JPH08313635A - Fluorescent glass dose measuring apparatus - Google Patents

Fluorescent glass dose measuring apparatus

Info

Publication number
JPH08313635A
JPH08313635A JP14111895A JP14111895A JPH08313635A JP H08313635 A JPH08313635 A JP H08313635A JP 14111895 A JP14111895 A JP 14111895A JP 14111895 A JP14111895 A JP 14111895A JP H08313635 A JPH08313635 A JP H08313635A
Authority
JP
Japan
Prior art keywords
energy
fluorescence
value
fluorescent glass
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14111895A
Other languages
Japanese (ja)
Other versions
JP2971782B2 (en
Inventor
Hidenobu Mori
秀信 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP14111895A priority Critical patent/JP2971782B2/en
Publication of JPH08313635A publication Critical patent/JPH08313635A/en
Application granted granted Critical
Publication of JP2971782B2 publication Critical patent/JP2971782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE: To provide a fluorescent glass dose measuring apparatus having a function of accurately estimating X-ray energy and capable of measuring X-ray exposure dose. CONSTITUTION: A controller 20 includes estimation expression memory means 21 for storing a plurality of energy estimation expressions (estimated curves) in advance, an input unit 9 for inputting necessary command data, a display unit 13 for displaying various calculated results, and energy estimation expression selecting means 22 for selecting the energy estimation expression based on one QI near the spectral distribution of the emitted S-ray. The controller 20 further includes dose measured value calculating means 10 for calculating the dose measured value from a fluorescence detected value, fluorescence detected value distribution ratio calculating means 11 for calculating the fluorescence detected value distribution ratio of the ratio of the maximum value to the minimum value of the fluorescent values at the respective divided blocks, and energy estimated value calculating means 23 for calculating the energy estimated value by using the energy estimation expression selected by the means 22 based on the fluorescence detected value distribution ratio (maximum value/ minimum value).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療機関などのX線発
生装置設置室内外の環境放射線測定において、X線発生
条件の違いに起因するX線の線質(エネルギー)を高精
度に推定し、かつX線被曝線量を測定することができる
蛍光ガラス線量計測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention highly accurately estimates the quality (energy) of X-rays due to the difference in X-ray generation conditions in the measurement of environmental radiation inside and outside the X-ray generator installed in medical institutions. And a fluorescent glass dosimeter measuring device capable of measuring the X-ray exposure dose.

【0002】[0002]

【従来の技術】一般に、放射線被曝線量の測定には、銀
イオンを含有したリン酸塩ガラスからなる蛍光ガラス素
子が用いられている。この蛍光ガラス素子は、イオン化
放射線の照射を受けて被曝するとガラス体内に蛍光中心
を生じ、この状態で一定波長の紫外線で励起すると、所
定のガラス面から蛍光が発する。このとき発せられる蛍
光の強度が被曝放射線量に比例することから、その蛍光
量を検出することにより、蛍光ガラス素子の被曝放射線
量を測定することができる。
2. Description of the Related Art Generally, a fluorescent glass element made of phosphate glass containing silver ions is used for measuring the radiation exposure dose. When this fluorescent glass element is exposed to ionizing radiation and exposed to light, a fluorescent center is generated in the glass body, and when excited by ultraviolet rays of a certain wavelength in this state, fluorescence is emitted from a predetermined glass surface. Since the intensity of the fluorescence emitted at this time is proportional to the radiation dose, the radiation dose of the fluorescent glass element can be measured by detecting the fluorescence dose.

【0003】このことから、上記蛍光ガラス素子を用い
た蛍光ガラス線量計は、放射線を取り扱う作業者が携行
してその被曝線量を測定したり、原子力施設その他の放
射線関連施設周辺などに設置して、環境線量を測定する
のに用いられている。
Therefore, a fluorescent glass dosimeter using the above-mentioned fluorescent glass element is carried by a worker who handles radiation to measure the exposure dose, or is installed around a nuclear facility or other radiation-related facility. , Used to measure environmental dose.

【0004】この様な目的で用いられる蛍光ガラス線量
計においては、通常、被曝放射線量だけを測定すれば十
分であるとも考えられる。しかし、施設内に異常事態が
発生したり、放射線漏れが生じたり、あるいは長時間の
作業によって多量の放射線を被曝した場合には、被曝放
射線量の測定だけでなく、放射線の線質(エネルギー)
や放射線入射方向まで知らなければ、被曝事故解析の観
点からは、十分な放射線管理とはいえない。
In a fluorescent glass dosimeter used for such a purpose, it is usually considered sufficient to measure only the radiation dose. However, if an abnormal situation occurs in the facility, radiation leakage occurs, or if a large amount of radiation is exposed due to long-term work, not only the amount of radiation exposure, but also the radiation quality (energy)
From the viewpoint of radiation exposure accident analysis, it cannot be said that radiation control is sufficient unless the radiation incident direction is known.

【0005】また、医療被曝管理が厳しくなっている
中、放射線管理区域のエリアモニタを行う上で、環境線
量測定の他、放射線エネルギーの推定も重要なファクタ
ーとなってきている。
In addition, as medical radiation exposure management becomes strict, in performing area monitoring of radiation controlled areas, estimation of radiation energy is becoming an important factor in addition to environmental dose measurement.

【0006】従来、この種の蛍光ガラス線量計測定装
置、すなわち線量と共に、線質および放射線入射方向を
推定することが可能な蛍光ガラス線量計測定装置の一例
としては、本出願人等が別途特許出願し、登録を受けた
特許第1807400号(特公平5−12675号)公
報に示すものがある。
[0006] Conventionally, as an example of this type of fluorescent glass dosimeter measuring device, that is, an example of a fluorescent glass dosimeter measuring device capable of estimating the radiation quality and radiation incident direction together with the dose, the applicant of the present invention separately patents There is one disclosed in Japanese Patent No. 1807400 (Japanese Patent Publication No. 5-12675) filed and registered.

【0007】すなわち、上記特許発明は、測定対象たる
蛍光ガラス素子を移動式ダイアフラムなどを用いて複数
の区画に分割し、各測定位置の蛍光強度を測定すること
により、蛍光ガラス素子の蛍光強度分布を求め、その最
大値と最小値の比に基づいて放射線の線質(エネルギ
ー)を推定するものである。また、蛍光ガラス素子の蛍
光強度分布のピーク値の現れる位置から、放射線の入射
方向を推定するものである。
That is, in the above patented invention, the fluorescent glass element to be measured is divided into a plurality of sections using a movable diaphragm or the like, and the fluorescent intensity at each measurement position is measured to obtain the fluorescent intensity distribution of the fluorescent glass element. And the radiation quality (energy) is estimated based on the ratio of the maximum value and the minimum value. Moreover, the incident direction of the radiation is estimated from the position where the peak value of the fluorescence intensity distribution of the fluorescent glass element appears.

【0008】ここで、上記特許発明を利用して、X線の
照射された蛍光ガラス素子をもつ蛍光ガラス線量計か
ら、X線のエネルギーを推定する従来の蛍光ガラス線量
計測定装置について説明する。
A conventional fluorescent glass dosimeter measuring device for estimating the energy of X-rays from a fluorescent glass dosimeter having a fluorescent glass element irradiated with X-rays will be described with reference to the above patented invention.

【0009】すなわち、図7に示したように、蛍光ガラ
ス線量計測定装置は、測定装置本体2とコントローラ3
とプリンタ4とから構成されている。
That is, as shown in FIG. 7, the fluorescent glass dosimeter measuring device comprises a measuring device main body 2 and a controller 3.
And printer 4.

【0010】そして、前記測定装置本体2には、所定の
プログラムに基づいて操作制御を行うマイクロプロセッ
サ8と、このマイクロプロセッサ8の操作制御指令に基
づいて測定対象たる蛍光ガラス素子1を測定位置6まで
搬送する搬送装置5と、前記測定位置6にセットされた
蛍光ガラス素子1から発する蛍光量を検出する検出装置
7が設けられている。
Then, in the measuring device body 2, a microprocessor 8 for controlling operation based on a predetermined program, and a fluorescent glass element 1 to be measured based on an operation control command of the microprocessor 8 are measured at a measuring position 6. A transport device 5 for transporting to and a detection device 7 for detecting the amount of fluorescence emitted from the fluorescent glass element 1 set at the measurement position 6 are provided.

【0011】また、前記測定位置6には、図8に示した
様な移動ダイアフラム機構が設けられている。すなわ
ち、所定の開口部30が形成された固定ダイアフラム3
1には、所定のスリット32が形成された移動ダイアフ
ラム33が、図中矢印方向にスライド可能に取り付けら
れている。なお、前記スリット32の大きさは、測定す
べきガラス素子をn個に均等に分割した各区画面積に相
当するものである。
At the measuring position 6, a moving diaphragm mechanism as shown in FIG. 8 is provided. That is, the fixed diaphragm 3 having the predetermined opening 30 formed therein.
A movable diaphragm 33 having a predetermined slit 32 formed therein is attached to 1 so as to be slidable in the direction of the arrow in the figure. The size of the slit 32 corresponds to each sectional area obtained by equally dividing the glass element to be measured into n pieces.

【0012】そして、この移動ダイアフラム機構によ
り、まず、紫外線による励起によって蛍光ガラス素子1
から発生した蛍光の内、固定ダイアフラム31に形成さ
れた所定の開口部30を通過した蛍光が、前記検出装置
7によって検出されるように構成されている(この測定
値が、蛍光ガラス素子1の素子全体の蛍光読取値Aとな
る)。
With this moving diaphragm mechanism, first, the fluorescent glass element 1 is excited by excitation with ultraviolet rays.
Among the fluorescence generated from the above, the fluorescence passing through the predetermined opening 30 formed in the fixed diaphragm 31 is detected by the detection device 7 (this measured value is measured by the fluorescent glass element 1). It becomes the fluorescence reading value A of the entire device).

【0013】また、蛍光ガラス素子1の蛍光強度分布の
測定は、前記移動ダイアフラム33を図中矢印方向に順
次移動させ、そのスリット32を通過した蛍光を検出す
ることによりなされる(この測定値が、蛍光ガラス素子
1の各分割区画の蛍光読取値“A1 ”“A2 ”…
“An ”となる)。
The fluorescence intensity distribution of the fluorescent glass element 1 is measured by sequentially moving the moving diaphragm 33 in the direction of the arrow in the figure and detecting the fluorescence passing through the slit 32 (this measured value is , The fluorescence readings “A 1 ” “A 2 ” of each divided section of the fluorescent glass element 1 ...
"A n ").

【0014】次に、前記コントローラ3には、測定装置
本体2に操作指令を出したり、必要なデータを入力する
入力装置9、蛍光検出量から線量を測定する線量測定値
演算手段10、各分割区画毎の蛍光量の最大値と最小値
の比である蛍光検出量分布比を算出する蛍光検出量分布
比演算手段11及び前記蛍光検出量分布比からエネルギ
ー推定値を算出するエネルギー推定値演算手段12、演
算結果の内容などを表示する表示装置13が設けられて
いる。さらに、前記プリンタ4は、演算結果の内容など
を印字出力するものである。
Next, the controller 3 is provided with an input device 9 for issuing an operation command to the measuring device main body 2 and for inputting necessary data, a dose measurement value calculating means 10 for measuring a dose from the fluorescence detection amount, and each division. Fluorescence detection amount distribution ratio calculation means 11 for calculating the fluorescence detection amount distribution ratio, which is the ratio between the maximum value and the minimum value of the fluorescence amount for each section, and the energy estimation value calculation means for calculating the energy estimation value from the fluorescence detection amount distribution ratio. 12. A display device 13 for displaying the contents of the calculation result and the like is provided. Further, the printer 4 prints out the contents of the calculation result and the like.

