放出される熱放射6は、隔
壁3の表面を鏡面状に形成しない場合に比較して増大す
る。更に本実施例では、表面プレートの裏面1bと裏面
プレートの裏面2bとが共に粗面状に形成されているか
ら、両裏面1b,2b間での熱放射量は増大する。した
がって裏面1bに隔壁3がない部分でのミラー面1aの
温度は低下し、こうしてミラー面1aの温度分布は均一
になる。
This embodiment is formed as described above,
The front surface plate 1 is heated by the sunlight 4 incident on the front surface-side mirror surface 1a, but heat is transferred from the front surface plate 1 to the rear surface plate 2 by heat conduction 5 and heat radiation 6 to reduce the weight of the mirror. The whole is cooled. Of the heat radiation 6 emitted from the back surface 1b of the front plate, the heat radiation toward the partition wall 3 is reflected by the surface of the partition wall 3 and finally the back surface because the surface of the partition wall 3 is formed into a mirror surface. Head to the back surface 2b of the plate. However, since the temperature of the back surface 2b of the back plate is lower than the surface temperature of the partition wall 3,
The heat radiation 6 emitted from the back surface 1b of the front plate increases as compared with the case where the front surface of the partition wall 3 is not formed into a mirror surface. Further, in this embodiment, since the back surface 1b of the front plate and the back surface 2b of the back plate are both formed in a rough surface shape, the amount of heat radiation between both back surfaces 1b and 2b increases. Therefore, the temperature of the mirror surface 1a in the portion where the partition wall 3 is not present on the back surface 1b is lowered, and thus the temperature distribution of the mirror surface 1a becomes uniform.

【0008】いま表面プレートの裏面1bより裏面プレ
ートの裏面2bに伝達される熱量のうち、隔壁3を熱伝
導5によって伝わる単位断面積あたりの熱流束Q5は次
のように表せる。 Q5=k(T1b−T2b)/t‥‥(1) 但し、 Q5:熱伝導による熱流束(joule/m2/sec) T1b:使用状態での表面プレートの裏面1bの温度
(K) T2b:使用状態での裏面プレートの裏面2bの温度
(K) k:軽量化ミラーの材料の熱伝導率(joule/m/sec/
K) t:両裏面1b,2b間の間隙(m) である。
Of the amount of heat transferred from the back surface 1b of the front surface plate to the back surface 2b of the back surface plate, the heat flux Q 5 per unit cross-sectional area transferred by the heat conduction 5 through the partition wall 3 can be expressed as follows. Q 5 = k (T 1b -T 2b) / t ‥‥ (1) where, Q 5: heat flux due to thermal conduction (joule / m 2 / sec) T 1b: temperature of the back surface 1b of the surface plate in use state (K) T 2b : Temperature of the back surface 2b of the back plate in use (K) k: Thermal conductivity of the material of the lightweight mirror (joule / m / sec /
K) t: A gap (m) between both back surfaces 1b and 2b.

【0009】他方、表面プレートの裏面1bより裏面プ
レートの裏面2bに伝達される熱量のうち、隔壁3の存
在しない空洞部を熱放射6によって伝わる単位断面積あ
たりの熱流束Q6は、隔壁3の表面での反射が100%
となる理想的な状態では、次のように表せる。 Q6=εσ(T4 1b−T4 2b)‥‥(2) 但し、 Q6:熱放射による熱流束(joule/m2/sec) ε:両裏面1b,2bの放射率 σ:ステファン−ボルツマン定数(5.67×10-8
/m2/K4) である。
On the other hand, of the amount of heat transferred from the back surface 1b of the front plate to the back surface 2b of the back plate, the heat flux Q 6 per unit cross-sectional area that is transferred by the heat radiation 6 through the cavity where the partition 3 does not exist is the partition 3 100% reflection on the surface of
In an ideal state, where Q 6 = εσ (T 4 1b -T 4 2b) ‥‥ (2) where, Q 6: heat flux due to thermal radiation (joule / m 2 / sec) ε: Both backside 1b, emissivity 2b sigma: Stefan - Boltzmann constant (5.67 × 10 -8 W
/ M 2 / K 4 ).

【0010】実際には隔壁3の表面をいかに鏡面状に形
成しようとも、1回又は多数回の反射において隔壁3の
表面で熱放射による伝熱が生じるから、この伝熱による
補正を加味すれば、 Q6=εσ(T4 1b−T4 2b)・f‥‥(3) と表せる。係数fはf≦1であり、隔壁3の表面での反
射が100%となる理想的な状態では、f=1である。
In reality, no matter how the surface of the partition wall 3 is formed into a mirror surface, heat transfer due to heat radiation occurs on the surface of the partition wall 3 in one or many reflections. Therefore, if the correction by this heat transfer is taken into consideration. , Q 6 = εσ (T 4 1b −T 4 2b ) · f (3) The coefficient f is f ≦ 1, and f = 1 in an ideal state where the reflection on the surface of the partition wall 3 is 100%.

