JPH08313814A - Objective lens for microscope - Google Patents

Objective lens for microscope

Info

Publication number
JPH08313814A
JPH08313814A JP7120035A JP12003595A JPH08313814A JP H08313814 A JPH08313814 A JP H08313814A JP 7120035 A JP7120035 A JP 7120035A JP 12003595 A JP12003595 A JP 12003595A JP H08313814 A JPH08313814 A JP H08313814A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
objective
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7120035A
Other languages
Japanese (ja)
Inventor
Kiyonobu Kurata
倉田清宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7120035A priority Critical patent/JPH08313814A/en
Publication of JPH08313814A publication Critical patent/JPH08313814A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To provide an objective lens for an achromat-class microscope of low magnification compensating various aberrations, correcting off-axial chromatic aberration solely by the objective lens and having an extremly flat image plane over a wide visual field in spite of a comparatively short focal distance and the simple lens constitution. CONSTITUTION: This lens is composed of a first lens group G1 having a positive lens, a second lens group G2 composed of a single negative lens and a third lens group G3 having a joined lens of a positive refractive power and, by representing the focal distance of a whole system by (f), the focal distance of the first lens group by f1 , the focal distance of the second lens group by f2 , the Abbe number of the positive lens of the first lens group by ν1 and the Abbe number of the negative lens of the second lens group by ν2 , the respective conditions: (ν2 -ν1 )>10, 0.05<=|f2 /f|<=0.12, 0.28<=|f2 /f1 |<=0.40 are satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡用対物レンズに
関し、特に、広視野にわたって像面が極めて平坦なアク
ロマート級の低倍顕微鏡用対物レンズに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens for a microscope, and more particularly to an objective lens for a low-magnification microscope of an achromat class having an extremely flat image plane over a wide field of view.

【0002】[0002]

【従来の技術】後記する本発明の顕微鏡用対物レンズに
近い技術として、特開昭58−192012号の対物レ
ンズがある。これは、倍率が2.5倍、開口数(NA)
が0.07であり、レンズ構成としては、物体側から順
に、凸面を有する正のメニスカスレンズ又は両凸レンズ
の第1レンズ群と、負レンズの第2レンズ群と、正レン
ズと負レンズを貼り合わせた接合レンズの第3レンズ群
と第4レンズ群と、負レンズと正レンズを貼り合わせた
正の接合レンズの第5レンズ群とからなっている。
2. Description of the Related Art As a technique close to the objective lens for a microscope of the present invention described later, there is an objective lens disclosed in JP-A-58-201212. This has a magnification of 2.5 and a numerical aperture (NA)
Is 0.07, and as the lens configuration, a positive meniscus lens having a convex surface or a first lens group of biconvex lenses, a second lens group of negative lenses, and a positive lens and a negative lens are attached in order from the object side. It is composed of a third lens group and a fourth lens group of cemented cemented lenses, and a fifth lens group of a positive cemented lens in which a negative lens and a positive lens are cemented together.

【0003】また、特公昭54−10456号の対物レ
ンズがある。これは、倍率が5倍、NAが0.1であ
り、レンズ構成は、正レンズの第1レンズ群と、負レン
ズの第2レンズ群と、正レンズと負レンズとよりなる正
の接合レンズの第3レンズ群と、正レンズの第4レンズ
群とからなる4群5枚のレンズ系からなっている。
Further, there is an objective lens of Japanese Patent Publication No. 54-10456. This has a magnification of 5 times and an NA of 0.1, and the lens configuration is a positive first lens group, a second negative lens group, and a positive cemented lens including a positive lens and a negative lens. The third lens group and the fourth lens group of the positive lens are composed of five lens groups in four groups.

【0004】また、特公昭53−7814号のものがあ
る。これは、倍率が2倍、NAが0.085であり、レ
ンズ構成としては、物体側から、単一レンズ又は接合レ
ンズよりなる第1レンズ群と、第1レンズ群より相当の
間隔をおいて配置された負レンズの第2レンズ群と、第
2レンズ群より相当の間隔をおいて配置され、比較的厚
い正のメニスカスレンズと接合レンズとよりなる第3レ
ンズ群とからなっている。
There is also a Japanese Patent Publication No. 53-7814. This has a magnification of 2 times and an NA of 0.085. As for the lens configuration, the first lens group consisting of a single lens or a cemented lens and a considerable distance from the first lens group are arranged from the object side. It is composed of a second lens group of the negative lens arranged and a third lens group which is arranged at a considerable distance from the second lens group and which is composed of a relatively thick positive meniscus lens and a cemented lens.

【0005】また、特公平1−50885号の対物レン
ズがある。これは、倍率が2倍、NAが0.055であ
り、物体側から、両凸レンズの第1レンズ群、両凹レン
ズの第2レンズ群、正のメニスカスレンズの第3レンズ
群、両凸レンズの第4レンズ群からなっている。
Further, there is an objective lens of Japanese Patent Publication No. 1-50885. This is because the magnification is 2 times and the NA is 0.055, and from the object side, the first lens group of the biconvex lens, the second lens group of the biconcave lens, the third lens group of the positive meniscus lens, and the second lens group of the biconvex lens. It consists of 4 lens groups.

【0006】また、特公昭57−52568号の対物レ
ンズがある。これは、倍率が1〜2倍、NAが0.03
〜0.08であり、レンズ構成としては、物体側から順
に、少なくとも1個の正レンズを有する第1レンズ群、
物体側に凸面を向けた負メニスカスレンズを含む第2レ
ンズ群、像側に凸面を向けた正メニスカスレンズと正レ
ンズとを含む第3レンズ群からなっている。
Further, there is an objective lens of Japanese Examined Patent Publication No. 57-52568. This has a magnification of 1 to 2 and an NA of 0.03.
.About.0.08, and as a lens configuration, a first lens group having at least one positive lens in order from the object side,
It comprises a second lens group including a negative meniscus lens having a convex surface directed toward the object side, and a third lens group including a positive meniscus lens having a convex surface directed toward the image side and a positive lens.

