JPH0831378B2 - High frequency boost transformer - Google Patents
High frequency boost transformerInfo
- Publication number
- JPH0831378B2 JPH0831378B2 JP3347636A JP34763691A JPH0831378B2 JP H0831378 B2 JPH0831378 B2 JP H0831378B2 JP 3347636 A JP3347636 A JP 3347636A JP 34763691 A JP34763691 A JP 34763691A JP H0831378 B2 JPH0831378 B2 JP H0831378B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- secondary winding
- transformer
- core
- leg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coils Of Transformers For General Uses (AREA)
- Coils Or Transformers For Communication (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶の背面を照明する
冷陰極管等を点灯するためのインバータに用いるのに好
適な小型で薄形の高周波昇圧トランスの構成に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact and thin high-frequency step-up transformer suitable for use in an inverter for lighting a cold cathode tube for illuminating the back surface of liquid crystal.
【0002】[0002]
【従来の技術】従来のインバータ用高周波昇圧トランス
は図1のように構成されている。複数の鍔1を有する中
空のボビン2には、低圧側一次巻線L1 と高圧側二次巻
線L2 が鍔1で分離して巻回されている。高電圧が発生
する二次巻線L2 は、さらに鍔1で複数段に分割して巻
かれることにより、重なり合う線間の電位差を低くして
絶縁破壊を防止するようにしてある。ボビン2の中空部
3には二つのE形コア4、5のそれぞれの中央脚6、7
が挿入され、コア4とコア5が互いに突き合わせて固定
されている。2. Description of the Related Art A conventional high frequency boosting transformer for an inverter is constructed as shown in FIG. A low-voltage side primary winding L 1 and a high-voltage side secondary winding L 2 are separately wound by the collar 1 on a hollow bobbin 2 having a plurality of collars 1. The secondary winding L 2 in which a high voltage is generated is further divided into a plurality of stages by the collar 1 and wound, so that the potential difference between the overlapping lines is reduced and dielectric breakdown is prevented. In the hollow portion 3 of the bobbin 2, the central legs 6, 7 of the two E-shaped cores 4, 5 are respectively provided.
Are inserted, and the core 4 and the core 5 are fixed to each other.
【0003】[0003]
【発明が解決しようとする課題】この種の昇圧トランス
は、狭い隙間に取付けられるようにするために薄形に構
成する必要がある。このため、ボビン2の断面形状が偏
平な長方形となり、巻数が同じでも巻線長が長くなって
導体抵抗が増え効率が低下する欠点があった。従来の角
形トランスは薄形化の上で5mm程度が限界であり、こ
れ以上厚みを圧縮して幅を広げると銅損が著しく増加す
る問題があった。また、二次巻線L2 を分割巻きしなけ
ればならないので、巻線作業が複雑になり、全体の体積
が増加する欠点もあった。A step-up transformer of this type needs to be thin so that it can be mounted in a narrow gap. For this reason, the bobbin 2 has a flat rectangular cross section, and even if the number of turns is the same, the winding length becomes long, the conductor resistance increases, and the efficiency decreases. The conventional rectangular transformer has a limit of about 5 mm in terms of thinning, and there is a problem that if the thickness is further compressed to widen the width, copper loss remarkably increases. In addition, since the secondary winding L 2 has to be divided and wound, the winding work is complicated and the entire volume is increased.
【0004】[0004]
【発明の目的】本発明は、銅損が小さく高効率で低背型
の高周波昇圧トランスを提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-frequency step-up transformer having a small copper loss, a high efficiency and a low profile.