【0015】この様な構成を有する従来の蛍光ガラス線
量計測定装置は、以下のように作用する。すなわち、線
量測定用蛍光ガラス素子1は、搬送装置5によって測定
位置6に運ばれ、検出装置7によって全体の蛍光量
“A”と、各分割区画毎の蛍光量“A1 ”“A2 ”…
“An ”が測定される。
The conventional fluorescent glass dosimeter measuring device having such a structure operates as follows. That is, the dose measuring fluorescent glass element 1 is carried to the measuring position 6 by the carrier device 5, and the whole fluorescence amount “A” and the fluorescence amounts “A 1 ” “A 2 ” of each divided section are conveyed by the detecting device 7. …
"A n " is measured.

【0016】このようにして各分割区画毎の蛍光量が検
出されると、前記蛍光検出量分布比演算手段11によっ
て蛍光検出量分布比(最大値/最小値)が求められ、そ
の結果に基づいて、予め記憶されているエネルギー推定
式を用いてエネルギー推定値が算出され、表示装置13
及びプリンタ4に表示及び印字される。
When the fluorescence amount of each divided section is thus detected, the fluorescence detection amount distribution ratio calculating means 11 obtains the fluorescence detection amount distribution ratio (maximum value / minimum value), and based on the result. Then, the energy estimation value is calculated using the energy estimation formula stored in advance, and the display device 13
And displayed and printed on the printer 4.

【0017】なお、上記エネルギー推定式としては、図
9に示すような曲線が用いられている。このエネルギー
推定式(推定曲線)は以下のようにして作成されたもの
である。すなわち、X線発生装置から照射するX線スペ
クトルの状態を示す指標として、0.7〜0.8の線質
指標(QI:Quality Index)を設定した
後、そのX線発生装置から蛍光ガラス線量計に種々のエ
ネルギーのX線を照射する。そして、そのエネルギーの
X線が照射された蛍光ガラス線量計の蛍光検出量分布比
(最大値/最小値)とX線エネルギーとの関係を順次プ
ロットしたものである。また、この様にして作成された
エネルギー推定曲線は、エネルギー推定値演算手段12
のメモリなどに記憶され、上記エネルギーの推定演算の
用に供される。
A curve as shown in FIG. 9 is used as the energy estimation formula. This energy estimation formula (estimation curve) is created as follows. That is, after setting a quality index (QI: Quality Index) of 0.7 to 0.8 as an index indicating the state of the X-ray spectrum emitted from the X-ray generator, the fluorescent glass dose from the X-ray generator is set. The meter is exposed to X-rays of various energies. Then, the relationship between the X-ray energy and the fluorescence detection amount distribution ratio (maximum value / minimum value) of the fluorescent glass dosimeter irradiated with X-rays of that energy is sequentially plotted. The energy estimation curve created in this way is used as the energy estimation value calculation means 12
Is stored in a memory or the like and used for the above-mentioned energy estimation calculation.

【0018】なお、前記線質指標(QI)は、X線発生
装置にてX線を照射する際、X線スペクトルの状態を表
す指標であって、エネルギーを管電圧で割った「0」〜
「1」の間の数値であり、1に近いほどシャープなスペ
クトル、0に近いほどブロードなスペクトルを示すもの
である。
The quality index (QI) is an index showing the state of the X-ray spectrum when X-rays are irradiated by the X-ray generator, and is "0" obtained by dividing the energy by the tube voltage.
It is a numerical value between “1”, and the closer it is to 1, the sharper the spectrum is, and the closer it is to 0, the broader the spectrum is.

【0019】[0019]

【発明が解決しようとする課題】ところで、医療機関に
おいて用いられる主な放射線源はX線発生装置であり、
装置管電圧及びろ過フィルターの種類によって、様々な
エネルギーのX線が発生可能である。すなわち、X線発
明装置においては、X線ビームを減衰するため、ろ過フ
ィルターが用いられることが一般的であり、このフィル
ターとしては、例えばAl,Cuが用いられている。ま
た、X線エネルギー値は単一の大きさではなく、そのス
ペクトルはある幅を有しているため、通常、その分布の
度合いは前記線質指標(QI)で表されている。
By the way, the main radiation source used in medical institutions is an X-ray generator.
X-rays of various energies can be generated depending on the apparatus tube voltage and the type of filtration filter. That is, in the X-ray inventing apparatus, a filter is generally used to attenuate the X-ray beam, and Al, Cu, for example, are used as this filter. Further, since the X-ray energy value is not a single magnitude but its spectrum has a certain width, the degree of its distribution is usually represented by the quality index (QI).

【0020】しかしながら、上述したような従来の蛍光
ガラス線量計測定装置においては、放射線の線質(エネ
ルギー)を推定する場合に、図9に示したように、ある
一つの線質指標(QI)のX線を基準としていたため、
様々なエネルギーのX線が発生する医療分野の被曝管理
を行う上において、エネルギー推定の精度は十分なもの
ではなかった。
However, in the conventional fluorescent glass dosimeter measuring device as described above, when estimating the radiation quality (energy), as shown in FIG. 9, a certain quality index (QI) is used. Because it was based on the X-ray of
The accuracy of energy estimation has not been sufficient to manage radiation exposure in the medical field where X-rays of various energies are generated.