【0011】(3)式は、使用状態での軽量化ミラーの
平均的な温度T(K)を、 T=(T1b+T2b)/2 とし、 T1b−T2b≪T とすると、 Q6=4εσT3(T1b−T2b)・f‥‥(4) と変形することができる。
In equation (3), if the average temperature T (K) of the lightweight mirror in use is T = (T 1b + T 2b ) / 2 and T 1b -T 2b << T, then Q 6 = 4εσT 3 (T 1b −T 2b ) · f (4) can be transformed.

【0012】表面プレートのミラー面1の温度分布を均
一にするためには、熱伝導5による熱流束Q5と熱放射
6による熱流束Q6とが等しくなれば良いから、(1)
式と(4)式より、 k(T1b−T2b)/t=4εσT3(T1b−T2b)・f 故に、 k/t=4εσT3・f‥‥(5) となるように形成すれば良いことになる。
[0012] In order to obtain a uniform temperature distribution in the mirror surface 1 of the surface plate, since the heat flux Q 6 by heat conduction 5 by heat flux Q 5 and the heat radiation 6 may if equal, (1)
From equation (4), k (T 1b −T 2b ) / t = 4εσT 3 (T 1b −T 2b ) · f Therefore, k / t = 4εσT 3 · f (5) It will be good if you do.

【0013】(5)式において、ステファン−ボルツマ
ン定数σは定数であり、材料の熱伝導率kは軽量化ミラ
ーに適した材料を選定した段階で定数となり、また使用
状態での軽量化ミラーの平均的温度Tは、冷却手段によ
って多少の操作は可能とはいえ、その操作にも限度があ
る。したがって人為的に操作できるのは、両裏面1b,
2b間の間隙tと、両裏面1b,2bの放射率εと、係
数fだけである。
In the equation (5), the Stefan-Boltzmann constant σ is a constant, the thermal conductivity k of the material becomes a constant when a material suitable for the weight-reducing mirror is selected, and the weight-reducing mirror of the weight-reducing mirror in use is the same. Although the average temperature T can be somewhat manipulated by the cooling means, the manipulation is also limited. Therefore, it is possible to artificially operate on both back surfaces 1b,
It is only the gap t between 2b, the emissivity ε of both back surfaces 1b and 2b, and the coefficient f.

【0014】しかして従来はこれらの間隙tと放射率ε
と係数fとに特段の注意を払わなかったために、(5)
式が成立せず、 k/t≫4εσT3・f なる状態で使用されていた。すなわち熱伝導5による熱
流束Q5の方が熱放射6による熱流束Q6よりも相当に大
きかったために、裏面1bに隔壁3がある部分でのミラ
ー面1aでは良く冷却されて温度が低くなり、裏面1b
に隔壁3がない部分でのミラー面1aでは余り冷却され
ずに温度が高くなっていた。
However, conventionally, these gap t and emissivity ε are
(5), because no particular attention was paid to
The equation was not satisfied, and it was used in a state of k / t >> 4εσT 3 · f. That For towards the heat flux Q 5 by heat conduction 5 was considerably greater than the heat flux Q 6 by thermal radiation 6, it is cooled well in the mirror surface 1a at a portion where there is a partition wall 3 temperature is lowered to the rear surface 1b , Back side 1b
On the mirror surface 1a where there is no partition wall 3, the temperature is high without being cooled so much.

【0015】これを解消して(5)式を成立させるに
は、間隙tを大きくすることも可能ではあるが、これは
ミラーの軽量化に反する。そこで本実施例では、隔壁3
の表面を鏡面状に形成することによって係数fを大きく
し、更には両裏面1b,2bを粗面状に形成することに
よって放射率εを大きくすることによって、間隙tを大
きくすることなく、(5)式を成立させたものである。
(5)式より間隙tを導くと、 t=k/(4εσT3・f) となり、f=0.9とすると、ほぼ、 t=k/(4εσT3)×1.1‥‥(6) となる。
In order to solve this and satisfy the equation (5), it is possible to increase the gap t, but this is against the weight reduction of the mirror. Therefore, in this embodiment, the partition wall 3
By increasing the coefficient f by forming the front surface of the mirror surface into a mirror surface shape and further increasing the emissivity ε by forming both the back surfaces 1b and 2b into a rough surface shape, without increasing the gap t, This is the one that formula (5) is established.
If the gap t is derived from the equation (5), then t = k / (4εσT 3 · f), and if f = 0.9, then t = k / (4εσT 3 ) × 1.1 (6) Becomes