【0007】最後に、米国特許第3,176,583号
の対物レンズがある。これは、倍率が2倍であり、レン
ズ構成としては、物体側から順に、両凸レンズの第1レ
ンズ群、正のメニスカスレンズと両凹レンズの接合によ
る第2レンズ群、負のメニスカスレンズと正レンズの接
合による第3レンズ群からなっている。
Finally, there is the objective lens of US Pat. No. 3,176,583. This has a magnification of 2 times, and the lens configuration is, in order from the object side, a first lens group of a biconvex lens, a second lens group formed by cementing a positive meniscus lens and a biconcave lens, a negative meniscus lens and a positive lens. It is composed of a third lens group formed by cementing.

【0008】[0008]

【発明が解決しようとする課題】一般に、顕微鏡用対物
レンズでは、顕微鏡を大型化させないために、図1に示
すように、標本から対物レンズを取り付けるレボルバ
(胴付)までの距離(対物レンズ同焦距離)が固定され
ている。低倍の対物レンズは、焦点距離が対物レンズ同
焦距離よりも長いため、対物レンズの物体側は、凸レン
ズ、凹レンズと並ぶ望遠タイプのレンズ構成が一般に使
用されている。この場合、図2に示すように、第1レン
ズ群G1の凸レンズは比較的強いパワーを持たなければ
ならない。第1レンズ群G1の凸レンズのパワーが弱い
場合、対物レンズの後側焦点位置が対物レンズよりも像
側に大きくズレる。一方、高倍率の焦点距離の短い対物
レンズの後側焦点位置は、対物レンズ中に配置される。
このように低倍の対物レンズと高倍の対物レンズでの後
側焦点位置が大きくズレる場合、対物レンズの後に続く
レンズ系に入射する軸外光線の光線高が低倍の場合と高
倍の場合で大きく異なることになり、対物レンズの後に
続くレンズ系の収差補正が難しくなる。したがって、低
倍率の対物レンズでは、図2に示すように、第1レンズ
群G1の凸レンズのパワーを比較的強くして、対物レン
ズの後側焦点位置(瞳位置)を対物レンズの中に配置す
る必要がある。
Generally, in an objective lens for a microscope, the distance from the specimen to the revolver (with the body) to which the objective lens is attached is adjusted as shown in FIG. The focal length) is fixed. Since the focal length of the low-magnification objective lens is longer than the focal length of the objective lens, a telephoto type lens structure in which a convex lens and a concave lens are arranged on the object side of the objective lens is generally used. In this case, as shown in FIG. 2, the convex lens of the first lens group G1 must have a relatively strong power. When the power of the convex lens of the first lens group G1 is weak, the rear focal position of the objective lens is largely displaced to the image side of the objective lens. On the other hand, the rear focal position of the objective lens having a high magnification and a short focal length is arranged in the objective lens.
In this way, when the rear focal position of the low-magnification objective lens and the high-magnification objective lens largely deviates, the off-axis rays incident on the lens system following the objective lens may have low and high magnifications. The difference greatly changes, and it becomes difficult to correct the aberration of the lens system that follows the objective lens. Therefore, in a low-magnification objective lens, as shown in FIG. 2, the power of the convex lens of the first lens group G1 is made relatively strong and the rear focal position (pupil position) of the objective lens is arranged in the objective lens. There is a need to.

【0009】ところで、顕微鏡用の対物レンズは、カメ
ラレンズと異なり、物体を均一に照明するケーラー照明
を用いているため、対物レンズに入射する主光線は平行
でなければならない。さらに、低倍用対物レンズになる
程観察する物体の範囲が広くなるので、最軸外の主光線
高が高くなる。加えて、前述したように、第1レンズ群
の凸レンズは比較的強い凸パワーを持つため、軸外の主
光線を前群で大きく曲げなければならず、瞳色収差、倍
率の色収差を補正することは困難である。瞳色収差が発
生した場合、対物レンズ射出後の各波長毎の光線高が異
なるため、後に続くレンズの軸外の色収差の補正が難し
くなったり、光線のケラレが波長によって異なることか
ら、観察視野周辺が色付いたりする。したがって、低倍
率対物レンズでは、いかに瞳色収差、倍率色収差を補正
するかが重要となる。
Unlike a camera lens, an objective lens for a microscope uses Koehler illumination that uniformly illuminates an object. Therefore, the principal rays incident on the objective lens must be parallel. Further, the lower the magnification of the objective lens, the wider the range of the object to be observed, so that the chief ray height on the most off-axis becomes high. In addition, as described above, since the convex lens of the first lens group has a relatively strong convex power, the off-axis chief ray must be largely bent in the front group, and chromatic aberration of pupil and chromatic aberration of magnification must be corrected. It is difficult. When pupil chromatic aberration occurs, the ray height for each wavelength after exiting the objective lens is different, which makes it difficult to correct off-axis chromatic aberration of the lens that follows, and vignetting of rays differs depending on the wavelength. Is colored. Therefore, in a low-magnification objective lens, how to correct pupil chromatic aberration and lateral chromatic aberration becomes important.

【0010】前記した特開昭58−192012号、特
公昭54−10456号、特公昭53−7814号の対
物レンズは、軸上性能では問題ない。しかし、第1レン
ズ群の正レンズ、第2レンズ群の負レンズで倍率の色収
差、各波長によるコマ収差が補正されていない。これ
は、特に第2レンズ群の負レンズのパワーが強いにも係
わらず、硝材の分散が大きいため、ここで軸外色収差が
大きく発生しているからである。したがって、対物レン
ズ単体での軸外性能はあまり良くない。
The above-mentioned objective lenses of JP-A-58-192012, JP-B-54-10456 and JP-B-53-7814 have no problem in axial performance. However, the positive lens of the first lens group and the negative lens of the second lens group have not corrected the chromatic aberration of magnification and the coma aberration due to each wavelength. This is because, in particular, the off-axis chromatic aberration is large due to the large dispersion of the glass material despite the strong power of the negative lens of the second lens group. Therefore, the off-axis performance of the objective lens alone is not very good.

【0011】また、特公平1−50885号の対物レン
ズは、軸上性能、軸外性能共に問題ないが、対物レンズ
の全長すなわち同焦距離が後記する本発明の対物レンズ
及び他の対物レンズに対して2倍も大きい。
The objective lens of Japanese Examined Patent Publication No. 1-50885 has no problem in on-axis performance and off-axis performance, but the total length of the objective lens, that is, the focal length is the same as the objective lens of the present invention described later and other objective lenses. On the other hand, it is twice as large.

【0012】また、特公昭57−52568号の対物レ
ンズも性能上問題ないが、第2レンズ群の負レンズで発
生するコマ収差を抑えるために、第2レンズ群中に接合
レンズ又は2つの凹面を向かい合わせたレンズタイプを
使用している。そのため、レンズ構成が複雑になってい
る。
The objective lens of Japanese Examined Patent Publication No. 57-52568 has no problem in terms of performance, but in order to suppress the coma aberration generated in the negative lens of the second lens group, a cemented lens or two concave surfaces is provided in the second lens group. It uses a lens type that faces each other. Therefore, the lens configuration is complicated.

【0013】米国特許第3,176,583号の対物レ
ンズは、特に軸外性能が良くない。第1レンズ群のパワ
ーが強く、第1レンズ群で軸外主光線が大きく曲がって
いるため、第1レンズ群で発生する倍率の色収差、コマ
収差、各波長によるコマ収差、瞳の色収差が補正されて
いない。
The objective lens of US Pat. No. 3,176,583 has particularly poor off-axis performance. Since the power of the first lens group is strong and the off-axis chief ray is largely bent in the first lens group, the chromatic aberration of magnification, the coma aberration, the coma aberration due to each wavelength, and the chromatic aberration of the pupil generated in the first lens group are corrected. It has not been.

【0014】従来の対物レンズは、第1レンズ群G1中
の凸レンズによって発生する軸外色収差を補正するため
と、全系で発生する像面湾曲を補正するために、第2レ
ンズ群G2に大きな屈折力の負レンズを配置している
が、この負レンズによって過剰に収差を発生させないた
めに、レンズ枚数を増やして構成を複雑にしていた。構
成の簡単な対物レンズの場合は、対物レンズで発生した
倍率の色収差を接眼レンズで逆の倍率の色収差を発生さ
せて打ち消し合わせる等の手段をとっていた。
The conventional objective lens has a large second lens group G2 in order to correct the off-axis chromatic aberration generated by the convex lens in the first lens group G1 and the field curvature generated in the entire system. Although a negative lens having a refractive power is arranged, the number of lenses is increased to complicate the configuration in order to prevent excessive aberration from being generated by this negative lens. In the case of an objective lens having a simple structure, the chromatic aberration of magnification generated by the objective lens is canceled by generating chromatic aberration of the opposite magnification by the eyepiece lens.

【0015】本発明はこのような従来技術に鑑みてなさ
れたものであり、その目的は、比較的短い同焦距離であ
ってレンズ構成が簡単であるにも係わらず、諸収差を補
正すると共に対物レンズ単体で軸外の色収差を補正し、
広視野にわたって像面が極めて平坦なアクロマート級低
倍顕微鏡用対物レンズを提供することである。
The present invention has been made in view of the above-mentioned conventional technique, and an object thereof is to correct various aberrations despite a relatively short parfocal distance and a simple lens configuration. Corrects off-axis chromatic aberration with the objective lens alone,
An object of the present invention is to provide an objective lens for an achromatic class low magnification microscope, which has an extremely flat image plane over a wide field of view.

【0016】[0016]

【課題を解決するための手段】上記目的を達成する本発
明の顕微鏡用対物レンズは、物体側から順に、正レンズ
を有する第1レンズ群と、負レンズ単体からなる第2レ
ンズ群と、正屈折力の接合レンズを有する第3レンズ群
より構成され、次の各条件を満足することを特徴とする
ものである。 (1) (ν2 −ν1 )>10 (2) 0.05≦|f2 /f|≦0.12 (3) 0.28≦|f2 /f1 |≦0.40 ただし、fは全系の焦点距離、f1 は第1レンズ群の焦
点距離、f2 は第2レンズ群の焦点距離、ν1 は第1レ
ンズ群の正レンズのアッベ数、ν2 は第2レンズ群の負
レンズのアッベ数である。
An objective lens for a microscope according to the present invention which achieves the above object comprises, in order from the object side, a first lens group having a positive lens, a second lens group consisting of a single negative lens, and a positive lens group. It is characterized in that it is composed of a third lens group having a cemented lens having a refractive power and satisfies the following respective conditions. (1) (ν 2 −ν 1 )> 10 (2) 0.05 ≦ | f 2 /f|≦0.12 (3) 0.28 ≦ | f 2 / f 1 | ≦ 0.40 where f Is the focal length of the entire system, f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, ν 1 is the Abbe number of the positive lens of the first lens group, and ν 2 is the second lens group Is the Abbe number of the negative lens of.

【0017】この場合、第3レンズ群の焦点距離をf3
とするとき、 (4) 0.56≦|f1 /f3 |≦0.90 の条件を満足することが望ましい。
In this case, the focal length of the third lens group is f 3
Then, (4) it is desirable to satisfy the condition of 0.56 ≦ | f 1 / f 3 | ≦ 0.90.

【0018】また、これとは別に、第3レンズ群は正レ
ンズと負レンズからなる接合レンズを含み、この接合レ
ンズの負レンズのアッベ数のν3 、正レンズのアッベν
4 とするとき、 (5) 20<|ν3 −ν4 |<50 の条件を満足することが望ましい。
Separately from this, the third lens group includes a cemented lens composed of a positive lens and a negative lens, the Abbe number ν 3 of the negative lens of this cemented lens, and the Abbe ν of the positive lens.
When it is 4 , it is desirable that the condition of (5) 20 <| ν 3 −ν 4 | <50 is satisfied.

【0019】[0019]

【作用】以下、本発明において上記構成をとる理由と作
用について説明する。一般的に、望遠タイプの低倍率顕
微鏡用対物レンズは、図2にパワー配置を示すように、
瞳位置を対物レンズ側に近付ける作用と、焦点距離を長
くさせる作用を持つ凸凹タイプの第1レンズ群G1、第
2レンズ群G2と、所定の位置に像を結像させ倍率を所
望の値とする第3レンズ群G3とから成り立つている。
The reason why the above structure is adopted and the function of the present invention will be described below. Generally, a telephoto type objective lens for a low magnification microscope has a power arrangement as shown in FIG.
A convex-concave type first lens group G1 and a second lens group G2 that have a function of bringing the pupil position closer to the objective lens side and a function of increasing the focal length, and an image is formed at a predetermined position to set the magnification to a desired value. And a third lens group G3 that

【0020】これは、カメラレンズのトリプレット、テ
ッサータイプのレンズ構成に近いが、カメラレンズの場
合、図3に示すように、レンズ絞り位置がレンズ中に配
置されるため、中心の凹レンズを通る軸外の主光線は光
線高が低く、凹レンズを挟む像側と物体側の凸レンズを
通る軸外の主光線が、光軸に対して上下反対側の高さを
通っている。そのため、倍率の色収差を補正するために
は、物体側と像側の凸レンズの分散が同じ程度あれば、
凹レンズの分散があったとしても、問題がなかった。一
方、軸上の色収差は、2つの凸レンズで発生する色収差
を凹レンズのパワーを強くし分散の大きい硝材を使用す
ることによって補正していた。
This is similar to the triplet and tesser type lens configuration of the camera lens, but in the case of the camera lens, as shown in FIG. 3, since the lens diaphragm position is located in the lens, the axis passing through the central concave lens is used. The outside chief ray has a low ray height, and the off-axis chief ray passing through the image-side and the object-side convex lens sandwiching the concave lens passes through the heights opposite to the optical axis. Therefore, in order to correct the chromatic aberration of magnification, if the dispersion of the convex lenses on the object side and the image side is about the same,
Even if the concave lenses were dispersed, there was no problem. On the other hand, the chromatic aberration on the axis is corrected by using a glass material having a large dispersion and a strong dispersion of the power of the concave lens.

【0021】しかし、低倍顕微鏡用対物レンズでは、瞳
位置(カメラの絞り位置に対応する)を対物レンズ中心
に置く設計にすると、従来例で説明したように、対物レ
ンズに入射する軸外主光線が平行となるケーラー照明を
用いていることから、第1レンズ群で軸外主光線を大き
く曲げなければならず、第1レンズ群の凸レンズのパワ
ーが強くなる。したがって、カメラレンズのような構成
では、収差を良好に補正することが難しくなる。
However, in the low magnification microscope objective lens, if the pupil position (corresponding to the diaphragm position of the camera) is designed to be located in the center of the objective lens, as described in the conventional example, the off-axis main light incident on the objective lens is used. Since the Koehler illumination in which the light rays are parallel is used, the off-axis chief ray must be largely bent in the first lens group, and the power of the convex lens of the first lens group becomes strong. Therefore, it becomes difficult to satisfactorily correct aberrations with a configuration such as a camera lens.

【0022】低倍率顕微鏡用対物レンズは、上記問題を
解決するためは、図2のように、瞳位置を第3レンズ群
G3の近くに設定することにより、諸収差を補正可能に
している。本構成によると、第1レンズ群G1、第2レ
ンズ群G2を通過する軸外主光線が、光軸より離れてい
るため、倍率の色収差、瞳色収差は、第1、第2レンズ
群G1、G2で発生するが、第3レンズ群G3では軸外
主光線が光軸に近いため、軸外色収差はほとんど発生し
ない。
In order to solve the above problem, the objective lens for the low magnification microscope can correct various aberrations by setting the pupil position near the third lens group G3 as shown in FIG. According to this configuration, since the off-axis chief ray that passes through the first lens group G1 and the second lens group G2 is far from the optical axis, the chromatic aberration of magnification and the chromatic aberration of pupil are the first and second lens groups G1 and G1. Although it occurs in G2, off-axis chromatic aberration hardly occurs in the third lens group G3 because the off-axis chief ray is close to the optical axis.

【0023】従来の対物レンズでは、第1レンズ群G1
にアッベ数大すなわち分散の小さい硝材を用い、第2レ
ンズ群G2にアッベ数小すなわち分散の大きい硝材を用
いていたため、上記諸収差を補正するために、第2レン
ズ群G2を接合にしたり、レンズの枚数を増やして収差
補正をするといった手法が用いられていた。
In the conventional objective lens, the first lens group G1
Since a glass material having a large Abbe number, that is, a small dispersion is used for the second lens group G2, and a glass material having a small Abbe number, that is, a large dispersion is used for the second lens group G2, the second lens group G2 is cemented to correct the above aberrations. A method of correcting the aberration by increasing the number of lenses has been used.

【0024】本発明では、第2レンズ群G2を強い負パ
ワーの凹レンズ単体で構成しているために、第1レンズ
群G1中の凸レンズの分散を大きくし(アッベ数を小さ
くし)、第2レンズ群G2である凹レンズの分散を小さ
く(アッベ数を大きく)する、従来と逆の方法で軸外収
差を補正している。
In the present invention, since the second lens group G2 is composed of a single concave lens having a strong negative power, the dispersion of the convex lenses in the first lens group G1 is increased (the Abbe number is decreased), and the second lens group G2 is increased. Off-axis aberrations are corrected by a method reverse to the conventional method, which reduces the dispersion of the concave lens that is the lens group G2 (increases the Abbe number).

【0025】第2レンズ群G2は、他のレンズ群に対し
てかなり大きなパワーを持っているため、第2レンズ群
G2で発生する軸外収差及び軸上収差を分散の小さい硝
材を用いることで抑えることができる。また、従来、第
2レンズ群G2で発生していた軸上及び軸外色収差を第
2レンズ群G2以降のレンズ群で補正する必要がなくな
り、本発明のように構成を簡単にすることができる。
Since the second lens group G2 has a considerably large power as compared with other lens groups, it is possible to use a glass material having a small dispersion of off-axis aberrations and on-axis aberrations generated in the second lens group G2. Can be suppressed. Further, it is no longer necessary to correct the axial and off-axis chromatic aberrations that have conventionally occurred in the second lens group G2 by the lens groups after the second lens group G2, and the configuration can be simplified as in the present invention. .

【0026】また、本発明では、色収差が軸上、軸外共
に、第1レンズ群G1と第2レンズ群G2でほぼ補正さ
れているために、第3レンズ群G3では単独に軸上色収
差を補正する必要があり、接合レンズを使用している。
Further, in the present invention, the chromatic aberration is corrected substantially by the first lens group G1 and the second lens group G2 both on-axis and off-axis, so that the third lens group G3 independently produces on-axis chromatic aberration. It needs to be corrected and uses cemented lenses.