【0005】[0005]
【課題を解決するための手段】本発明は、断面がE形の
コアの円柱形をした中央脚の周りに一次巻線と二次巻線
を巻回した高周波昇圧トランスにおいて、二次巻線は中
央脚を中心にして一次巻線の外側に多層に巻き重ねら
れ、二次巻線の一層あたりの巻数が二次巻線の全巻数の
1/10以下であるとともに、中央脚の半径をRmとし中
央脚の中心軸に直交する方向の一次巻線と二次巻線の巻
幅をそれぞれW1 、W2 としたとき、Rm/(W1 +W
>2 )が0.6〜1.7の範囲にある構成を特徴とす
る。SUMMARY OF THE INVENTION The present invention is a high frequency boosting transformer in which a primary winding and a secondary winding are wound around a cylindrical center leg of a core having an E-shaped cross section. Is wound in multiple layers on the outside of the primary winding around the center leg, and the number of turns per secondary winding is 1/10 or less of the total number of turns of the secondary winding, and the radius of the center leg is When Rm is the winding width of the primary winding and the secondary winding in the direction orthogonal to the central axis of the central leg, and W 1 and W 2 respectively, Rm / (W 1 + W
> 2 ) is in the range of 0.6 to 1.7.
【0006】[0006]
【実施例】図2及び図3を参照して、本発明の一実施例
について説明する。断面がE形のコア10は、平板部11と
その両端に一体に形成された外脚12、及び平板部11の中
央に一体形成された円柱形の中央脚13を有している。20
は、図4に示すように二枚の鍔21と中空な巻軸22を備え
たプラスチック製のボビンであり、巻軸22の中空部23に
はコア10の中央脚13が挿入されている。巻軸22には、低
圧側一次巻線L1 が巻回され、さらに一次巻線L1 の外
側には、絶縁シート40を介して高圧側二次巻線L2 が、
中央脚の中心軸に直交する方向に多層に巻き重ねられて
いる。コア10の上には、断面がI形の平板状コア30が突
き合わせて固定されている。図示は省略してあるが、コ
ア30と中央脚13との間、あるいはコア30と中央脚13及び
外脚12の間に、プラスチックフィルムを挿入したり隙間
を設けたりすることにより、磁気飽和が起きにくい構造
としてある。なお、Ni−Zn系などの絶縁性のコア1
0、30を用いた場合にはボビン20を省くことができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. The core 10 having an E-shaped cross section has a flat plate portion 11, outer legs 12 integrally formed at both ends thereof, and a cylindrical central leg 13 integrally formed at the center of the flat plate portion 11. 20
Is a plastic bobbin having two collars 21 and a hollow winding shaft 22 as shown in FIG. 4, and the central leg 13 of the core 10 is inserted into the hollow portion 23 of the winding shaft 22. A low-voltage side primary winding L 1 is wound around the winding shaft 22, and a high-voltage side secondary winding L 2 is provided outside the primary winding L 1 via an insulating sheet 40.
It is wound in multiple layers in a direction orthogonal to the central axis of the central leg. On the core 10, a flat core 30 having an I-shaped cross section is butted and fixed. Although illustration is omitted, magnetic saturation can be prevented by inserting a plastic film or providing a gap between the core 30 and the central leg 13 or between the core 30 and the central leg 13 and the outer leg 12. It has a structure that makes it hard to get up. In addition, an insulating core 1 such as Ni-Zn system
When 0 and 30 are used, the bobbin 20 can be omitted.
【0007】図5に示すように、線材8を矢印方向に多
層に巻き重ねていくと、どの層も巻き始めの部分と次層
目の巻き終わりの部分が隣合うことになる。しかし、二
次巻線L2 の両端にかかる電圧が2kVある場合でも、
二次巻線L2 を例えば20層に巻回すれば、両者間にかか
る電圧は2000÷10であり200Vとなるので、鍔
で複数段に分割して巻いた従来例と同様、重なり合う線
材間の電位差が低くなり絶縁破壊が防止される。インバ
ータ用の高周波昇圧トランスの中には二次巻線L2 の電
圧が小さいもので1000V以下のものもあるが、絶縁
破壊を確実に防止するためには、二次巻線L2 の1層当
たりの巻数を二次巻線L2 の全巻数の1/10以下とする
のが望ましい。As shown in FIG. 5, when the wire rod 8 is wound in multiple layers in the direction of the arrow, the winding start portion and the winding end portion of the next layer are adjacent to each other. However, even when the voltage applied across the secondary winding L 2 is 2 kV,
For example, if the secondary winding L 2 is wound in 20 layers, the voltage applied between them is 2000/10, which is 200 V. Therefore, as in the conventional example in which the secondary winding L 2 is divided into a plurality of stages with a collar, the overlapping wire materials are overlapped. The potential difference between the two becomes low and dielectric breakdown is prevented. Some high-frequency step-up transformers for inverters have a secondary winding L 2 with a small voltage of 1000 V or less, but one layer of the secondary winding L 2 is required to surely prevent dielectric breakdown. It is preferable that the number of turns per hit is 1/10 or less of the total number of turns of the secondary winding L 2 .