【0021】特に、γ・X線においては、赤色骨髄、生
殖器及び眼の水晶体などの人体臓器への吸収線量が20
0keV以下の低エネルギー域で大きくなり、特に90
keV程度のエネルギーのときに最大となるエネルギー
依存性を有しているため、低エネルギーX線のエネルギ
ー推定の精度を向上させる必要があった。
Particularly, in the case of γ · X-ray, the absorbed dose to human organs such as red bone marrow, reproductive organs and lens of eye is 20.
It becomes large in the low energy range below 0 keV, especially 90
Since it has the maximum energy dependence when the energy is about keV, it is necessary to improve the accuracy of energy estimation of low energy X-rays.

【0022】本発明は、上述した様な従来技術の問題点
を解消するために提案されたもので、その目的は、医療
機関などのX線発生装置から発生される可能性のある様
々な線質指標の低エネルギーX線のエネルギーを高精度
に推定する機能を有し、かつ、X線被曝線量測定が行え
る蛍光ガラス線量計測定装置を提供することにある。
The present invention has been proposed in order to solve the above-mentioned problems of the prior art, and its purpose is to provide various lines that may be generated from an X-ray generator such as a medical institution. It is an object of the present invention to provide a fluorescent glass dosimeter measuring device which has a function of estimating the energy of low-energy X-rays of a quality index with high accuracy and is capable of measuring X-ray exposure dose.

【0023】[0023]

【課題を解決するための手段】請求項1に記載の発明
は、放射線の照射を受けた蛍光ガラス素子を紫外線で励
起し、この際に前記蛍光ガラス素子の蛍光検出面から発
生する蛍光量に基づいて被曝放射線量を読み取るととも
に、前記蛍光検出面を複数の区画に分割して、各分割区
画毎に蛍光量を検出し、各検出値から前記蛍光検出面の
蛍光強度分布を求める蛍光ガラス線量計測定装置におい
て、予め線質指標を異にする複数のエネルギー推定式を
記憶する推定式記憶手段と、放射線のエネルギーの推定
時に、線質指標に基づいて前記推定式記憶手段から所要
のエネルギー推定式を選択するエネルギー推定式選択手
段と、各分割区画毎の蛍光量の最大値と最小値の比であ
る蛍光検出量分布比を算出する蛍光検出量分布比演算手
段と、前記蛍光検出量分布比に基づいて、前記エネルギ
ー推定式選択手段で選択されたエネルギー推定式を用い
てエネルギー推定値を算出するエネルギー推定値演算手
段とを備えたことを特徴とするものである。
According to a first aspect of the present invention, a fluorescent glass element that has been irradiated with radiation is excited by ultraviolet rays, and the amount of fluorescence generated from the fluorescent detection surface of the fluorescent glass element at this time is adjusted. While reading the radiation dose based on, the fluorescence detection surface is divided into a plurality of sections, the fluorescence amount is detected for each divided section, the fluorescent glass dose to obtain the fluorescence intensity distribution of the fluorescence detection surface from each detection value In the meter measuring device, an estimation formula storage unit that stores a plurality of energy estimation formulas having different radiation quality indices in advance, and a required energy estimation from the estimation formula storage unit based on the radiation quality index when estimating radiation energy. An energy estimation formula selecting means for selecting a formula, a fluorescence detection amount distribution ratio calculating means for calculating a fluorescence detection amount distribution ratio which is a ratio of the maximum value and the minimum value of the fluorescence amount for each divided section, and the fluorescence detection Based on the distribution ratio, it is characterized in that it comprises an energy estimation value calculating means for calculating an energy estimate using the energy estimation formula selected by said energy estimate equation selection means.

【0024】また、請求項2に記載の発明は、放射線の
照射を受けた蛍光ガラス素子を紫外線で励起し、この際
に前記蛍光ガラス素子の蛍光検出面から発生する蛍光量
に基づいて被曝放射線量を読み取るとともに、前記蛍光
検出面を複数の区画に分割して、各分割区画毎に蛍光量
を検出し、各検出値から前記蛍光検出面の蛍光強度分布
を求める蛍光ガラス線量計測定装置において、エネルギ
ー推定の対象となる放射線室に合致したエネルギー推定
式を記憶する推定式記憶手段と、放射線のエネルギーの
推定時に、前記エネルギー推定の対象となる放射線室に
基づいて、前記推定式記憶手段から所要のエネルギー推
定式を選択するエネルギー推定式選択手段と、各分割区
画毎の蛍光量の最大値と最小値の比である蛍光検出量分
布比を算出する蛍光検出量分布比演算手段と、前記蛍光
検出量分布比に基づいて、前記エネルギー推定式選択手
段で選択されたエネルギー推定式を用いてエネルギー推
定値を算出するエネルギー推定値演算手段とを備えたこ
とを特徴とするものである。
Further, the invention according to claim 2 excites the fluorescent glass element, which has been irradiated with radiation, with ultraviolet rays, and at this time, the radiation exposure is performed based on the amount of fluorescence generated from the fluorescence detection surface of the fluorescent glass element. Along with reading the amount, the fluorescence detection surface is divided into a plurality of sections, the amount of fluorescence is detected for each divided section, in the fluorescent glass dosimeter measuring device to obtain the fluorescence intensity distribution of the fluorescence detection surface from each detection value , An estimation formula storage unit that stores an energy estimation formula that matches the radiation chamber that is the target of energy estimation, and based on the radiation chamber that is the target of the energy estimation when estimating the energy of radiation, Energy estimation formula selecting means for selecting a required energy estimation formula, and a fluorescence detection amount distribution ratio which is a ratio of the maximum value and the minimum value of the fluorescence amount for each divided section. A detection amount distribution ratio calculating unit; and an energy estimation value calculating unit for calculating an energy estimation value using the energy estimation formula selected by the energy estimation formula selection unit based on the fluorescence detection amount distribution ratio. It is characterized by.

【0025】[0025]

【作用】請求項1に記載の発明によれば、医療機関など
のX線発生装置から発生される可能性のある様々な線質
指標について、それぞれエネルギー推定式(推定曲線)
が求められ、エネルギー推定式選択手段で最適なエネル
ギー推定式が選択され、そのエネルギー推定式に基づい
てエネルギー推定がなされるので、エネルギー推定の精
度は大幅に向上する。
According to the first aspect of the invention, the energy estimation formula (estimation curve) for each of various quality indicators that may be generated from an X-ray generator such as a medical institution.
Is calculated, the optimal energy estimation formula is selected by the energy estimation formula selection means, and the energy is estimated based on the energy estimation formula, so that the accuracy of the energy estimation is significantly improved.

【0026】また、請求項2に記載の発明によれば、実
際の医療機関のX線発生装置の稼働時に測定されたエネ
ルギースペクトルから得られた線質指標(QI)と、そ
れに対応するX線エネルギー及びその時の蛍光検出量分
布比Rとの関係より、所定のX線室におけるエネルギー
推定式(推定曲線)が求められ、このエネルギー推定式
に基づいてエネルギー推定がなされるので、実際の医療
機関のX線室におけるX線エネルギーを、より精度良く
推定することができる。
According to the second aspect of the present invention, the quality index (QI) obtained from the energy spectrum measured when the X-ray generator of an actual medical institution is operating and the corresponding X-ray. An energy estimation formula (estimation curve) in a predetermined X-ray room is obtained from the relationship between the energy and the fluorescence detection amount distribution ratio R at that time, and the energy is estimated based on this energy estimation formula. The X-ray energy in the X-ray room can be estimated more accurately.

【0027】[0027]

【実施例】以下、本発明の一実施例について、図面を参
照して説明する。なお、図7に示した従来型と同一の部
材には同一の符号を付して、説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The same members as those of the conventional type shown in FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted.

【0028】すなわち、本実施例の蛍光ガラス線量計測
定装置においては、図1に示した様に、コントローラ2
0には、予め例えば図2に示すような複数のQI値及び
これらQI値に基づいて作成される複数のエネルギー推
定式(推定曲線)を記憶する推定式記憶手段21と、必
要な指示データなどを入力する入力装置9と、被曝線量
測定値及びエネルギー推定値の演算結果などを表示する
表示装置13と、蛍光ガラス線量計に照射されたX線の
スペクトル分布に近い1つのQIからエネルギー推定式
を選択するエネルギー推定式選択手段22と、蛍光検出
量から線量測定値を算出する線量測定値演算手段10
と、各分割区画毎の蛍光量の最大値と最小値の比である
蛍光検出量分布比を算出する蛍光検出量分布比演算手段
11と、この蛍光検出量分布比(最大値/最小値)に基
づいて、前記エネルギー推定式選択手段22で選択され
たエネルギー推定式を用いてエネルギー推定値を算出す
るエネルギー推定値演算手段23とが設けられている。
That is, in the fluorescent glass dosimeter measuring device of this embodiment, as shown in FIG.
0 indicates a plurality of QI values as shown in FIG. 2 in advance and an estimation formula storage means 21 for storing a plurality of energy estimation formulas (estimation curves) created based on these QI values, necessary instruction data, etc. Input device 9 for inputting, display device 13 for displaying the calculation result of exposure dose measurement value and energy estimation value, and energy estimation formula from one QI close to the spectral distribution of X-rays irradiated on the fluorescent glass dosimeter Energy estimation formula selecting means 22 for selecting, and dose measurement value calculating means 10 for calculating a dose measurement value from the fluorescence detection amount.
And a fluorescence detection amount distribution ratio calculation means 11 for calculating a fluorescence detection amount distribution ratio which is a ratio of the maximum value and the minimum value of the fluorescence amount for each divided section, and this fluorescence detection amount distribution ratio (maximum value / minimum value) Energy estimation value calculation means 23 for calculating an energy estimation value using the energy estimation equation selected by the energy estimation equation selection means 22 based on the above.

【0029】なお、その他の構成は、図7に示した従来
の蛍光ガラス線量計測定装置と同一であるので説明は省
略する。
The rest of the configuration is the same as that of the conventional fluorescent glass dosimeter measuring device shown in FIG.

【0030】ここで、図2に示したような複数のQI値
(QIが0.8、0.6及び0.4)に対応するX線の
エネルギー推定式(推定曲線)について説明する。すな
わち、図2に示したような各線質指標(QI)における
エネルギー推定曲線は、図3に示した条件1〜3に基づ
いて蛍光ガラス素子にX線照射がなされた場合の蛍光検
出量分布比Rを求め、X線エネルギーと蛍光検出量分布
比Rとの関係を順次プロットすることにより求めたもの
である。
Here, an X-ray energy estimation formula (estimation curve) corresponding to a plurality of QI values (QI is 0.8, 0.6 and 0.4) as shown in FIG. 2 will be described. That is, the energy estimation curve for each quality index (QI) as shown in FIG. 2 is the fluorescence detection amount distribution ratio when X-ray irradiation is performed on the fluorescent glass element based on the conditions 1 to 3 shown in FIG. It is obtained by obtaining R and plotting the relationship between the X-ray energy and the fluorescence detection amount distribution ratio R sequentially.

【0031】なお、各線質指標(QI)におけるエネル
ギー推定曲線を、それぞれ複数の直線の式として近似
し、これを図4に示したようなエネルギー推定式とし
て、前記推定式記憶手段21に記憶しておくこともでき
る。
The energy estimation curve for each quality index (QI) is approximated as a plurality of straight line equations and stored in the estimation equation storage means 21 as an energy estimation equation as shown in FIG. You can also keep it.

【0032】この様な構成を有する本実施例の蛍光ガラ
ス線量計測定装置は、以下に述べるように作用する。す
なわち、移動ダイアフラム33を順次移動させ、そのス
リット32を通過した蛍光を検出することにより得られ
た各分割区画毎の蛍光読取値“A1 ”“A2 ”…
“An ”の最大値と最小値の比が、蛍光検出量分布比演
算手段11によって算出される。一方、入力装置9に
て、エネルギー推定を行うか否かの指示、及びいかなる
線質指標(QI)に従ったエネルギー推定を行うかの指
示などが行われる。
The fluorescent glass dosimeter measuring device of this embodiment having such a structure operates as described below. That is, the moving diaphragm 33 is sequentially moved, and the fluorescence read values “A 1 ”, “A 2 ” ...
The ratio between the maximum value and the minimum value of “A n ” is calculated by the fluorescence detection amount distribution ratio calculation means 11. On the other hand, the input device 9 gives an instruction as to whether or not to perform energy estimation and an instruction as to what quality index (QI) is to be used for energy estimation.

【0033】次に、入力装置9によってなされた指示に
基づいて、エネルギー推定式選択手段22により、図3
に示された複数のエネルギー推定曲線の中から、蛍光ガ
ラス線量計に照射されたX線のスペクトル分布に近い1
つのQI値に対応するエネルギー推定曲線が選択され
る。そして、このエネルギー推定曲線を用いることによ
り、蛍光検出量分布比演算手段11によって算出された
蛍光検出量分布比Rに対応するX線エネルギーを求める
ことができる。
Next, based on the instruction given by the input device 9, the energy estimation formula selecting means 22 causes
From the multiple energy estimation curves shown in Fig. 1, the spectral distribution of X-rays irradiated on the fluorescent glass dosimeter is close to 1
An energy estimation curve corresponding to one QI value is selected. Then, by using this energy estimation curve, the X-ray energy corresponding to the fluorescence detection amount distribution ratio R calculated by the fluorescence detection amount distribution ratio calculating means 11 can be obtained.

【0034】なお、図4に示したようなエネルギー推定
式を用いる場合には、入力装置9によってなされた指示
に基づいて、エネルギー推定式選択手段22により、蛍
光ガラス線量計に照射されたX線のスペクトル分布に近
い1つのQI値に対応するエネルギー推定式群が選択さ
れ、さらに、蛍光検出量分布比Rの値から、エネルギー
推定に最適な一つのエネルギー推定式が選択される。そ
して、その式に蛍光検出量分布比Rの値を代入すること
により、蛍光検出量分布比Rに対応するX線エネルギー
を求めることができる。
When the energy estimation formula as shown in FIG. 4 is used, the X-ray irradiated to the fluorescent glass dosimeter is selected by the energy estimation formula selecting means 22 based on the instruction given by the input device 9. The energy estimation formula group corresponding to one QI value close to the spectral distribution of is selected, and further, one energy estimation formula optimal for energy estimation is selected from the value of the fluorescence detection amount distribution ratio R. Then, by substituting the value of the fluorescence detection amount distribution ratio R into the equation, the X-ray energy corresponding to the fluorescence detection amount distribution ratio R can be obtained.

【0035】なお、本発明は上述した実施例に限定され
るものではなく、実際の医療機関のX線発生装置の稼働
時に測定されたエネルギースペクトルから得られた線質
指標(QI)と、それに対応するX線エネルギー及びそ
の時の蛍光検出量分布比Rとの関係より、所定のX線室
におけるエネルギー推定式(推定曲線)を求めても良
い。例えば、図5に示したエネルギー推定曲線は、所定
のX線室において、図6に示した条件4,5に基づいて
蛍光ガラス素子にX線照射がなされた場合の蛍光検出量
分布比Rを求め、X線エネルギーと蛍光検出量分布比R
との関係をプロットすることにより得られたものであ
る。
The present invention is not limited to the above-mentioned embodiment, but the quality index (QI) obtained from the energy spectrum measured during the operation of the X-ray generator of the actual medical institution, and An energy estimation formula (estimation curve) in a predetermined X-ray chamber may be obtained from the relationship between the corresponding X-ray energy and the fluorescence detection amount distribution ratio R at that time. For example, the energy estimation curve shown in FIG. 5 shows the fluorescence detection amount distribution ratio R when X-ray irradiation is performed on the fluorescent glass element based on the conditions 4 and 5 shown in FIG. 6 in a predetermined X-ray chamber. Calculate, X-ray energy and fluorescence detection amount distribution ratio R
It is obtained by plotting the relationship with.

【0036】すなわち、条件4の場合は、付加したろ過
フィルターがAl+CuのX線室、条件5の場合は、付
加したろ過フィルターがAlのみのX線室についてのも
のである。したがって、このエネルギー推定曲線を用い
ることにより、実際の医療機関のX線室におけるX線エ
ネルギーを、より精度良く推定することができる。
That is, in the case of condition 4, the added filtration filter is for the Al + Cu X-ray chamber, and in the case of condition 5, the added filtration filter is for the X-ray chamber of only Al. Therefore, by using this energy estimation curve, it is possible to more accurately estimate the X-ray energy in the X-ray room of the actual medical institution.