【0027】次に、前記の各条件式について説明する
と、条件式(1)は、倍率色収差、瞳色収差を補正する
条件であり、下限の10を越えると、軸外の色収差が大
きく発生し、本発明のような簡単なレンズ構成では、収
差補正ができなくなる。
Next, each of the above conditional expressions will be described. Conditional expression (1) is a condition for correcting chromatic aberration of magnification and chromatic aberration of pupil, and if the lower limit of 10 is exceeded, large off-axis chromatic aberration occurs, Aberration correction cannot be performed with a simple lens configuration as in the present invention.

【0028】条件式(2)は、全系の焦点距離における
第2レンズ群G2のパワーの範囲を規定している条件で
あり、下限の0.05を越えると、第2レンズ群G2の
屈折力が強くなりすぎ、第2レンズ群G2で発生する軸
外の収差、特に倍率の色収差とコマ収差が補正できなく
なる。上限の0.12を越えると、第2レンズ群G2の
屈折力が弱くなり、第1レンズ群G1で発生する倍率の
色収差、瞳収差と、第3レンズ群G3で発生する軸上収
差及び全系の像面湾曲が、本発明のような簡単なレンズ
構成では、補正できなくなる。
Conditional expression (2) is a condition that defines the power range of the second lens group G2 at the focal length of the entire system, and when the lower limit of 0.05 is exceeded, the refraction of the second lens group G2 is The force becomes too strong, and it becomes impossible to correct off-axis aberrations generated in the second lens group G2, particularly chromatic aberration of magnification and coma. When the upper limit of 0.12 is exceeded, the refracting power of the second lens group G2 becomes weak, and chromatic aberration of magnification and pupil aberration that occur in the first lens group G1 and axial aberration and total aberration that occur in the third lens group G3. The field curvature of the system cannot be corrected by the simple lens structure as in the present invention.

【0029】条件式(3)は、軸外収差を良好に補正す
るための第1レンズ群G1と第2レンズ群G2のパワー
比率の条件であり、下限の0.28を越えると、第2レ
ンズ群G2で発生する倍率の色収差、各波長におけるコ
マ収差が負レンズ1枚では補正できなくなる。上限の
0.40を越えると、正屈折力の第1レンズ群G1で発
生する倍率の色収差、瞳色収差の補正が本発明の構成で
はできなくなる。
Conditional expression (3) is a condition of the power ratio of the first lens group G1 and the second lens group G2 for satisfactorily correcting the off-axis aberration. If the lower limit of 0.28 is exceeded, the second expression is satisfied. The chromatic aberration of magnification and the coma aberration at each wavelength generated in the lens group G2 cannot be corrected by one negative lens. If the upper limit of 0.40 is exceeded, the chromatic aberration of magnification and the chromatic aberration of the pupil generated in the first lens group G1 having a positive refractive power cannot be corrected by the configuration of the present invention.

【0030】条件式(4)、(5)は、さらに諸収差を
良好に補正するための条件である。条件式(4)は、第
1レンズ群G1の焦点距離と第3レンズ群G3の焦点距
離との比を規定したもので、上限値0.90を越える
と、第3レンズ群G3のパワーが大きくなり、球面収差
の補正が困難になり、下限の0.56を越えると、第1
レンズ群G1のパワーが大きくなり、瞳収差、倍率の色
収差の補正ができなくなり、レンズ枚数を増やさなけれ
ばならなくなる。
Conditional expressions (4) and (5) are conditions for further satisfactorily correcting various aberrations. Conditional expression (4) defines the ratio between the focal length of the first lens group G1 and the focal length of the third lens group G3. When the upper limit value 0.90 is exceeded, the power of the third lens group G3 is increased. When the lower limit of 0.56 is exceeded, the first
The power of the lens group G1 becomes large, it becomes impossible to correct pupil aberration and chromatic aberration of magnification, and the number of lenses must be increased.

【0031】条件式(5)は、第3レンズ群G3で発生
する軸上の色収差の補正可能な条件式である。下限値2
0よりも小さくなると、軸上の色収差が補正不足とな
り、上限値50よりも大きくなると、補正過剰となって
しまう。
Conditional expression (5) is a conditional expression capable of correcting axial chromatic aberration generated in the third lens group G3. Lower limit 2
When it is smaller than 0, the axial chromatic aberration is insufficiently corrected, and when it is larger than the upper limit value 50, the correction is excessive.

【0032】[0032]

【実施例】次に、本発明の顕微鏡用対物レンズの実施例
1〜3について説明する。レンズデータは後記するが、
実施例1〜3のレンズ構成を示す断面それぞれ図4〜図
6に示す。
EXAMPLES Examples 1 to 3 of the microscope objective lens of the present invention will be described below. The lens data will be described later,
Sections showing the lens configurations of Examples 1 to 3 are shown in FIGS. 4 to 6, respectively.

【0033】実施例1は、図4に示すように、第1レン
ズ群G1は、両凸の正レンズ1枚からなり、第2レンズ
群G2は、両凹の負レンズ1枚からなり、第3レンズ群
G3は、物体側に凸面を向けた負メニスカスレンズと両
凸の正レンズの接合レンズからなっている。
In the first embodiment, as shown in FIG. 4, the first lens group G1 is composed of one biconvex positive lens, the second lens group G2 is composed of one biconcave negative lens, and The third lens group G3 is composed of a cemented lens of a negative meniscus lens having a convex surface directed toward the object side and a biconvex positive lens.

【0034】実施例2は、図5に示すように、第1レン
ズ群G1は、両凸の正レンズ1枚からなり、第2レンズ
群G2は、両凹の負レンズ1枚からなり、第3レンズ群
G3は、像側に凸面を向けた正メニスカスレンズと、物
体側に凸面を向けた負メニスカスレンズと両凸の正レン
ズの接合レンズとからなっている。
In the second embodiment, as shown in FIG. 5, the first lens group G1 consists of one biconvex positive lens, and the second lens group G2 consists of one biconcave negative lens. The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side, a negative meniscus lens having a convex surface directed toward the object side, and a cemented lens having a biconvex positive lens.

【0035】実施例3は、図6に示すように、第1レン
ズ群G1は、両凸の正レンズ1枚からなり、第2レンズ
群G2は、両凹の負レンズ1枚からなり、第3レンズ群
G3は、両凹の負レンズと両凸の正レンズの接合レンズ
と、両凸の正レンズからなっている。
In the third embodiment, as shown in FIG. 6, the first lens group G1 is composed of one biconvex positive lens, the second lens group G2 is composed of one biconcave negative lens, and The third lens group G3 includes a cemented lens of a biconcave negative lens and a biconvex positive lens, and a biconvex positive lens.

【0036】以下に、各実施例のレンズデータを示す
が、記号は、上記の他、βは倍率、NAは開口数、fは
全系の合成焦点距離、Dは全系の第1レンズ面から最終
レンズ面までの全長、WDは作動距離である。また、r
1 、r2 …は物体側から順に示した各レンズ面の曲率半
径、d1 、d2 …は物体側から順に示した各レンズ面間
の間隔、nd1、nd2…は物体側から順に示した各レンズ
のd線の屈折率、νd1、νd2…は物体側から順に示した
各レンズのアッベ数である。
The lens data of each embodiment will be shown below. In addition to the above, the symbols are β, the magnification, NA is the numerical aperture, f is the combined focal length of the entire system, and D is the first lens surface of the entire system. To the final lens surface, WD is the working distance. Also, r
1 , r 2 ... are the radii of curvature of the respective lens surfaces shown in order from the object side, d 1 , d 2 ... are the intervals between the lens surfaces shown in order from the object side, and n d1 , n d2 ... are shown in order from the object side. The d-line refractive index of each lens shown, ν d1 , ν d2 ... Is the Abbe number of each lens shown in order from the object side.

【0037】実施例1 β=-2×,NA=0.05 ,f=90,D=43.79 ,WD=5.1 r1 = 17.2961 d1 = 2.4207 nd1 =1.71736 νd1 =29.51 r2 = -143.3176 d2 = 12.7148 r3 = -23.8077 d3 = 1.2402 nd2 =1.62230 νd2 =53.20 r4 = 6.3955 d4 = 23.5856 r5 = 75.9065 d5 = 0.8000 nd3 =1.74400 νd3 =44.79 r6 = 18.4550 d6 = 3.0287 nd4 =1.49700 νd4 =81.61 r7 = -14.3907 (1)(ν2 −ν1 )=23.69 (2)|f2 /f| =0.0886 (3)|f2 /f1 |=0.3683 (4)|f1 /f3 |=0.6735 (5)|ν3 −ν4 |=36.82
Example 1 β = −2 ×, NA = 0.05, f = 90, D = 43.79, WD = 5.1 r 1 = 17.2961 d 1 = 2.4207 n d1 = 1.71736 ν d1 = 29.51 r 2 = -143.3176 d 2 = 12.7148 r 3 = -23.8077 d 3 = 1.2402 n d2 = 1.62230 ν d2 = 53.20 r 4 = 6.3955 d 4 = 23.5856 r 5 = 75.9065 d 5 = 0.8000 n d3 = 1.74400 ν d3 = 44.79 r 6 = 18.4550 d 6 = 3.0287 n d4 = 1.49700 ν d4 = 81.61 r 7 = -14.3907 (1) (ν 2 −ν 1 ) = 23.69 (2) | f 2 / f | = 0.0886 (3) | f 2 / f 1 | = 0.3683 ( 4) | f 1 / f 3 | = 0.6735 (5) | ν 3 -ν 4 | = 36.82
.

【0038】実施例2 β=-2×,NA=0.055 ,f=90,D=41.97 ,WD=6.0 r1 = 18.0432 d1 = 3.0000 nd1 =1.59551 νd1 =39.21 r2 = -48.9969 d2 = 14.4614 r3 = -20.8625 d3 = 1.0000 nd2 =1.67790 νd2 =55.33 r4 = 5.8434 d4 = 17.8086 r5 = -24.4349 d5 = 2.0000 nd3 =1.51633 νd3 =64.15 r6 = -11.5342 d6 = 0.2000 r7 = 126.7406 d7 = 1.0000 nd4 =1.71736 νd4 =29.51 r8 = 23.9531 d8 = 2.5000 nd5 =1.48749 νd5 =70.20 r9 = -27.4770 (1)(ν2 −ν1 )=16.12 (2)|f2 /f| =0.0737 (3)|f2 /f1 |=0.2945 (4)|f1 /f3 |=0.861 (5)|ν3 −ν4 |=40.69
Example 2 β = −2 ×, NA = 0.055, f = 90, D = 41.97, WD = 6.0 r 1 = 18.0432 d 1 = 3.0000 n d1 = 1.59551 ν d1 = 39.21 r 2 = −48.9969 d 2 = 14.4614 r 3 = -20.8625 d 3 = 1.0000 n d2 = 1.67790 ν d2 = 55.33 r 4 = 5.8434 d 4 = 17.8086 r 5 = -24.4349 d 5 = 2.0000 n d3 = 1.51633 ν d3 = 64.15 r 6 = -11.5342 d 6 = 0.2000 r 7 = 126.7406 d 7 = 1.0000 n d4 = 1.71736 ν d4 = 29.51 r 8 = 23.9531 d 8 = 2.5000 n d5 = 1.48749 ν d5 = 70.20 r 9 = -27.4770 (1) (ν 2 -ν 1) = 16.12 (2) | f 2 / f | = 0.0737 (3) | f 2 / f 1 | = 0.2945 (4) | f 1 / f 3 | = 0.861 (5) | ν 3 -ν 4 | = 40.69
.

【0039】実施例3 β=-2×,NA=0.05 ,f=90,D=43.7789 ,WD=5.1 r1 = 24.6208 d1 = 2.4207 nd1 =1.71736 νd1 =29.51 r2 = -74.8577 d2 = 16.5490 r3 = -509.3208 d3 = 2.9292 nd2 =1.62230 νd2 =53.20 r4 = 5.7290 d4 = 15.4739 r5 = -13.9802 d5 = 0.8000 nd3 =1.74400 νd3 =44.79 r6 = 464.7170 d6 = 3.4061 nd4 =1.49700 νd4 =81.61 r7 = -9.4914 d7 = 0.2000 r8 = 139.1062 d8 = 2.0000 nd5 =1.49700 νd5 =81.61 r9 = -23.5891 (1)(ν2 −ν1 )=23.69 (2)|f2 /f| =0.1012 (3)|f2 /f1 |=0.3489 (4)|f1 /f3 |=0.8928 (5)|ν3 −ν4 |=36.82
Example 3 β = -2 ×, NA = 0.05, f = 90, D = 43.7789, WD = 5.1 r 1 = 24.6208 d 1 = 2.4207 n d1 = 1.71736 ν d1 = 29.51 r 2 = -74.8577 d 2 = 16.5490 r 3 = -509.3208 d 3 = 2.9292 n d2 = 1.62230 ν d2 = 53.20 r 4 = 5.7290 d 4 = 15.4739 r 5 = -13.9802 d 5 = 0.8000 n d3 = 1.74400 ν d3 = 44.79 r 6 = 464.7170 d 6 = 3.4061 n d4 = 1.49700 ν d4 = 81.61 r 7 = -9.4914 d 7 = 0.2000 r 8 = 139.1062 d 8 = 2.0000 n d5 = 1.49700 ν d5 = 81.61 r 9 = -23.5891 (1) (ν 2 −ν 1 ) = 23.69 (2) | f 2 / f | = 0.1012 (3) | f 2 / f 1 | = 0.3489 (4) | f 1 / f 3 | = 0.8928 (5) | ν 3 -ν 4 | = 36.82
.

【0040】上記実施例1〜3は何れも対物レンズから
の射出光が平行光束となる無限遠補正型の対物レンズで
あり、それ自身では結像しない。そこで、例えば以下に
示すレンズデータを有し、図7にレンズ断面を示す結像
レンズと組み合わせて使用される。ただし、レンズデー
タ中、r1'、r2'…は物体側から順に示した各レンズ面
の曲率半径、d1'、d2'…は物体側から順に示した各レ
ンズ面間の間隔、nd1' 、nd2' …は物体側から順に示
した各レンズのd線の屈折率、νd1' 、νd2'…は物体
側から順に示した各レンズのアッベ数である。
All of the first to third embodiments are objective lenses of infinity correction type in which the light emitted from the objective lens is a parallel light beam, and it does not form an image by itself. Therefore, for example, it is used in combination with an imaging lens having the following lens data and having the lens cross section shown in FIG. However, in the lens data, r 1 ′, r 2 ′ ... Are the radii of curvature of the respective lens surfaces shown in order from the object side, d 1 ′, d 2 ′ ... are the intervals between the lens surfaces shown in order from the object side, n d1 ', n d2 ' ... are d-line refractive indices of the lenses shown in order from the object side, and v d1 ', v d2 ' ... are Abbe numbers of the lenses shown in order from the object side.

【0041】 r1'= 68.7541 d1'= 7.7321 nd1'=1.48749 νd1'=70.20 r2'= -37.5679 d2'= 3.4742 nd2'=1.80610 νd2'=40.95 r3'= -102.8477 d3'= 0.6973 r4'= 84.3099 d4'= 6.0238 nd3'=1.83400 νd3'=37.16 r5'= -50.7100 d5'= 3.0298 nd4'=1.64450 νd4'=40.82 r6'= 40.6619 。R 1 '= 68.7541 d 1 ' = 7.7321 n d1 '= 1.48749 ν d1 ' = 70.20 r 2 '= -37.5679 d 2 ' = 3.4742 n d2 '= 1.80610 ν d2 ' = 40.95 r 3 '= -102.8477 d 3 '= 0.6973 r 4 ' = 84.3099 d 4 '= 6.0238 n d3 ' = 1.83400 ν d3 '= 37.16 r 5 ' = -50.7100 d 5 '= 3.0298 n d4 ' = 1.64450 ν d4 '= 40.82 r 6 ' = 40.6619.

【0042】この場合、実施例1〜3の対物レンズと図
7の結像レンズの間の間隔は50mm〜170mmの間
の何れの位置でもよいが、この間隔を107mmとした
場合の実施例1〜3の収差図をそれぞれ図8〜図10に
示す。ただし、これら収差図において、(a)は球面収
差、(b)は歪曲収差、(c)は非点収差、(d)は倍
率色収差、(e)はコマ収差を示す。これら収差図中、
yは像高を示す。なお、上記間隔が50mm〜170m
mの間で107mm以外の位置においてもほぼ同様の収
差状況を示す。
In this case, the distance between the objective lens of Examples 1 to 3 and the imaging lens of FIG. 7 may be any position between 50 mm and 170 mm, but Example 1 when this distance is 107 mm 8 to 10 show aberration diagrams of FIGS. However, in these aberration diagrams, (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, (d) shows lateral chromatic aberration, and (e) shows coma. In these aberration diagrams,
y indicates the image height. The distance is 50 mm to 170 m
Almost the same aberration situation is exhibited at positions other than 107 mm between m.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
によれば、比較的短い同焦距離であり、レンズ構成が簡
単であるのにも係わらず、諸収差を補正すると共に、対
物レンズ単体で軸外の色収差を補正し、広視野にわたっ
て像面が極めて平坦なアクロマート級の低倍顕微鏡用対
物レンズを提供することができる。
As is apparent from the above description, according to the present invention, although the parfocal distance is relatively short and the lens configuration is simple, various aberrations are corrected and the objective lens is corrected. It is possible to provide an objective lens for a low-magnification microscope of an achromat class in which an image plane is extremely flat over a wide field of view by correcting off-axis chromatic aberration by itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】顕微鏡用対物レンズの同焦距離を説明するため
の図である。
FIG. 1 is a diagram for explaining a parfocal distance of a microscope objective lens.

【図2】本発明による顕微鏡用対物レンズのパワー配置
と光線通過位置を示す図である。
FIG. 2 is a diagram showing a power arrangement and a light beam passage position of a microscope objective lens according to the present invention.

【図3】カメラレンズの場合のパワー配置と光線通過位
置を示す図である。
FIG. 3 is a diagram showing a power arrangement and a ray passing position in the case of a camera lens.

【図4】本発明の顕微鏡用対物レンズの実施例1のレン
ズ断面図である。
FIG. 4 is a lens sectional view of Example 1 of the microscope objective lens of the present invention.

【図5】実施例2のレンズ断面図である。FIG. 5 is a lens cross-sectional view of Example 2.

【図6】実施例3のレンズ断面図である。FIG. 6 is a lens cross-sectional view of Example 3.

【図7】各実施例の顕微鏡用対物レンズと共に用いる結
像レンズの1例のレンズ断面図である。
FIG. 7 is a lens cross-sectional view of an example of an imaging lens used together with the microscope objective lens of each example.

【図8】実施例1の球面収差、歪曲収差、非点収差、倍
率色収差、コマ収差を示す収差図である。
FIG. 8 is an aberration diagram showing spherical aberration, distortion, astigmatism, lateral chromatic aberration, and coma of Example 1.

【図9】実施例2の図8と同様な収差図である。FIG. 9 is an aberration diagram similar to FIG. 8 of Example 2.

【図10】実施例3の図8と同様な収差図である。FIG. 10 is an aberration diagram similar to FIG. 8 of Example 3.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、正レンズを有する第1
レンズ群と、負レンズ単体からなる第2レンズ群と、正
屈折力の接合レンズを有する第3レンズ群より構成さ
れ、次の各条件を満足することを特徴とする顕微鏡用対
物レンズ。 (1) (ν2 −ν1 )>10 (2) 0.05≦|f2 /f|≦0.12 (3) 0.28≦|f2 /f1 |≦0.40 ただし、fは全系の焦点距離、f1 は第1レンズ群の焦
点距離、f2 は第2レンズ群の焦点距離、ν1 は第1レ
ンズ群の正レンズのアッベ数、ν2 は第2レンズ群の負
レンズのアッベ数である。
1. A first lens having a positive lens in order from the object side.
An objective lens for a microscope, comprising a lens group, a second lens group consisting of a single negative lens, and a third lens group having a cemented lens of positive refractive power, and satisfying the following conditions. (1) (ν 2 −ν 1 )> 10 (2) 0.05 ≦ | f 2 /f|≦0.12 (3) 0.28 ≦ | f 2 / f 1 | ≦ 0.40 where f Is the focal length of the entire system, f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, ν 1 is the Abbe number of the positive lens of the first lens group, and ν 2 is the second lens group Is the Abbe number of the negative lens of.
【請求項2】 請求項1の顕微鏡用対物レンズにおい
て、第3レンズ群の焦点距離をf3 とするとき、 (4) 0.56≦|f1 /f3 |≦0.90 の条件を満足することを特徴とする顕微鏡用対物レン
ズ。
2. The objective lens for a microscope according to claim 1, wherein, when the focal length of the third lens group is f 3 , (4) the condition of 0.56 ≦ | f 1 / f 3 | ≦ 0.90 is satisfied. An objective lens for a microscope characterized by satisfying.
【請求項3】 請求項1の顕微鏡用対物レンズにおい
て、第3レンズ群は正レンズと負レンズからなる接合レ
ンズを含み、この接合レンズの負レンズのアッベ数のν
3 、正レンズのアッベν4 とするとき、 (5) 20<|ν3 −ν4 |<50 の条件を満足することを特徴とする顕微鏡用対物レン
ズ。
3. The objective lens for a microscope according to claim 1, wherein the third lens group includes a cemented lens including a positive lens and a negative lens, and the Abbe number ν of the negative lens of the cemented lens is ν.
3. When the positive lens Abbe ν 4 is satisfied, (5) 20 <| ν 3 −ν 4 | <50 is satisfied.
JP7120035A 1995-05-18 1995-05-18 Objective lens for microscope Withdrawn JPH08313814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7120035A JPH08313814A (en) 1995-05-18 1995-05-18 Objective lens for microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7120035A JPH08313814A (en) 1995-05-18 1995-05-18 Objective lens for microscope

Publications (1)

Publication Number Publication Date
JPH08313814A true JPH08313814A (en) 1996-11-29

Family

ID=14776300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7120035A Withdrawn JPH08313814A (en) 1995-05-18 1995-05-18 Objective lens for microscope

Country Status (1)

Country Link
JP (1) JPH08313814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221955A (en) * 2000-02-10 2001-08-17 Nikon Corp Objective lens for parallel stereomicroscope
WO2023095723A1 (en) * 2021-11-29 2023-06-01 株式会社ニコン Microscope objective lens, microscope optical system, and microscope device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221955A (en) * 2000-02-10 2001-08-17 Nikon Corp Objective lens for parallel stereomicroscope
JP4660873B2 (en) * 2000-02-10 2011-03-30 株式会社ニコン Parallel system stereo microscope objective lens
WO2023095723A1 (en) * 2021-11-29 2023-06-01 株式会社ニコン Microscope objective lens, microscope optical system, and microscope device

Similar Documents

Publication Publication Date Title
US20030165021A1 (en) Microscope zoom objective lens
JPH06160720A (en) Liquid immersion system microscope objective lens
JP3313163B2 (en) Microscope objective lens
JPH07281097A (en) Liquid immersion system microscope objective lens
JPH0735983A (en) Immersion objective lens system microscope
JP3250739B2 (en) Super wide field eyepiece for microscope
JPH06130291A (en) Standard lens
JP3889849B2 (en) Microscope objective lens and single objective binocular stereomicroscope system
JP3454935B2 (en) Microscope objective lens
JP4959230B2 (en) Microscope objective lens
JP3735909B2 (en) Retro focus lens
JPH0868953A (en) Eyepiece
JPH0734061B2 (en) Eyepiece zoom lens system
JP3403235B2 (en) Inner focus type wide field eyepiece
US5812324A (en) Eyepiece with large eye relief
US5532879A (en) Microscope objective lens
US5815317A (en) Eyepiece with broad visibility
JPH07333502A (en) Zoom lens
JPH07234357A (en) Loupe
JPH08136816A (en) Objective lens of microscope
JPS6250717A (en) Projection objective for low power
JPH05107471A (en) Objective lens for endoscope
JPH1195130A (en) Eyepiece
JPH08313814A (en) Objective lens for microscope
JP2596800B2 (en) Large aperture wide angle lens

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806