【0016】一例として、ミラー材料としてULE(コ
ーニング社の低膨張ガラス)を用いた場合にはk=1.
31(joule/m/sec/K)であり、使用温度TをT=
330(K)、放射率εをε=0.9とすると、(6)
式より間隙tは、 t=200(mm) となる。すなわち間隙tは従来例とほぼ同様となり、し
かも従来例とは異なって、ミラー面1aでの温度分布を
均一にすることができる。また実際には(6)式が成立
していないために、ミラー面1aに温度分布が生じて
も、ミラー面1aに沿う方向の熱伝導によって、温度分
布はある程度均一化されるから、 k/(4εσT3)×0.9≦t≦k/(4εσT3)×1.3 が成立する程度に形成し、好ましくは、 k/(4εσT3)≦t≦k/(4εσT3)×1.2 が成立する程度に形成すれば良い。
As an example, when ULE (low expansion glass manufactured by Corning Incorporated) is used as the mirror material, k = 1.
31 (joule / m / sec / K), and the operating temperature T is T =
330 (K) and emissivity ε = 0.9, (6)
From the formula, the gap t is t = 200 (mm). That is, the gap t is almost the same as that of the conventional example, and unlike the conventional example, the temperature distribution on the mirror surface 1a can be made uniform. Further, since the equation (6) is not actually established, even if the temperature distribution occurs on the mirror surface 1a, the temperature distribution is made uniform to some extent by the heat conduction in the direction along the mirror surface 1a. (4εσT 3 ) × 0.9 ≦ t ≦ k / (4εσT 3 ) × 1.3, preferably k / (4εσT 3 ) ≦ t ≦ k / (4εσT 3 ) × 1. It may be formed to the extent that 2 holds.

【0017】また、両裏面1b,2bの放射を大きくす
るために、黒色の塗料を塗布することも効果がある。ま
た間隙tは、ミラー面1aが内方に湾曲している場合に
は、中心部では狭く、周辺部では広く形成する必要があ
る。このときにもミラー面1aの温度分布を均一にする
ために、中心部と周辺部とで、隔壁3の表面の放射率を
変化させて係数fを変化させ、あるいは両裏面1b,2
bの放射率εを変化させることもできる。なお本実施例
では、ミラー面1aが凹面鏡である場合について説明し
たが、ミラー面1aを平面鏡とし、あるいは凸面鏡とす
る場合もある。
It is also effective to apply black paint in order to increase the radiation on both back surfaces 1b and 2b. When the mirror surface 1a is curved inward, the gap t needs to be narrow in the central portion and wide in the peripheral portion. Also at this time, in order to make the temperature distribution of the mirror surface 1a uniform, the emissivity of the surface of the partition wall 3 is changed to change the coefficient f between the central portion and the peripheral portion, or both the back surfaces 1b and 2 are formed.
It is also possible to change the emissivity ε of b. In this embodiment, the case where the mirror surface 1a is a concave mirror has been described, but the mirror surface 1a may be a plane mirror or a convex mirror.

【0018】[0018]

【発明の効果】以上のように本発明は、表面プレートの
裏面と隔壁との間の熱放射を阻止して、専ら表面プレー
トの裏面と裏面プレートの裏面との間の熱放射のみを生
じさせ、更にはこの両裏面の間の熱放射を促進するよう
に形成したから、両裏面の間の間隙を広くすることな
く、熱伝導による熱流束と熱放射による熱流束とを等し
くすることができる。したがって軽量化ミラーの表面温
度が均一となり、軽量化ミラーの熱変形を抑制すること
ができるから、優れた光学性能を維持することができ
る。
As described above, according to the present invention, the heat radiation between the back surface of the front plate and the partition wall is prevented, and only the heat radiation between the back surface of the front plate and the back surface of the back plate is generated. Further, since it is formed so as to promote the heat radiation between the both back surfaces, the heat flux due to the heat conduction and the heat flux due to the heat radiation can be equalized without widening the gap between the both back surfaces. . Therefore, the surface temperature of the weight-reducing mirror becomes uniform, and thermal deformation of the weight-reducing mirror can be suppressed, so that excellent optical performance can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…表面プレート 1a…ミラー面 1
b…裏面 2…裏面プレート 2a…表面 2
b…裏面 3…隔壁 4…太陽光 5
…熱伝導 6…熱放射 t…間隙 T
…温度
1 ... Surface plate 1a ... Mirror surface 1
b ... back surface 2 ... back surface plate 2a ... front surface 2
b ... back surface 3 ... partition wall 4 ... sunlight 5
… Thermal conduction 6… Thermal radiation t… Gap T
…temperature

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面プレート(1)と、該表面プレートと
の間に間隙をあけて配置した裏面プレート(2)と、こ
れらの両プレート(1,2)を連結する複数の隔壁
(3)とを有し、前記表面プレート(1)の表面側にミ
ラー面(1a)を形成した軽量化ミラーにおいて、 前記隔壁(3)の表面を鏡面状に形成したことを特徴と
する軽量化ミラー。
1. A front plate (1), a back plate (2) arranged with a gap between the front plate and a plurality of partition walls (3) connecting these plates (1, 2). And a mirror surface (1a) formed on the surface side of the surface plate (1), wherein the partition wall (3) has a mirror-like surface.
【請求項2】表面プレート(1)の裏面プレートに対向
した裏面(1b)と、裏面プレート(2)の表面プレー
トに対向した裏面(2b)とを、粗面状に形成した請求
項1記載の軽量化ミラー。
2. The back surface (1b) of the front plate (1) facing the back plate and the back surface (2b) of the back plate (2) facing the front plate are roughened. Lightweight mirror.
【請求項3】表面プレート(1)と裏面プレート(2)
との間の前記間隙をt、表面プレート(1)の裏面プレ
ートに対向した裏面(1b)と裏面プレート(2)の表
面プレートに対向した裏面(2b)の放射率をε、軽量
化ミラーの材料の熱伝導率をk、軽量化ミラーの使用状
態での温度をT、ステファン−ボルツマン定数をσとし
たとき、 k/(4εσT3)×0.9≦t≦k/(4εσT3)×1.3 となるように形成した請求項1又は2記載の軽量化ミラ
ー。
3. Front plate (1) and back plate (2)
Is t, the emissivity of the back surface (1b) of the front plate (1) facing the back plate and the back surface (2b) of the back plate (2) facing the front plate is ε, and When the thermal conductivity of the material is k, the temperature in the use state of the lightweight mirror is T, and the Stefan-Boltzmann constant is σ, k / (4εσT 3 ) × 0.9 ≦ t ≦ k / (4εσT 3 ) × The weight-reducing mirror according to claim 1 or 2, which is formed to have a thickness of 1.3.
JP7148223A 1995-05-22 1995-05-22 Lightweight mirror Pending JPH08313818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7148223A JPH08313818A (en) 1995-05-22 1995-05-22 Lightweight mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7148223A JPH08313818A (en) 1995-05-22 1995-05-22 Lightweight mirror

Publications (1)

Publication Number Publication Date
JPH08313818A true JPH08313818A (en) 1996-11-29

Family

ID=15448037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7148223A Pending JPH08313818A (en) 1995-05-22 1995-05-22 Lightweight mirror

Country Status (1)

Country Link
JP (1) JPH08313818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768600B2 (en) 2000-10-11 2004-07-27 Carl-Zeiss-Stiftung Temperature compensation apparatus for thermally loaded bodies of low thermal conductivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768600B2 (en) 2000-10-11 2004-07-27 Carl-Zeiss-Stiftung Temperature compensation apparatus for thermally loaded bodies of low thermal conductivity

Similar Documents

Publication Publication Date Title
EP1396035B1 (en) Solar concentrator
US3912380A (en) Composite type structure for large reflective mirrors
JP3203302B2 (en) Plastic mirror with enhanced thermal stability
US3633126A (en) Multiple internal reflection face-pumped laser
JP3103109B2 (en) Infrared pulse radiation source
US4253739A (en) Thermally compensated mirror
JP2018503056A (en) Solar collector
US4431269A (en) Low distortion cooled mirror
JPH08313818A (en) Lightweight mirror
US4028206A (en) Method for cool deposition of layers of materials onto a substrate
JP7004597B2 (en) Radiative cooling device
US4772110A (en) Cooled mirror with compensating backplate
US20230296860A1 (en) Reflective optics provided with a cooling system
JPH06201478A (en) Image pickup system
Klein Thermally induced optical distortion in high-energy laser systems
US4435045A (en) Built-up mirror with reduced temperature gradient
Lee et al. A cooled deformable bimorph mirror for a high power laser
EP4333560A1 (en) Thermal light emitting device
US6894851B2 (en) Optical device
US11906812B2 (en) Actively cooled optical substrates for high average power reflective or diffractive optic
JP2942158B2 (en) Lightweight double-sided mirror
CN218524939U (en) Miniaturized imaging system
JPH0268501A (en) Solid etalon
JPH025584A (en) Solid-state laser device
Canzian et al. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope