JPH08313434A - Automatic measuring apparatus for transparency and amount of floating matter in water treatment - Google Patents

Automatic measuring apparatus for transparency and amount of floating matter in water treatment

Info

Publication number
JPH08313434A
JPH08313434A JP11671495A JP11671495A JPH08313434A JP H08313434 A JPH08313434 A JP H08313434A JP 11671495 A JP11671495 A JP 11671495A JP 11671495 A JP11671495 A JP 11671495A JP H08313434 A JPH08313434 A JP H08313434A
Authority
JP
Japan
Prior art keywords
amount
transparency
light
liquid
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11671495A
Other languages
Japanese (ja)
Inventor
Minoru Tada
実 多田
Toshihiko Sakamoto
俊彦 坂本
Shotaro Urushibara
正太郎 漆原
Shigeo Sato
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA TOWN
YOKOHAMASHI
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
YOKOHAMA TOWN
YOKOHAMASHI
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA TOWN, YOKOHAMASHI, Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical YOKOHAMA TOWN
Priority to JP11671495A priority Critical patent/JPH08313434A/en
Publication of JPH08313434A publication Critical patent/JPH08313434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a measuring apparatus which enables measuring of transparency and the amount of a floating matter of a liquid to be measured automatically and continuously and moreover is free from measuring errors ascribed to personal difference in a high level treatment monitoring and control for waste sewage treating equipment or the like. CONSTITUTION: An automatically measuring apparatus with a signal processor 8 is provided. A laser light source 4 is fixed outside one optical window 2a arranged at both end opening parts of a non-light transmitting measuring cell 1 while a photodetector 5 is fixed outside the other optical window 2b and the degree of attenuation of a laser light incident on a liquid 11 to be measured passing continuously through the measuring cell 1 from the laser light source 4 is received by the photodetector 5 to obtain the transparency and the amount of a floating matter of the liquid 11 to be measured by signal processing and arithmetic processing of the quantity of the received light. Moreover, a defoaming tank is arranged at a position higher than that of the measuring cell 1 separately and after a defoaming with the defoaming tank, the liquid to be measured is sent into the measuring cell 1 to determine the transparency and the amount of the floating matter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は下廃水処理施設の処理水
とか河川水、湖沼水等の水質指標の1つである透視度及
び浮遊物量を自動計測する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for automatically measuring the degree of transparency and the amount of suspended matter, which is one of the water quality indicators of treated water in sewage treatment facilities, river water, lake water and the like.

【0002】[0002]

【従来の技術】従来から下廃水処理施設の処理水とか河
川水、湖沼水等の透視度とか浮遊物量(ss成分)を測
定する方法は、(社)日本下水道協会から発行された
「下水道試験方法(1984年版)」の第96頁に記載
された「透視度」の項と、同試験方法の第314頁に記
載された「浮遊物質」の項に準拠して実施されている。
2. Description of the Related Art Conventionally, the method of measuring the transparency of treated water, river water, lake water, etc., or the amount of suspended solids (ss component) of a sewage treatment facility has been published by the Japan Sewer Association. Method (1984 edition) ”, page 96,“ Transparency ”, and test method, page 314,“ Floating substances ”.

【0003】この「下水道試験方法」により規定されて
いるように、「透視度」とは水の澄明の程度を示すもの
であり、測定に際して透視度計の上部から透視して底部
においた二重十字標識板がはじめて識別できる時の水層
の高さを読み取り、1cmを1度として表わしている。
透視度計としては高さが32cm、直径3.3〜3.5c
m、底部から5cmの高さまで0.5cmごとに目盛を
付した平底ガラス円筒の底部に二重十字標識板をつけた
器具を用いており、この透視度計中に被測定液を満たし
て上部から底部を透視しながら下口から液を流出させ、
底部の二重十字が明らかに識別できる時の水面の目盛を
読んで透視度を求めている。
As defined by this "sewer test method", "transparency" indicates the degree of clearness of water, and a double layer is placed on the bottom of the fluorometer when the measurement is performed. The height of the water layer at the time when the cross sign plate can be identified for the first time is read, and 1 cm is represented as 1 degree.
As a fluoroscope, the height is 32 cm, and the diameter is 3.3 to 3.5 c.
m, the height from the bottom is 5 cm, and the instrument is a flat-bottomed glass cylinder graduated in 0.5 cm increments with a double cross-marking plate attached to the bottom of the fluorometer. Let the liquid flow out from the lower mouth while seeing through the bottom from
I read the scale on the water surface when the double cross at the bottom is clearly identifiable to obtain the transparency.

【0004】その他の方法として、上記透視度を散乱光
量法とか散乱光量/透過光量法、積分球法として知られ
ている濁度計の測定値から求める手段もある。
As another method, there is a means for obtaining the above-mentioned transparency from the measured value of a turbidimeter known as a scattered light quantity method, a scattered light quantity / transmitted light quantity method, or an integrating sphere method.

【0005】他方の「浮遊物質」とはガラス繊維濾紙法
もしくは遠心分離法により分離される物質をいう。
On the other hand, "suspended substance" means a substance separated by the glass fiber filter method or the centrifugal method.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこのよう
な水処理における透視度及び浮遊物量の測定方法は、測
定操作の自動化がなされていないために連続測定が困難
であり、水質の時間的な変化を的確に捉えることはでき
ないという課題が存在する。特に下廃水処理施設では被
測定液の透視度が処理水質を評価する重要な指標である
にも拘わらず、この透視度に関して連続的な情報が得ら
れないので水質変化の状態を運転操作にフィードバック
することができないという問題点があった。
However, in such a method for measuring the degree of transparency and the amount of suspended matter in water treatment, continuous measurement is difficult because the measurement operation is not automated, and changes in water quality over time are difficult. There is a problem that it cannot be accurately grasped. Especially in the sewage treatment plant, although the transparency of the measured liquid is an important index for evaluating the treated water quality, continuous information cannot be obtained regarding this transparency, so the state of water quality change is fed back to the operation. There was a problem that I could not do it.

【0007】操作面からみても、測定の都度測定者が採
水点まで出向いて測定することが必要であるため、多大
な時間と労力を必要とするという難点があり、更に前記
透視度は目視測定が基本となっているので、個人差によ
る測定値の誤差とか、同一の試料であっても測定値にば
らつきが生じることがあるという難点がある。
From the viewpoint of operation, it is necessary for the measurer to go to the water sampling point for each measurement, which requires a great deal of time and labor. Since the measurement is the basis, there is a problem in that there is an error in the measured value due to individual differences, or the measured values may vary even for the same sample.

【0008】そこで本発明は上記の問題点に鑑み、被測
定液を自動採水した後に自動排出しながら光学装置を用
いて透過減衰光量を測定して信号処理及び演算処理によ
って被測定液の透視度及び浮遊物濃度を求めることによ
り、昼間とか夜間を問わず自動的且つ連続的な測定を可
能にするとともに、特に個人差に起因する測定誤差がな
く、下水等の高度処理監視,制御用の指標として使用す
ることができる透視度及び浮遊物量自動測定装置を提供
することを目的とするものである。
In view of the above-mentioned problems, the present invention measures the amount of transmitted attenuation light by using an optical device while automatically collecting the liquid to be measured and then automatically discharging the liquid to be measured, and then makes it possible to see through the liquid to be measured by signal processing and arithmetic processing. Determining the degree and suspended matter concentration enables automatic and continuous measurement regardless of daytime or nighttime, and there is no measurement error due to individual differences. An object of the present invention is to provide a device for automatically measuring the degree of transparency and the amount of suspended matter that can be used as an index.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1により、光不透過性を有する測
定セルの両端開口部に配備した一方の光学窓外側にレー
ザ光源を固定するとともに他方の光学窓外側に受光器を
固定し、該レーザ光源から測定セルに設けた流入口と流
出口間を連続的に流通する被測定液中に入射したレーザ
光の減衰光量を受光器で受光して、この受光光量の信号
処理と演算処理によって被測定液の透視度及び浮遊物量
を求める信号処理装置を備えて成る透視度及び浮遊物量
自動測定装置を提供する。
In order to achieve the above object, the present invention provides a laser light source on the outside of one of the optical windows provided at both end openings of a measurement cell having light opacity. Fix and fix the light receiver on the outside of the other optical window, and receive the attenuated light amount of the laser light incident on the liquid to be measured that continuously flows from the laser light source between the inlet and outlet provided in the measurement cell. (EN) An automatic measuring device of the transparency and the amount of suspended matter, which is provided with a signal processing device which receives the light by a container and calculates the transparency and the amount of suspended matter of a liquid to be measured by signal processing and calculation processing of the received light amount.

【0010】上記受光器に受光量増幅器と信号処理装置
及び記録計を設置して、入射したレーザ光の光量を電気
信号に変換,増幅した後、減衰光量(mV)と透視度
(cm)及び浮遊物量(mg/l)の相関に基づいて被
測定液の透視度及び浮遊物量を求め、記録計に記録す
る。この減衰光量(mV)は、測定セル内を純水で満た
した時の受光量ILと被測定液で満たした時の透過光量
TLから演算によって求めている。
A light receiving amount amplifier, a signal processing device and a recorder are installed in the above light receiving device to convert the light amount of the incident laser light into an electric signal and amplify the electric signal, and then the attenuated light amount (mV) and the transparency (cm) and Based on the correlation of the amount of suspended solids (mg / l), the transparency of the liquid to be measured and the amount of suspended solids are obtained and recorded in a recorder. The attenuated light amount (mV) is calculated by the received light amount IL when the measurement cell is filled with pure water and the transmitted light amount TL when the measured liquid is filled.