【0008】次に、インダクタンス素子において所要の
インダクタンスL0と飽和電流I0 が得られる条件を考
えてみる。今、コイルの巻数をN、磁気抵抗をRとする
と、インダクタンスはN2 /Rで与えられるから、 R≦N2 /L0 ─────────(1) また、均一な断面積を有する磁気回路の断面積をS、飽
和磁束密度をBmとすると、飽和電流はBmSR/Nで
与えられるから R≧I0 N/BmS─────────(2) すなわち、インダクタンスL0 の点からは磁気抵抗Rが
小さいことが必要であり、飽和電流I0 の点では磁気抵
抗Rが大きいことが必要となる。Next, let us consider conditions under which the required inductance L 0 and saturation current I 0 can be obtained in the inductance element. Now, assuming that the number of turns of the coil is N and the magnetic resistance is R, the inductance is given by N 2 / R, so that R ≦ N 2 / L 0 ─────────── (1) If the cross-sectional area of the magnetic circuit having an area is S and the saturation magnetic flux density is Bm, the saturation current is given by BmSR / N, so R ≧ I 0 N / BmS ─────────── (2) That is, The magnetic resistance R needs to be small in terms of the inductance L 0 , and the magnetic resistance R needs to be large in terms of the saturation current I 0 .
【0009】横軸に巻数N、縦軸に磁気抵抗Rをとり、
(1)式と(2)式の関係をプロットすると図6のよう
になる。図において、斜線を施した領域が(1)式と
(2)式の不等式を満たす範囲を示している。図6に示
すように、要求特性を満たす最小の巻数はN0 、最小の
磁気抵抗はR0 となる。平均の磁路長をl、コアの透磁
率をμとすると、磁気抵抗Rは一般にR=l/μSで与
えられるから、断面積Sを一定とすれば、磁気抵抗Rは
磁性体の体積に比例すると考えられる。したがって、N
0 、R0 は要求特性を満たし、しかもインダクタンス素
子の体積を最小とする解と考えられる。すなわち N0 =L0 I0 /BmS ─────(3) R0 =L0 I0 2 /(BmS)2 ───(4) が巻数と磁気抵抗の最適解である。The number of turns N is plotted on the horizontal axis and the magnetic resistance R is plotted on the vertical axis.
FIG. 6 is a plot of the relationship between equations (1) and (2). In the figure, the shaded area indicates the range that satisfies the inequalities of the equations (1) and (2). As shown in FIG. 6, the minimum number of turns satisfying the required characteristics is N 0 , and the minimum magnetic resistance is R 0 . When the average magnetic path length is l and the magnetic permeability of the core is μ, the magnetic resistance R is generally given by R = 1 / μS. Therefore, if the cross-sectional area S is constant, the magnetic resistance R corresponds to the volume of the magnetic body. It is considered to be proportional. Therefore, N
It is considered that 0 and R 0 are solutions that satisfy the required characteristics and minimize the volume of the inductance element. That is, N 0 = L 0 I 0 / BmS ────── (3) R 0 = L 0 I 0 2 / (BmS) 2 ─── (4) is the optimum solution of the number of turns and the magnetic resistance.
【0010】次に、図1のような角形トランスと図3の
ような丸形トランスについて、両トランスの仕様を以下
のように定め、それぞれの特性の比較を行ってみる。 一次インダクタンス 200μH以上 一次巻線飽和電流 1A以上 一次、二次巻線比 1:50 一次巻線直径 0.25mmΦ 二次巻線直径 0.07mmΦ 巻線の絶縁耐圧 100VP-P 以下Next, regarding the rectangular transformer as shown in FIG. 1 and the round transformer as shown in FIG. 3, the specifications of both transformers are defined as follows, and the respective characteristics are compared. Primary primary inductance 200μH or primary winding saturation current 1A above, the following withstand voltage 100 V PP of the secondary winding ratio of 1:50 primary winding diameter 0.25mmΦ secondary winding diameter 0.07mmΦ winding
【0011】磁性体の比透磁率μr を3000、飽和磁
束密度Bmを0.3T、磁気回路の最小断面積Sを15
mm2 として(3)、(4)式よりN0 、R0 を求める
と N0 =L0 I0 /BmS =200×10-6×1/(0.3×15×10-6) =45(ターン) R0 =L0 I0 2 /(BmS)2 =200×10-6×12 /(0.3×15×10-6)2 =9.88(AT/Wb)The relative permeability μ r of the magnetic material is 3000, the saturation magnetic flux density Bm is 0.3 T, and the minimum cross-sectional area S of the magnetic circuit is 15
When N 0 and R 0 are calculated from the equations (3) and (4) as mm 2 , N 0 = L 0 I 0 / BmS = 200 × 10 −6 × 1 / (0.3 × 15 × 10 −6 ) = 45 (turns) R 0 = L 0 I 0 2 / (BmS) 2 = 200 × 10 −6 × 1 2 /(0.3×15×10 −6 ) 2 = 9.88 (AT / Wb)
【0012】したがって、一次巻線は45ターンにな
り、巻線比が1:50であるから、二次巻線は2250
ターンとなる。以上の条件で角形と丸形のトランスを設
計したところ、それぞれ次のような結果となった。Therefore, since the primary winding has 45 turns and the winding ratio is 1:50, the secondary winding has 2250.
It will be a turn. When the rectangular and round transformers were designed under the above conditions, the following results were obtained.
【0013】[0013]
【表1】角形トランスと丸形トランスの比較 [Table 1] Comparison between square transformer and round transformer
【0014】表1から明らかなように、同じ磁性材料で
同一の性能を実現する場合、銅損及び体積の点で丸形ト
ランス形状が有利である。特に、インバータトランスと
して使用する場合は一次巻線に数10kHzの大振幅共
振電流が流れるため一次巻線の銅損低減はトランスの変
換効率の改善に大きく寄与できる要因となる。As is clear from Table 1, when the same performance is realized with the same magnetic material, the round transformer shape is advantageous in terms of copper loss and volume. In particular, when used as an inverter transformer, a large amplitude resonance current of several tens of kHz flows in the primary winding, and therefore reduction of copper loss in the primary winding is a factor that can greatly contribute to improvement in conversion efficiency of the transformer.
【0015】図7は、コア10とコア30、及び一次巻線L
1 、二次巻線L2 のみの側面断面を示す図である。図3
のようなトランスにおいて、中央脚13の中心軸Cに直交
する平面上における中央脚13と一次巻線L1 及び二次巻
線L2 の断面積の和が最小になる条件、すなわち図7に
示す中央脚13の半径Rmと一次巻線の巻幅W1 と二次巻
線の巻幅W2 の和が最小になる条件を、次に求めてみ
る。今、中央脚13の半径をRm、一次巻線と二次巻線の
巻数比を1:n、コア10の平板部11とコア30の厚さを
t、ボビンの深さをhとし、一次巻線の線材の直径をd
1 、二次巻線の線材の直径をd2 とすると、一次巻線L
1 の1層当たりの巻数はh/d1 、二次巻線L2 の1層
当たりの巻数はh/d2 となる。したがって、それぞれ
の巻き重ねられる層数は、一次側がN0 d1 /h、二次
側がnN0 d2 /hとなり、それぞれの巻線幅W1 、W
2 は W1 =N0 d1 2 /h ───────(5) W2 =nN0 d2 2 /h───────(6) となる。FIG. 7 shows a core 10 and a core 30, and a primary winding L.
1 is a diagram showing a side cross section of only the secondary winding L 2. FIG.
In such a transformer, the condition that the sum of the sectional areas of the central leg 13 and the primary winding L 1 and the secondary winding L 2 on the plane orthogonal to the central axis C of the central leg 13 is minimized, that is, in FIG. Next, the condition for minimizing the sum of the radius Rm of the center leg 13 and the winding width W 1 of the primary winding and the winding width W 2 of the secondary winding will be obtained. Now, let the radius of the central leg 13 be Rm, the turn ratio of the primary winding to the secondary winding be 1: n, the thickness of the flat plate portion 11 of the core 10 and the core 30 be t, and the depth of the bobbin be h, The wire diameter of the winding is d
1 and the diameter of the wire of the secondary winding is d 2 , the primary winding L
1 turns per layer of the h / d 1, the number of turns per layer of the secondary winding L 2 becomes h / d 2. Therefore, the number of layers to be wound on each side is N 0 d 1 / h on the primary side and nN 0 d 2 / h on the secondary side, and the respective winding widths W 1 , W
2 is W 1 = N 0 d 1 2 / h ──────── (5) W 2 = nN 0 d 2 2 / h ───────── (6)
【0016】コアの中央脚13の側面を延長した面が平板
部11と交差した面、すなわち直径が中央脚13と同一で高
さが平板部11の厚みtと同じ円筒状の部分を、以下、繋
ぎ部と呼ぶことにする。小型で低背型のトランスは、磁
気回路の最小断面積Sがコアのこの繋ぎ部で制限される
のが一般的である。この場合コアの繋ぎ部の面積が中央
脚13の断面積以下となることから 2πRmt≦πRm2 ∴ Rm≧2t ─────────(7) となり、このときの繋ぎ部の面積Sは S=2πRmt ─────────(8) となる。The surface of the core extending from the side surface of the central leg 13 intersects with the flat plate portion 11, that is, a cylindrical portion having the same diameter as the central leg 13 and the same height as the thickness t of the flat plate portion 11, , I will call it a connecting part. In small and low profile transformers, the minimum cross-sectional area S of the magnetic circuit is generally limited by this joint of the core. In this case, since the area of the connecting portion of the core is equal to or smaller than the cross-sectional area of the central leg 13, 2πRmt ≦ πRm 2 ∴Rm ≧ 2t ──────────────────────────────────── (7) Becomes S = 2πRmt ────────── (8).
【0017】中央脚13と巻線部分を含めた総断面積ΣS
は、一次巻線と二次巻線間の距離を無視すれば ΣS=π(Rm+W1 +W2 )2 ───(9) であるから、これを最小にするには、(9)式の括弧内
をPとおいて P=Rm+W1 +W2 ───────(10) が最小となればよい。これに(5)式と(6)式の
W1 、W2 を代入すると P=Rm+(d1 2 +nd2 2 )/h×N0 したがって、(3)式より P=Rm+(d1 2 +nd2 2 )/h×(L0 I0 /BmS) (8)式のSを代入して P=Rm+〔(d1 2 +nd2 2 )L0 I0 /2πBmht〕×1/Rm ここでK=(d1 2 +nd2 2 )L0 I0 /2πBmh
tとおくと P=Rm+K/Rm ────────(11) Pを最小にする中央脚13の半径Rmの値Rm0 はdP/
dRm=0より dP/dRm=1−K/Rm2 ────(12) したがって Rm0 =K1/2 ──────────(13) となる。(11)式と(12)式からPの最小値は P=K1/2 +K/K1/2 =2K1/2 ──(14) すなわち、Rm=K1/2 、 W1 +W2 =K1/2 のと
き、つまりRm=W1 +W2 のときPが最小となる。Total cross-sectional area ΣS including the central leg 13 and the winding portion
Is ΣS = π (Rm + W 1 + W 2 ) 2 ──── (9) if the distance between the primary winding and the secondary winding is ignored. Therefore, to minimize this, It is sufficient that P = Rm + W 1 + W 2 ────────────── (10) is minimized, with P in parentheses. Substituting W 1 and W 2 of the equations (5) and (6) into this equation, P = Rm + (d 1 2 + nd 2 2 ) / h × N 0 Therefore, from the equation (3), P = Rm + (d 1 2 + Nd 2 2 ) / h × (L 0 I 0 / BmS) Substituting S in the equation (8), P = Rm + [(d 1 2 + nd 2 2 ) L 0 I 0 / 2πBmht] × 1 / Rm where K = (d 1 2 + nd 2 2 ) L 0 I 0 / 2πBmh
Letting t be P = Rm + K / Rm ───────── (11) The value Rm 0 of the radius Rm of the central leg 13 that minimizes P is dP /
From dRm = 0, dP / dRm = 1-K / Rm 2 (12) Therefore, Rm 0 = K 1/2 ──────────── (13). From equations (11) and (12), the minimum value of P is P = K 1/2 + K / K 1/2 = 2K 1 / 2- (14) That is, Rm = K 1/2 , W 1 + W 2 = K 1/2 , that is, when Rm = W 1 + W 2 , P becomes minimum.
【0018】今、W1 +W2 =K1/2 を固定しRmをこ
れのX倍とすると Rm=X・K1/2 これを(11)式に代入して P=X・K1/2 +K/X・K1/2 =X・K1/2 +K1/2 /X ∴ P=K1/2 (X+1/X)─────(15) 図8は、このPとXの関係をプロットした図である。P
はX=1のとき最小となり、Xに対しX+1/Xのカー
ブで増加する。Pの値の実用的な範囲として、その最小
値からプラス15パーセントまでをとると、このときの
Xの値、すなわちRmとW1 +W2 の比は図に示すよう
に0.6〜1.7の範囲となる。Now, assuming that W 1 + W 2 = K 1/2 is fixed and Rm is X times this, Rm = X · K 1/2 is substituted into the equation (11) to obtain P = X · K 1 / 2 + K / X · K 1/2 = X · K 1/2 + K 1/2 / X ∴ P = K 1/2 (X + 1 / X) ────── (15) Fig. 8 shows these P and X. It is the figure which plotted the relationship of. P
Becomes minimum when X = 1, and increases with a curve of X + 1 / X with respect to X. As a practical range of the value of P, from the minimum value to plus 15%, the value of X at this time, that is, the ratio of Rm and W 1 + W 2 is 0.6 to 1. The range is 7.
【0019】[0019]
【発明の効果】本発明によれば、低背形で、しかも底面
積の小さい高周波昇圧トランスを構成でき、巻線線材が
短縮されることにより銅損も減少する。また、二次巻線
を複数段に分割巻きしなくてもよいので、巻線工程が簡
略化され生産性が向上する効果もある。According to the present invention, a high-frequency step-up transformer having a low profile and a small bottom area can be constructed, and the wire loss can be shortened to reduce copper loss. Further, since the secondary winding does not have to be divided into a plurality of stages, there is an effect that the winding process is simplified and the productivity is improved.
【図1】 従来のトランスの分解斜視図FIG. 1 is an exploded perspective view of a conventional transformer
【図2】 本発明のトランスの一実施例を示す正面断面
図FIG. 2 is a front sectional view showing an embodiment of the transformer of the present invention.
【図3】 同トランス要部の一部切欠斜視図FIG. 3 is a partially cutaway perspective view of the transformer main part .
【図4】 同トランスにおけるボビンの正面断面図FIG. 4 is a front sectional view of a bobbin in the transformer.
【図5】 多層に巻いた線材を断面にした状態の説明図FIG. 5 is an explanatory view of a cross-section of a wire wound in multiple layers.
【図6】 巻数と磁気抵抗との関係を示す図FIG. 6 is a diagram showing the relationship between the number of turns and the magnetic resistance.
【図7】 コアと巻線の寸法関係を示すための側面断面
図FIG. 7 is a side sectional view showing the dimensional relationship between the core and the winding.
【図8】 XとPの関係を示す図FIG. 8 is a diagram showing a relationship between X and P.