【0037】なお、この場合も、図5に示したエネルギ
ー推定曲線を、それぞれ複数の直線の式として近似し、
これを図4に示したようなエネルギー推定式として、前
記推定式記憶手段21に記憶しておくことができること
はいうまでもない。
Also in this case, the energy estimation curve shown in FIG. 5 is approximated as a plurality of straight line expressions,
It goes without saying that this can be stored in the estimation formula storage means 21 as an energy estimation formula as shown in FIG.

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば、医
療機関などのX線発生装置から発生される可能性のある
様々な線質指標の低エネルギーX線のエネルギーを高精
度に推定する機能を有し、かつ、X線被曝線量測定が行
える蛍光ガラス線量計測定装置を提供することができ
る。
As described above, according to the present invention, it is possible to accurately estimate the energy of low energy X-rays of various radiation quality indexes that may be generated from an X-ray generator such as a medical institution. It is possible to provide a fluorescent glass dosimeter measuring device which has the function of performing the X-ray exposure dose measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蛍光ガラス線量計測定装置の一実施例
の構成を示すブロック図
FIG. 1 is a block diagram showing the configuration of an embodiment of a fluorescent glass dosimeter measuring device of the present invention.

【図2】種々のQIにおける蛍光検出量分布比とエネル
ギーとの関係を示す図
FIG. 2 is a diagram showing a relationship between a fluorescence detection amount distribution ratio and energy in various QIs.

【図3】エネルギー推定式(推定曲線)を決定するため
のX線照射試験の条件例
FIG. 3 is a condition example of an X-ray irradiation test for determining an energy estimation formula (estimation curve).

【図4】エネルギー推定式の一例を示す図FIG. 4 is a diagram showing an example of an energy estimation formula.

【図5】実際の医療機関のX線室における蛍光検出量分
布比とエネルギーとの関係を示す図
FIG. 5 is a diagram showing a relationship between a fluorescence detection amount distribution ratio and energy in an X-ray room of an actual medical institution.

【図6】実際の医療機関のX線室におけるエネルギー推
定式(推定曲線)を決定するためのX線照射試験の条件
FIG. 6 is a condition example of an X-ray irradiation test for determining an energy estimation formula (estimation curve) in an X-ray room of an actual medical institution.

【図7】従来の蛍光ガラス線量計測定装置の構成を示す
ブロック図
FIG. 7 is a block diagram showing the configuration of a conventional fluorescent glass dosimeter measuring device.

【図8】移動ダイアフラム機構の一例を示す斜視図FIG. 8 is a perspective view showing an example of a moving diaphragm mechanism.

【図9】従来の蛍光ガラス線量計測定装置に用いられて
いた蛍光検出量分布比とエネルギーとの関係を示す図
FIG. 9 is a diagram showing a relationship between a fluorescence detection amount distribution ratio and energy used in a conventional fluorescent glass dosimeter measuring device.

【符号の説明】[Explanation of symbols]

1…蛍光ガラス素子 2…測定装置本体 3…コントローラ 4…プリンタ 5…搬送装置 6…測定位置 7…検出装置 9…入力装置 10…線量測定値演算手段 11…蛍光検出量分布比演算手段 12…エネルギー推定値演算手段 13…表示装置 21…推定式記憶手段 22…エネルギー推定式選択手段 23…エネルギー推定値演算手段 30…固定ダイアフラム開口部 31…固定ダイアフラム 32…スリット 33…移動ダイアフラム DESCRIPTION OF SYMBOLS 1 ... Fluorescent glass element 2 ... Measuring device main body 3 ... Controller 4 ... Printer 5 ... Conveying device 6 ... Measuring position 7 ... Detecting device 9 ... Input device 10 ... Dose measurement value calculating means 11 ... Fluorescence detection amount distribution ratio calculating means 12 ... Estimated energy value calculation means 13 ... Display device 21 ... Estimated expression storage means 22 ... Energy estimated expression selection means 23 ... Energy estimated value calculation means 30 ... Fixed diaphragm opening 31 ... Fixed diaphragm 32 ... Slit 33 ... Moving diaphragm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放射線の照射を受けた蛍光ガラス素子を
紫外線で励起し、この際に前記蛍光ガラス素子の蛍光検
出面から発生する蛍光量に基づいて被曝放射線量を読み
取るとともに、前記蛍光検出面を複数の区画に分割し
て、各分割区画毎に蛍光量を検出し、各検出値から前記
蛍光検出面の蛍光強度分布を求める蛍光ガラス線量計測
定装置において、 予め線質指標を異にする複数のエネルギー推定式を記憶
する推定式記憶手段と、 放射線のエネルギーの推定時に、線質指標に基づいて前
記推定式記憶手段から所要のエネルギー推定式を選択す
るエネルギー推定式選択手段と、 各分割区画毎の蛍光量の最大値と最小値の比である蛍光
検出量分布比を算出する蛍光検出量分布比演算手段と、 前記蛍光検出量分布比に基づいて、前記エネルギー推定
式選択手段で選択されたエネルギー推定式を用いてエネ
ルギー推定値を算出するエネルギー推定値演算手段とを
備えたことを特徴とする蛍光ガラス線量計測定装置。
1. A fluorescent glass element that has been irradiated with radiation is excited by ultraviolet rays, and at this time, the radiation dose is read based on the amount of fluorescence generated from the fluorescent detection surface of the fluorescent glass element, and the fluorescent detection surface is also read. In a fluorescent glass dosimeter measuring device, in which the fluorescence amount is detected for each divided section and the fluorescence intensity distribution of the fluorescence detection surface is obtained from each detected value. Estimation formula storage means for storing a plurality of energy estimation formulas; energy estimation formula selection means for selecting a required energy estimation formula from the estimation formula storage means based on the radiation quality index when estimating the energy of radiation; Fluorescence detection amount distribution ratio calculation means for calculating the fluorescence detection amount distribution ratio, which is the ratio of the maximum value and the minimum value of the fluorescence amount for each section, and the energy estimation based on the fluorescence detection amount distribution ratio. Fluorescent glass dosimeter measuring apparatus characterized by comprising an energy estimation value calculating means for calculating an energy estimate using the selected energy estimation formula in the formula selecting means.
【請求項2】 放射線の照射を受けた蛍光ガラス素子を
紫外線で励起し、この際に前記蛍光ガラス素子の蛍光検
出面から発生する蛍光量に基づいて被曝放射線量を読み
取るとともに、前記蛍光検出面を複数の区画に分割し
て、各分割区画毎に蛍光量を検出し、各検出値から前記
蛍光検出面の蛍光強度分布を求める蛍光ガラス線量計測
定装置において、 エネルギー推定の対象となる放射線室に合致したエネル
ギー推定式を記憶する推定式記憶手段と、 放射線のエネルギーの推定時に、前記エネルギー推定の
対象となる放射線室に基づいて、前記推定式記憶手段か
ら所要のエネルギー推定式を選択するエネルギー推定式
選択手段と、 各分割区画毎の蛍光量の最大値と最小値の比である蛍光
検出量分布比を算出する蛍光検出量分布比演算手段と、 前記蛍光検出量分布比に基づいて、前記エネルギー推定
式選択手段で選択されたエネルギー推定式を用いてエネ
ルギー推定値を算出するエネルギー推定値演算手段とを
備えたことを特徴とする蛍光ガラス線量計測定装置。
2. A fluorescent glass element that has been irradiated with radiation is excited by ultraviolet rays, and at this time, the radiation dose is read based on the amount of fluorescence generated from the fluorescent detection surface of the fluorescent glass element, and the fluorescent detection surface is also read. In a fluorescent glass dosimeter measuring device that divides each into multiple sections, detects the amount of fluorescence in each divided section, and obtains the fluorescence intensity distribution of the fluorescence detection surface from each detection value. Estimating formula storing means for storing an energy estimating formula that conforms to, and energy for selecting a required energy estimating formula from the estimating formula storing means based on the radiation chamber to be subjected to the energy estimation when estimating the energy of radiation. Estimation formula selection means, fluorescence detection amount distribution ratio calculation means for calculating the fluorescence detection amount distribution ratio which is the ratio of the maximum value and the minimum value of the fluorescence amount for each divided section, Based on the fluorescence detection amount distribution ratio, an estimated energy value calculating means for calculating an estimated energy value by using the energy estimation formula selected by the energy estimation formula selecting means, and a fluorescent glass dosimeter. measuring device.
JP14111895A 1995-05-16 1995-05-16 Fluorescent glass dosimeter measuring device Expired - Lifetime JP2971782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14111895A JP2971782B2 (en) 1995-05-16 1995-05-16 Fluorescent glass dosimeter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14111895A JP2971782B2 (en) 1995-05-16 1995-05-16 Fluorescent glass dosimeter measuring device

Publications (2)

Publication Number Publication Date
JPH08313635A true JPH08313635A (en) 1996-11-29
JP2971782B2 JP2971782B2 (en) 1999-11-08

Family

ID=15284581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14111895A Expired - Lifetime JP2971782B2 (en) 1995-05-16 1995-05-16 Fluorescent glass dosimeter measuring device

Country Status (1)

Country Link
JP (1) JP2971782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141692A (en) * 2017-02-28 2018-09-13 日本電気硝子株式会社 Radiation detection glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141692A (en) * 2017-02-28 2018-09-13 日本電気硝子株式会社 Radiation detection glass

Also Published As

Publication number Publication date
JP2971782B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP2000329712A (en) Data processor for x-ray fluorescence analysis
JP3371372B2 (en) X-ray equipment that can automatically determine X-ray film exposure time
US7356123B2 (en) X-ray device having a collimator, and method of setting the latter
JP2000046765A (en) Method and apparatus for fluorescent x-ray analysis of thin film
JP2971782B2 (en) Fluorescent glass dosimeter measuring device
JP2949133B2 (en) Fluorescent glass dosimeter reader
FI117786B (en) A method for determining the function of a radiographic film representing the non-reciprocity
FI117785B (en) A method for estimating and calibrating the amount of light received by a radiographic film
JPH0228819B2 (en) METSUKIEKIBUNSEKISOCHI
JP2971772B2 (en) Fluorescent glass dosimeter measuring device
US3519821A (en) Method and apparatus for calibrating radiation detection and measurement instruments
JP3029899B2 (en) Glass dosimeter
Spencer Absorption of soft x-rays in gases
JP3312001B2 (en) X-ray fluorescence analyzer
JP2857297B2 (en) Glass dosimeter
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JP2737102B2 (en) Fluorescent glass dosimeter measuring device
JP3399861B2 (en) X-ray analyzer
Buhr et al. Intercomparison of visual diffuse transmission density measurements
JP3169346B2 (en) Fluorescent glass dosimeter measuring device
CA1249076A (en) Method and apparatus for indicating quench of a liquid scintillation solution
Zielinski Absorption and scattering of mercury vapor for the line 2536
JPH09269305A (en) Method and apparatus for fluorescent x-ray analysis
JPS59203947A (en) Exposure measuring device for test of radiation transmission
JPH1073663A (en) Fluorescent glass dose meter measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term