【0011】更に請求項4により、前記測定セルよりも
高い位置に脱泡槽を別途に配備して、被測定液を脱泡槽
に流入して脱泡した後に測定セルに送り込み、前記測定
原理に基づいて被測定液の透視度及び浮遊物量を求める
ようにした水処理における透視度及び浮遊物量自動測定
装置を提供する。
Further, according to claim 4, a defoaming tank is separately provided at a position higher than the measuring cell, and the liquid to be measured flows into the defoaming tank to be defoamed and then sent to the measuring cell to measure the measuring principle. The present invention provides an apparatus for automatically measuring the degree of transparency and the amount of suspended matter in water treatment, in which the degree of transparency and the amount of suspended matter of a liquid to be measured are obtained based on the above.

【0012】[0012]

【作用】かかる透視度及び浮遊物量自動測定装置によれ
ば、ポンプにより被測定液が連続的に測定セルに流入さ
れた際に、光学窓を介して測定セル内の被測定液にレー
ザ光源からレーザ光が入射され、受光器で被測定液で減
衰されたレーザ光の光量が受光される。受光器で得られ
たレーザ光の光量は電気信号に変換されてから受光量増
幅器で信号が増幅され、信号処理装置での演算処理及び
減衰光量(mV)と透視度(cm)及びlog(減衰光
量)の関係から透視度と直性関係にある出力と、浮遊物
量と相関のある減衰光量が記録計に記録され、被測定液
の透視度と浮遊物量が求められる。
According to such an apparatus for automatically measuring the degree of transparency and the amount of suspended solids, when the solution to be measured is continuously flowed into the measuring cell by the pump, the solution to be measured in the measuring cell is fed from the laser light source through the optical window. The laser light is incident, and the light amount of the laser light attenuated by the liquid to be measured is received by the light receiver. The light quantity of the laser light obtained by the light receiver is converted into an electric signal, and then the signal is amplified by the light quantity amplifier, and the calculation processing in the signal processing device and the attenuated light quantity (mV) and the transparency (cm) and log (attenuation) are performed. The output which has a direct relationship with the transparency and the amount of attenuated light which correlates with the amount of suspended solids are recorded in a recorder from the relationship of the amount of light), and the transparency and the amount of suspended solids of the liquid to be measured are obtained.

【0013】信号処理装置は、増幅された受光光量のノ
イズ除去及びピークカット処理を行うとともに、演算に
よってlog(減衰光量)を求め、記録計に出力する。
上記の減衰光量(mV)は、測定セル内を純水で満たし
た時の受光量IL(ブランク受光量)と被測定液で満た
した時の透過光量TLから演算によって求めることがで
きる。
The signal processing device performs noise removal and peak cut processing of the amplified received light amount, obtains log (attenuated light amount) by calculation, and outputs it to the recorder.
The above-mentioned attenuated light amount (mV) can be obtained by calculation from the received light amount IL (blank received light amount) when the measurement cell is filled with pure water and the transmitted light amount TL when the measurement liquid is filled.

【0014】[0014]

【実施例】以下図面に基づいて本発明にかかる水処理に
おける透視度及び浮遊物濃度自動測定装置の具体的な実
施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the apparatus for automatically measuring the degree of transparency and suspended solids in water treatment according to the present invention will be described below with reference to the drawings.

【0015】図1は本発明にかかる透視度自動測定装置
の基本的実施例を示す概要図であり、図中の1は両端部
が開口された円筒状又は角筒状の測定セルであって、該
測定セル1の両端開口部には光学窓2a,2bが配備さ
れ、一方の光学窓2aの外側に近接して嵌合固定された
支持体3aにレーザ光源4が固定されており、他方の光
学窓2bの外側に近接して嵌合固定された支持体3bに
受光器5が固定されている。レーザ光源4には電源6が
接続され、他方の受光器5には受光量増幅器7と信号処
理装置8及び記録計9が設置されている。
FIG. 1 is a schematic view showing a basic embodiment of an automatic fluoroscopy measuring apparatus according to the present invention, in which 1 is a cylindrical or rectangular measuring cell with both ends open. Optical windows 2a and 2b are provided at the openings of both ends of the measurement cell 1, and a laser light source 4 is fixed to a support body 3a fitted and fixed in proximity to the outside of one optical window 2a, and the other. The light receiver 5 is fixed to the support body 3b which is fitted and fixed close to the outside of the optical window 2b. A power source 6 is connected to the laser light source 4, and a light receiving amount amplifier 7, a signal processing device 8 and a recorder 9 are installed in the other light receiving device 5.

【0016】上記測定セル1は光不透過性の金属あるい
は合成樹脂製の管体で構成され、光学窓2a,2bは光
透過性の材質で構成されている。この測定セル1の一端
には被測定液11の流入口10が設けられ、この流入口
10の近傍には被測定液11を測定セル1内に送り込む
ためのポンプ12が配備されている。又、測定セル1の
他端部には被測定液11の流出口13が設けられ、この
流出口13には排水管14が接続されている。
The measuring cell 1 is made of a light-impermeable metal or synthetic resin tube, and the optical windows 2a and 2b are made of a light-transmitting material. An inflow port 10 for the liquid to be measured 11 is provided at one end of the measuring cell 1, and a pump 12 for feeding the liquid to be measured 11 into the measuring cell 1 is provided in the vicinity of the inflow port 10. An outlet 13 for the liquid to be measured 11 is provided at the other end of the measurement cell 1, and a drain pipe 14 is connected to the outlet 13.

【0017】尚、測定セル1は、被測定液11中に含ま
れる気泡ができるだけ該測定セル1内の上壁に沿って流
出口13に抜けやすいように、該流出口13の位置が流
入口10よりも高い位置にあるように該測定セル1を傾
けて設置するのが良い。実験的には測定セル1を5度〜
20度の範囲で傾けることが好適である。
In the measuring cell 1, the position of the outlet 13 is set so that bubbles contained in the liquid 11 to be measured can easily escape to the outlet 13 along the upper wall of the measuring cell 1 as much as possible. It is preferable to install the measuring cell 1 in a tilted manner so that it is located at a position higher than 10. Experimentally, the measuring cell 1 was set at 5 degrees
It is preferable to incline in the range of 20 degrees.

【0018】かかる透視度自動測定装置の作用は以下の
通りである。先ずポンプ12を起動することによって被
測定液11が連続的に測定セル1に流入され、同時に電
源6からレーザ光源4に電力を供給することにより、測
定セル1内の被測定液11にレーザ光源4から光学窓2
a,2bを介して受光器5に向けてレーザ光が入射され
る。そして受光器5では被測定液11で減衰されたレー
ザ光の光量が受光される。
The operation of the automatic transparency measuring device is as follows. First, by activating the pump 12, the liquid to be measured 11 is continuously flown into the measuring cell 1, and at the same time, power is supplied from the power source 6 to the laser light source 4, whereby the liquid to be measured 11 in the measuring cell 1 is laser light source. 4 to optical window 2
Laser light is incident toward the light receiver 5 via a and 2b. Then, the light receiver 5 receives the light amount of the laser light attenuated by the measured liquid 11.

【0019】実験に際して被測定液11として実際の下
水処理場の処理水を採用し、測定セル1の光路長、即ち
光学窓2a,2b間の間隔は80cmとした。尚、この
測定セル1の光路長は60cm〜100cmの範囲にあ
るのが適当である。
In the experiment, treated water from an actual sewage treatment plant was used as the liquid to be measured 11, and the optical path length of the measuring cell 1, that is, the distance between the optical windows 2a and 2b was set to 80 cm. The optical path length of the measuring cell 1 is preferably in the range of 60 cm to 100 cm.

【0020】受光器5で得られたレーザ光の光量は、電
気信号に変換されてから受光量増幅器7で信号が増幅さ
れ、信号処理装置8で所定の演算処理と被測定液11の
不均一性とか夾雑物の流入及び気泡の混入等に起因する
信号の「フレ」が除去された後に記録計9に減衰光量
(mV)が記録される。
The light quantity of the laser light obtained by the light receiver 5 is converted into an electric signal, and then the signal is amplified by the received light quantity amplifier 7, and the signal processing device 8 performs predetermined arithmetic processing and the non-uniformity of the measured liquid 11. Attenuated light amount (mV) is recorded in the recorder 9 after the "flare" of the signal caused by the inflow of foreign matter or foreign substances and the inclusion of bubbles is removed.

【0021】図2は上記の測定によって得られた減衰光
量(mV)と透視度(cm,目視試験)及び自然対数で
あるlog(減衰光量)の関係を示すグラフである。減
衰光量(mV)は、測定セル1内を純水で満たした時の
受光量IL(ブランク受光量)と被測定液11で満たし
た時の透過光量TLから演算によって求めることができ
る。
FIG. 2 is a graph showing the relationship between the attenuated light amount (mV), the transparency (cm, visual test) and the logarithm (attenuated light amount), which is the natural logarithm, obtained by the above measurement. The attenuated light amount (mV) can be calculated by the received light amount IL (blank received light amount) when the measurement cell 1 is filled with pure water and the transmitted light amount TL when the measured liquid 11 is filled.

【0022】図3は上記減衰光量(mV)と浮遊物量
(mg/l)の関係を示すグラフである。光路長は上記
と同じ80cm、ブランク受光量は9.96である。図
3によれば、相関係数r=0.998であり、浮遊物量
(mg/l)と減衰光量(mV)との間に良好な相関関
係が得られることが判明した。
FIG. 3 is a graph showing the relationship between the amount of attenuated light (mV) and the amount of suspended matter (mg / l). The optical path length is 80 cm, which is the same as the above, and the blank light reception amount is 9.96. According to FIG. 3, it was found that the correlation coefficient r = 0.998, and a good correlation was obtained between the amount of suspended solids (mg / l) and the amount of attenuated light (mV).

【0023】従って信号処理装置8は、増幅された受光
光量のノイズ除去及びピークカット処理を行うととも
に、演算によってlog(減衰光量)を求め、透視度と
直性関係にある出力と、浮遊物量と相関のある減衰光量
を記録計9に出力する機能を有している。
Therefore, the signal processing device 8 performs noise removal and peak cut processing of the amplified received light amount, obtains log (attenuated light amount) by calculation, and outputs an output having a direct relationship with the transparency and the amount of suspended matter. It has a function of outputting a correlated amount of attenuated light to the recorder 9.

【0024】図4は本発明の他の実施例を示す概要図で
あり、図1の基本実施例と同一の構成部分には同一の符
号を付して表示してある。この実施例では前記測定セル
1よりも高い位置に脱泡槽15を別途に配備しておき、
被測定液11を水中ポンプ16の稼働とバルブV1の開
閉操作により一旦脱泡槽15に流入させて脱泡させ、し
かる後にバルブV2の開閉操作によって被測定液11を
流入口10から測定セル1の内方へ流入させ、前記した
測定原理に基づいて減衰光量(mV)を測定する。尚、
3は測定セル1の流入口10近傍に接続された測定セ
ル1への水道水流入用バルブであり、前述したように測
定セル1内を純水で満たした時の受光量IL(ブランク
受光量)を求めるために設置してあり、自動的にILを
求めることができる。V4,V5は脱泡槽15と測定セル
1からの排水用のドレンバルブである。
FIG. 4 is a schematic diagram showing another embodiment of the present invention, in which the same components as those of the basic embodiment of FIG. 1 are indicated by the same reference numerals. In this embodiment, a defoaming tank 15 is separately provided at a position higher than the measurement cell 1,
By operating the submersible pump 16 and opening / closing the valve V 1 , the liquid to be measured 11 is once introduced into the defoaming tank 15 to be defoamed, and then the liquid to be measured 11 is measured from the inlet 10 by opening / closing the valve V 2. The light is made to flow into the cell 1 and the amount of attenuated light (mV) is measured based on the above-mentioned measurement principle. still,
V 3 is a valve for tap water inflow to the measurement cell 1 connected to the vicinity of the inflow port 10 of the measurement cell 1, and as described above, the received light amount IL (blank light reception when the measurement cell 1 is filled with pure water). It is installed to calculate (quantity), and IL can be automatically calculated. V 4 and V 5 are drain valves for draining water from the defoaming tank 15 and the measuring cell 1.

【0025】この実施例の場合には、測定セル1自体の
構造は基本実施例と同一であるが、被測定液11が水中
ポンプ16から脱泡槽15を通して測定セル1に供給さ
れるので、この脱泡槽15と測定セル1の位置関係を適
切に保つことにより、被測定液11中に気泡が多く含ま
れている場合でも安定した測定を行うことができる。
又、被測定液11の水位変化とか電圧変化等によってポ
ンプ流量が変動しても、脱泡槽15が測定セル1よりも
高い位置にあるため、該測定セル1に対して常に一定量
の被測定液11が導入されて測定精度が向上するととも
に測定値のばらつきは最小限となる。
In the case of this embodiment, the structure of the measuring cell 1 itself is the same as that of the basic embodiment, but the liquid to be measured 11 is supplied from the submersible pump 16 to the measuring cell 1 through the defoaming tank 15. By appropriately maintaining the positional relationship between the defoaming tank 15 and the measurement cell 1, stable measurement can be performed even when the liquid to be measured 11 contains many bubbles.
Further, even if the pump flow rate changes due to a change in the water level of the liquid to be measured 11 or a voltage change, the defoaming tank 15 is located higher than the measuring cell 1, so that a constant amount of the measuring cell 1 is constantly exposed. The measurement liquid 11 is introduced to improve the measurement accuracy, and the variation in the measurement value is minimized.

【0026】尚、測定終了後には測定セル1内を純水で
満たした時の受光量IL(ブランク受光量)を求めるた
めに設置した水道水流入用バルブV3の開度を大きく
し、測定セル1内への流入水量を多くすることにより、
被測定液11と長時間接触する測定セル1内及び光学窓
2a,2b等の内面に付着した汚れを除去することがで
きて、洗浄効果を高めることができる。
After the measurement, the opening of the tap water inflow valve V 3 installed to obtain the received light amount IL (blank received light amount) when the measuring cell 1 is filled with pure water is increased and the measurement is performed. By increasing the amount of water flowing into cell 1,
It is possible to remove stains adhering to the inside of the measurement cell 1 and the inner surfaces of the optical windows 2a, 2b, etc., which are in contact with the liquid to be measured 11 for a long time, and the cleaning effect can be enhanced.

【0027】[0027]

【発明の効果】以上詳細に説明したように、本発明にか
かる透視度及び浮遊物量自動測定装置によれば、ポンプ
等によって被測定液を連続的に測定セルに流入して、光
学窓を介して測定セル内の被測定液にレーザ光源からレ
ーザ光を入射し、受光器で被測定液で減衰されたレーザ
光の光量が受光して、得られた光量を電気信号に変換し
てから受光量増幅器で信号増幅を行い、信号処理装置で
の演算処理及び減衰光量(mV)と透視度(cm)及び
log(減衰光量)の関係から透視度と直性関係にある
出力と、浮遊物量と相関のある減衰光量に基づいて被測
定液の透視度と浮遊物量を求めることができる。
As described above in detail, according to the apparatus for automatically measuring the degree of transparency and the amount of suspended matter according to the present invention, the liquid to be measured is continuously flown into the measuring cell by a pump or the like, and is passed through the optical window. Laser light from the laser light source to the liquid to be measured in the measuring cell, the light amount of the laser light attenuated by the liquid to be measured is received by the light receiver, and the light amount is converted into an electrical signal before being received. The signal is amplified by the quantity amplifier, and the output in the direct relationship with the transparency and the amount of suspended matter are calculated from the relationship between the calculation processing and the attenuated light amount (mV) and the transparency (cm) and log (attenuated light amount) in the signal processing device. The transparency and the amount of suspended matter of the liquid to be measured can be calculated based on the correlated amounts of attenuated light.

【0028】特に従来の濁度計は懸濁物重量との相関を
得る方法であり、散乱光量法とか散乱光量/透過光量
法、積分球法等が一般的であるが、これらの測定値は透
視度とはあまり良い相関は得られないという難点がある
のに対して、本発明の場合には平行性の良いレーザ光を
光源として減衰光量の自然対数を取るという簡単な方法
で透視度と非常に良い相関を得ることが可能であり、同
時に減衰光量により浮遊物量を求めることができる。
In particular, the conventional turbidimeter is a method for obtaining a correlation with the weight of the suspension, and the scattered light quantity method, scattered light quantity / transmitted light quantity method, integrating sphere method, etc. are generally used. While there is a drawback that a good correlation with the transparency cannot be obtained, in the case of the present invention, it is possible to obtain the transparency with a simple method of taking a natural logarithm of the attenuation light amount using a laser beam having good parallelism as a light source. It is possible to obtain a very good correlation, and at the same time, it is possible to obtain the amount of suspended matter from the amount of attenuated light.

【0029】本発明で説明した測定操作は全て自動化が
可能であるため、下廃水処理施設等で人手を要さずに連
続測定を行うことができて、被処理水の水質の時間的な
変化を的確に捉えることが可能となり、特に下廃水処理
施設では透視度が処理水質を評価する重要な指標であっ
て、この透視度に関して得られた連続的な情報から水質
変化の状態を素早く検知し、直ちに運転操作にフィード
バックして適切な制御を実施することができる。
Since all of the measuring operations described in the present invention can be automated, continuous measurement can be carried out in a wastewater treatment facility without requiring human labor, and the water quality of treated water changes with time. It is possible to accurately grasp the state of water quality, especially in sewage treatment plants, the visibility is an important index to evaluate the quality of treated water, and the continuous change in the quality of water can be used to quickly detect the state of water quality change. It is possible to immediately feed back to the driving operation and perform appropriate control.

【0030】又、操作面からみても測定時に測定者が採
水点まで出向いて測定する必要性がないので多大な時間
と労力を不要とするという利点があり、目視測定に伴う
個人差による測定値の誤差とか、同一の試料であっても
測定値にばらつきが生じることが防止されて、下水等の
高度処理監視,制御用の指標として使用することができ
る透視度及び浮遊物量自動測定装置が提供される。
Also, from the viewpoint of operation, there is no need for the measurer to go to the water sampling point for measurement at the time of measurement, so that there is an advantage that a great deal of time and labor are not required, and measurement by individual differences due to visual measurement is possible. An automatic measuring device for transparency and suspended solids that can prevent errors in values and variations in measured values even with the same sample and can be used as indicators for advanced treatment monitoring and control of sewage, etc. Provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかる透視度及び浮遊物量自動測定
装置の構成例を示す概要図。
FIG. 1 is a schematic diagram showing a configuration example of an apparatus for automatically measuring the degree of transparency and the amount of suspended matter according to this embodiment.

【図2】減衰光量(mV)と透視度(cm)及びlog
(減衰光量)の関係を示すグラフ。
FIG. 2 Attenuated light amount (mV), transparency (cm) and log
The graph which shows the relationship of (attenuation light quantity).

【図3】減衰光量(mV)と浮遊物量(mg/l)の関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the amount of attenuated light (mV) and the amount of suspended solids (mg / l).

【図4】本発明の他の実施例を示す概要図。FIG. 4 is a schematic diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…測定セル 2a,2b…光学窓 4…レーザ光源 5…受光器 6…電源 7…受光量増幅器 8…信号処理装置 9…記録計 10…流入口 11…被測定液 12…ポンプ 13…流出口 15…脱泡槽 16…水中ポンプ DESCRIPTION OF SYMBOLS 1 ... Measuring cell 2a, 2b ... Optical window 4 ... Laser light source 5 ... Photoreceiver 6 ... Power source 7 ... Received amount amplifier 8 ... Signal processing device 9 ... Recorder 10 ... Inlet 11 ... Measured liquid 12 ... Pump 13 ... Flow Outlet 15 ... Defoaming tank 16 ... Submersible pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 漆原 正太郎 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 佐藤 茂雄 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shotaro Urushihara 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Company Inside the company Meidensha (72) Inventor Shigeo Sato 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Association Shameidensha

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光不透過性を有する測定セルの両端開口
部に配備した一方の光学窓外側にレーザ光源を固定する
とともに他方の光学窓外側に受光器を固定し、該レーザ
光源から測定セルに設けた流入口と流出口間を連続的に
流通する被測定液中に入射したレーザ光の減衰光量を受
光器で受光して、この受光光量の信号処理と演算処理に
よって被測定液の透視度及び浮遊物量を求める信号処理
装置を備えて成ることを特徴とする水処理における透視
度及び浮遊物量自動測定装置。
1. A measurement cell is fixed from the laser light source by fixing a laser light source to the outside of one of the optical windows provided in the openings of both ends of the measurement cell having optical opacity and fixing the light receiver to the outside of the other optical window. The attenuated light quantity of the laser light incident on the measured liquid that continuously flows between the inlet and the outlet provided in the receiver is received by the light receiver, and the measured liquid is seen through the signal processing and calculation processing of this received light quantity. A device for automatically measuring the degree of transparency and the amount of suspended matter in water treatment, comprising a signal processing device for determining the degree and the amount of suspended matter.
【請求項2】 前記受光器に受光量増幅器と信号処理装
置及び記録計を設置して、入射したレーザ光の光量を電
気信号に変換,増幅した後、減衰光量(mV)と透視度
(cm)及び浮遊物量(mg/l)の相関に基づいて被
測定液の透視度及び浮遊物量を求め、記録計に記録する
ことを特徴とする請求項1記載の水処理における透視度
及び浮遊物量自動測定装置。
2. A light receiving amount amplifier, a signal processing device, and a recorder are installed in the light receiving device to convert the light amount of the incident laser light into an electric signal and amplify the electric signal, and then the attenuated light amount (mV) and the transparency (cm). ) And the amount of suspended solids (mg / l), the transparency and the amount of suspended solids of the liquid to be measured are obtained and recorded in a recorder. measuring device.
【請求項3】 前記減衰光量(mV)は、測定セル内を
純水で満たした時の受光量ILと被測定液で満たした時
の透過光量TLから演算によって求めるようにした請求
項1,2記載の水処理における透視度及び浮遊物量自動
測定装置。
3. The attenuation light quantity (mV) is calculated by calculation from a received light quantity IL when the measurement cell is filled with pure water and a transmitted light quantity TL when the measurement liquid is filled. The apparatus for automatically measuring the degree of transparency and the amount of suspended matter in the water treatment according to 2.
【請求項4】 光不透過性を有する測定セルの両端開口
部に配備した一方の光学窓外側にレーザ光源を固定する
とともに他方の光学窓外側に受光器を固定し、該測定セ
ルよりも高い位置に脱泡槽を別途に配備して、被測定液
を脱泡槽に流入して脱泡させた後に前記測定セルに設け
た流入口と流出口間を連続的に流通させ、前記レーザ光
源から被測定液中に入射したレーザ光の減衰光量を受光
器で受光し、この受光光量の信号処理と演算処理によ
り、被測定液の透視度及び浮遊物量を求める信号処理装
置を備えて成ることを特徴とする水処理における透視度
及び浮遊物量自動測定装置。
4. A measuring cell having a light-impermeable property, wherein a laser light source is fixed to the outside of one of the optical windows provided at the openings of both ends of the measuring cell and a photodetector is fixed to the outside of the other optical window, and the height is higher than that of the measuring cell. A defoaming tank is separately provided at a position, the liquid to be measured is introduced into the defoaming tank to defoam, and then continuously flows between the inflow port and the outflow port provided in the measurement cell, the laser light source. It is equipped with a signal processing device that receives the attenuated light amount of the laser light that has entered the liquid to be measured by the light receiver and calculates the transparency and the amount of suspended matter of the liquid to be measured by the signal processing and arithmetic processing of this received light amount. A device for automatically measuring the degree of transparency and the amount of suspended matter in water treatment, characterized by.
JP11671495A 1995-05-16 1995-05-16 Automatic measuring apparatus for transparency and amount of floating matter in water treatment Pending JPH08313434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11671495A JPH08313434A (en) 1995-05-16 1995-05-16 Automatic measuring apparatus for transparency and amount of floating matter in water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11671495A JPH08313434A (en) 1995-05-16 1995-05-16 Automatic measuring apparatus for transparency and amount of floating matter in water treatment

Publications (1)

Publication Number Publication Date
JPH08313434A true JPH08313434A (en) 1996-11-29

Family

ID=14694000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11671495A Pending JPH08313434A (en) 1995-05-16 1995-05-16 Automatic measuring apparatus for transparency and amount of floating matter in water treatment

Country Status (1)

Country Link
JP (1) JPH08313434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025785A (en) * 2013-07-29 2015-02-05 三菱レイヨン株式会社 Device and method for detecting anomaly of membrane-forming stock solution
CN114371152A (en) * 2022-03-22 2022-04-19 山东省科学院海洋仪器仪表研究所 Drifting type automatic seawater transparency measuring device and transparency measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025785A (en) * 2013-07-29 2015-02-05 三菱レイヨン株式会社 Device and method for detecting anomaly of membrane-forming stock solution
CN114371152A (en) * 2022-03-22 2022-04-19 山东省科学院海洋仪器仪表研究所 Drifting type automatic seawater transparency measuring device and transparency measuring method

Similar Documents

Publication Publication Date Title
EP0576501B1 (en) Organic pollutant monitor
CA1130604A (en) Oil-in-water method and detector
US3065665A (en) Nephelometers
KR900001575B1 (en) Detectin system for impurity in water
NO312426B1 (en) turbidity Measurement
US3680962A (en) Contaminant detector comprising means for selectively applying pressure to liquify bubbles
JPH08254492A (en) Method and equipment for recording state of moving suspension
US4457624A (en) Suspended sediment sensor
US4290695A (en) Method and apparatus for measurement of transmittance and scatter of light in water
JPS6123947A (en) Method and device for measuring turbidity of liquid
US20190242864A1 (en) Water quality sensing
US3617757A (en) Measurement of the concentration of solids in fluids
US4006988A (en) Photo-electric depth or turbidity meter for fluid suspensions
US3635564A (en) System for measuring organic content of water
JPH08313434A (en) Automatic measuring apparatus for transparency and amount of floating matter in water treatment
JP2002236084A (en) Method and device for measuring concentration of mixed suspended matter
US20180266939A1 (en) Method and device for determining a substance concentration or a substance in a liquid medium
GB2256043A (en) Organic pollutant monitor
Berke et al. Latest achievements in the development of nuclear suspended sediment gauges
JP3031778U (en) Probe type turbidity detector
JPS6038654B2 (en) Suspended solids concentration and organic matter index measurement method in water and detection part of the measuring device
Ruban et al. Self-monitoring of water quality in sewer systems using absorbance of ultraviolet and visible light
JPS5920662Y2 (en) Water quality measuring device
JPH11344443A (en) Highly sensitive turbidimeter for measuring filtered water
JP3437043B2 (en) Control method of concentration process