10 コア 13 中央脚 L1 一次巻線 L2 二次巻線10 core 13 central leg L 1 primary winding L 2 secondary winding
Claims (1)
周りに低圧側一次巻線と高圧側二次巻線を巻回した高周
波昇圧トランスにおいて、二次巻線は中央脚を中心にし
て一次巻線の外側に多層に巻き重ねられ、二次巻線の一
層あたりの巻数が二次巻線の全巻数の1/10以下である
とともに、中央脚の半径をRmとし、中央脚の中心軸に
直交する方向の一次巻線と二次巻線の巻幅をそれぞれW
1 、W2 としたとき、Rm/(W1 +W2 )が0.6〜
1.7の範囲にあることを特徴とする高周波昇圧トラン
ス。1. A high-frequency step-up transformer in which a low-voltage side primary winding and a high-voltage side secondary winding are wound around a substantially cylindrical central leg of a core having an E-shaped cross section, and the secondary winding has a central leg. Centered around the outer side of the primary winding in multiple layers, the number of turns per secondary winding is less than 1/10 of the total number of turns of the secondary winding, and the radius of the center leg is Rm. The winding width of the primary winding and the secondary winding in the direction orthogonal to the center axis of the leg is W respectively.
1, when the W 2, Rm / (W 1 + W 2) is 0.6
A high frequency boosting transformer characterized by being in the range of 1.7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3347636A JPH0831378B2 (en) | 1991-12-04 | 1991-12-04 | High frequency boost transformer |
DE19924240348 DE4240348A1 (en) | 1991-12-04 | 1992-12-01 | Step=up transformer for inverter illuminating cold cathode tube, e.g. for background of LCD - has sec. winding wound in several layers from inside outwards on outside of prim. winding for very thin construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3347636A JPH0831378B2 (en) | 1991-12-04 | 1991-12-04 | High frequency boost transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05159945A JPH05159945A (en) | 1993-06-25 |
JPH0831378B2 true JPH0831378B2 (en) | 1996-03-27 |
Family
ID=18391562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3347636A Expired - Fee Related JPH0831378B2 (en) | 1991-12-04 | 1991-12-04 | High frequency boost transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0831378B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016031993A1 (en) * | 2014-08-29 | 2016-03-03 | 株式会社タムラ製作所 | Reactor |
JP6405287B2 (en) * | 2015-05-29 | 2018-10-17 | 新日本無線株式会社 | Transformer and microwave generator using the same |
CN107707125A (en) * | 2017-10-20 | 2018-02-16 | 四川莱福德科技有限公司 | Drive circuit and bridge-type resonance circuit |
-
1991
- 1991-12-04 JP JP3347636A patent/JPH0831378B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05159945A (en) | 1993-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5359313A (en) | Step-up transformer | |
US4259654A (en) | Flux control in tape windings | |
US20010017582A1 (en) | Multilayer inductor | |
JPH0855738A (en) | Transformer | |
US5414401A (en) | High-frequency, low-profile inductor | |
JPH06112058A (en) | Step-up transformer | |
US20030016112A1 (en) | Inductive component made with circular development planar windings | |
JPH05283248A (en) | High frequency booster transformer | |
JPH0831378B2 (en) | High frequency boost transformer | |
JPH0831379B2 (en) | High frequency boost transformer | |
JPH05304033A (en) | High-frequency step-up transformer | |
JPH06132147A (en) | Step-up transformer | |
JPH0626222U (en) | Thin coil | |
JP2525756B2 (en) | Step-up transformer | |
JPH05258975A (en) | High-frequency step-up transformer | |
JPH0334643B2 (en) | ||
JPH0541534Y2 (en) | ||
JPH06325945A (en) | Common mode choke coil and noise filter | |
JP2002064021A (en) | Planar transformer | |
JP2751228B2 (en) | Converter transformer | |
JP2523560B2 (en) | Trance | |
JP2630716B2 (en) | Winding method of electric winding parts | |
JPH0613246A (en) | High-frequency step-up transformer | |
JP2505721Y2 (en) | Converter transformer | |
JP2002231535A (en) | Coil for large current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080327 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |