JPH08313392A - High-pressure pipe separating/connecting device and impact wind tunnel device - Google Patents

High-pressure pipe separating/connecting device and impact wind tunnel device

Info

Publication number
JPH08313392A
JPH08313392A JP12001995A JP12001995A JPH08313392A JP H08313392 A JPH08313392 A JP H08313392A JP 12001995 A JP12001995 A JP 12001995A JP 12001995 A JP12001995 A JP 12001995A JP H08313392 A JPH08313392 A JP H08313392A
Authority
JP
Japan
Prior art keywords
tube
compression
pipe
shock wave
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12001995A
Other languages
Japanese (ja)
Inventor
Hiroyuki Itami
博幸 伊丹
Tsunehiko Takakusaki
常彦 高草木
Tomoya Yoshino
智哉 吉野
Ryusuke Abe
隆介 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12001995A priority Critical patent/JPH08313392A/en
Publication of JPH08313392A publication Critical patent/JPH08313392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE: To connect a compression pipe and a shock tube easily and make the fastening force constant. CONSTITUTION: When nut drive mechanism 2 rotatory-moves a large-sized nut 1 on a compression pipe 11, the compression pipe 11 and a shock tube 14 are both connected so as to be automatically fastened and easily connected without manual help. When the driving torque of the large-sized nut 1 by a rotating drive source 3 reaches the specified value in this connection, the rotating drive source 3 is stopped by a torque monitoring means 8, so that the fastening force of both the compression pipe 11 and shock tube 14 can be made constant. Therefore, there is no need to form the flange parts of the compression pipe 11 and shock tube 14 in large size as by the second conventional technique so as to be able to solve a problem generated in association with enlargement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温高圧源によりピス
トンを移動させて高温高圧ガスを形成する圧縮管、及び
高温高圧ガスにより試験気体を加速させる衝撃波管を互
いに分離したり、接続したりするための高圧管分離接続
装置と、該高圧管分離接続装置を有する衝撃風洞装置に
係り、特に、配管内圧が瞬間的に100MPa程度に達
する衝撃風洞を得るのに好適なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention separates or connects a compression tube for moving a piston by a high temperature and high pressure source to form a high temperature and high pressure gas and a shock wave tube for accelerating a test gas by the high temperature and high pressure gas. The present invention relates to a high-pressure pipe disconnecting and connecting device and an impact wind tunnel device having the high-pressure pipe disconnecting and connecting device, and particularly to a device suitable for obtaining an impact wind tunnel in which the pipe internal pressure instantaneously reaches about 100 MPa.

【0002】[0002]

【従来の技術】高圧配管の接続には、互いの接続部にフ
ランジを設け、それらのフランジをプリテンションボル
トで締め付ける方法が一般的に用いられている。ところ
が、配管内圧が100MPa程度の衝撃風洞を得る衝撃
風洞装置にあっては、一日に数回運転されるが、その数
回の運転毎に、圧縮管と衝撃波管とを互いに分離しかつ
接続する必要がある。
2. Description of the Related Art For connecting high-pressure pipes, a method is generally used in which flanges are provided at their connecting portions and the flanges are tightened with pretension bolts. However, an impact wind tunnel device that obtains an impact wind tunnel with a pipe internal pressure of about 100 MPa is operated several times a day, and the compression tube and the shock wave tube are separated from each other and connected each time the operation is performed several times. There is a need to.

【0003】そのため、圧縮管と衝撃波管とを分離しか
つ接続するための高圧管分離接続装置の第一の従来技術
としては、米国のカルフォルニア工科大学所有のT−5
衝撃風洞装置に採用されているものであって、ベルトの
駆動によってプーリーを回転させ、該プーリーの回転に
よって圧縮管と衝撃波管とを分離したり接続したりする
ネジ込み式のものがある。また第二の従来技術として、
DLR(ドイツ航空宇宙技術研究所)所有のHEG衝撃
風洞装置に採用されている、圧縮管のフランジと衝撃波
管のフランジとをクランプするクランプ式のものがあ
る。
Therefore, as a first prior art of a high-pressure pipe disconnecting / connecting device for separating and connecting a compression pipe and a shock wave pipe, T-5 owned by the California Institute of Technology in the United States is used.
There is a screw-in type that is adopted in an impact wind tunnel device, in which a pulley is rotated by driving a belt, and the compression tube and the shock wave tube are separated or connected by rotation of the pulley. As the second conventional technology,
There is a clamp type that is used for the HEG shock wind tunnel device owned by DLR (German Aerospace Research Institute) to clamp the flange of the compression tube and the flange of the shock tube.

【0004】[0004]

【発明が解決しようとする課題】ところで、衝撃風洞の
圧縮管と衝撃波管との接続部には、瞬間的に100MP
a程度の内圧が作用するため、両者を均一にかつ所定の
締付力で接続する必要があるばかりでなく、両者の分離
及び接続を容易に行う必要がある。
By the way, the connection between the compression tube and the shock wave tube of the shock wind tunnel is instantaneously 100MP.
Since the internal pressure of about a acts, it is necessary not only to connect them uniformly with a predetermined tightening force, but also to easily separate and connect them.

【0005】上記に示す分離接続装置のうち、第1の従
来記述のものは、ベルト,プーリーを用いて圧縮管と衝
撃波管とを互いにネジ込ませているものの、それだけで
は締付力が不十分であるので、最終的に手作業にて締め
付けることにより、所定の締付力を得る構成であり、従
って、人手を要する問題があった。
Among the above-mentioned disconnecting and connecting devices, the first one described in the related art uses a belt and a pulley to screw a compression tube and a shock wave tube into each other, but the tightening force is insufficient by itself. Therefore, the structure is such that a predetermined tightening force is finally obtained by manually tightening, and therefore, there is a problem that manpower is required.

【0006】また第二の従来技術のものにあっては、ク
ランプ本来の構造上、圧縮管のフランジと衝撃波管のフ
ランジとの面圧を均一に締結することが困難であり、そ
のため、大きな締付力を得るためには両配管のフランジ
のみならず、クランプ自体が大型となってしまう結果、
クランプの駆動源もそれだけ大型になると共に、コスト
高となり、しかもクランプの作動時間も長くなるという
問題があった。
In the second prior art, it is difficult to uniformly tighten the surface pressure between the flange of the compression tube and the flange of the shock wave tube due to the original structure of the clamp. As a result of not only the flanges of both pipes but also the clamp itself becoming large in order to obtain the force,
There is a problem that the driving source of the clamp becomes large, the cost becomes high, and the operating time of the clamp becomes long.

【0007】本発明の目的は、前記従来技術の問題点に
鑑み、圧縮管及び衝撃波管を容易に接続することができ
る高圧管分離接続装置を提供することにある。また本発
明の目的は、圧縮管及び衝撃波管を容易に接続すること
ができると共に、双方の配管の接続に所定の締結力が得
られる高圧管分離接続装置を提供することにあり、さら
に他の目的は、信頼性を高め得る衝撃風洞装置を提供す
ることにある。
An object of the present invention is to provide, in view of the above-mentioned problems of the prior art, a high pressure pipe separating / connecting device capable of easily connecting a compression pipe and a shock wave pipe. It is another object of the present invention to provide a high-pressure pipe disconnecting and connecting device that can easily connect a compression pipe and a shock wave pipe and can obtain a predetermined fastening force for connecting both pipes. An object is to provide an impact wind tunnel device that can improve reliability.

【0008】[0008]

【課題を解決するための手段】本発明の一番目の発明で
は、高温高圧源により下流側に移動し、所望の高温高圧
気体を形成して押し出すピストンを有する圧縮管と、該
圧縮管の下流端に接続され、かつ所望の高温高圧気体に
より内部の試験気体を加速をさせる隔膜を有する衝撃波
管とを着脱自在に接続する高圧管分離接続装置であっ
て、該高圧管分離接続装置は、圧縮管上に軸周りに回転
可能にかつ軸方向に移動可能に装着され、圧縮管及び衝
撃波管を互いに着脱自在に接続する締結体と、該締結体
を駆動する駆動手段とを有している。
According to a first aspect of the present invention, a compression pipe having a piston which is moved downstream by a high temperature and high pressure source to form a desired high temperature and high pressure gas and pushes it out, and a downstream side of the compression pipe. What is claimed is: 1. A high-pressure tube separation connection device that is detachably connected to a shock wave tube that is connected to an end and that has a diaphragm that accelerates an internal test gas by a desired high-temperature high-pressure gas. It has a fastening body which is mounted on the tube so as to be rotatable around the axis and movable in the axial direction and which detachably connects the compression tube and the shock wave tube to each other, and a driving means for driving the fastening body.

【0009】本発明の二番目の発明では、高圧管分離接
続装置は、上述の如き締結体,駆動手段の他、締結体の
締結力を一定にさせる締結力監視手段を有している。
In the second aspect of the present invention, the high-pressure pipe disconnecting and connecting device has fastening force monitoring means for making the fastening force of the fastening body constant, in addition to the fastening body and the driving means as described above.

【0010】さらに本発明の三番目の発明では、高温高
圧源により下流側に移動し、所望の高温高圧気体を形成
して押し出すピストンを有する圧縮管と、該圧縮管の下
流端に接続され、かつ所望の高温高圧気体により内部の
試験気体を加速をさせる隔膜を有する衝撃波管と、該衝
撃波管の下流端に接続され、試験気体をさらに加速させ
て高速気流を形成するノズル体と、該ノズル体の下流側
に配置され、高速気流を計測する計測室と、ノズル体の
計測室より下流側に配置され、真空室を形成する真空タ
ンクと、圧縮管及び衝撃波管を着脱自在に接続する高圧
管分離接続装置とを備えている。そして、高圧管分離接
続装置は、上述の如く、圧縮管上に軸周りに回転可能に
かつ軸方向に移動可能に装着され、圧縮管及び衝撃波管
を互いに着脱自在に接続する締結体と、該締結体を駆動
する駆動手段とを有している。
Further, in a third aspect of the present invention, a compression pipe having a piston which is moved downstream by a high temperature and high pressure source to form a desired high temperature and high pressure gas and pushes it out, is connected to a downstream end of the compression pipe, And a shock wave tube having a diaphragm for accelerating the internal test gas by a desired high temperature and high pressure gas, a nozzle body connected to the downstream end of the shock wave tube and further accelerating the test gas to form a high-speed air flow, and the nozzle. A measurement chamber, which is arranged on the downstream side of the body and measures the high-speed air flow, and a vacuum tank, which is arranged on the downstream side of the measurement chamber of the nozzle body and forms a vacuum chamber, and a high pressure that detachably connects the compression tube and the shock wave tube. And a pipe separation connection device. As described above, the high-pressure pipe disconnecting and connecting device is mounted on the compression pipe so as to be rotatable about the axis and movable in the axial direction, and a fastening body that detachably connects the compression pipe and the shock wave pipe to each other. And driving means for driving the fastening body.

【0011】[0011]

【作用】本発明の一番目の発明では、締結体が圧縮管上
にあって、かつ衝撃波管から外れた位置にあるとき、圧
縮管と衝撃波管とを接続する場合には、圧縮管と衝撃波
管とを突き合わせた状態にしておいた後、駆動手段によ
り締結体を接続方向に駆動すると、締結体が圧縮管及び
衝撃波管にまたがって移動し、圧縮管に対し衝撃波管が
締め付けられることにより、圧縮管及び衝撃波管の双方
を接続することができる。従って、駆動手段が圧縮管上
の回転体を回転移動させることにより、圧縮管及び衝撃
波管の双方を接続するので、第一の従来技術に比較する
と、人手を要せず自動的に締結することができ、容易に
接続することができる。
According to the first aspect of the present invention, when the fastening body is on the compression pipe and is located at a position deviated from the shock wave pipe, when the compression pipe and the shock wave pipe are connected, the compression pipe and the shock wave are connected. After the tube and the tube are brought into abutting state, when the fastening body is driven in the connecting direction by the driving means, the fastening body moves over the compression tube and the shock wave tube, and the shock wave tube is fastened to the compression tube. Both compression and shock wave tubes can be connected. Therefore, since the drive means rotationally moves the rotating body on the compression tube to connect both the compression tube and the shock wave tube, as compared with the first conventional technology, the fastening is performed automatically without requiring any manpower. It can be connected easily.

【0012】また本発明の二番目の発明では、上述の如
く、駆動手段がトルク監視手段を有し、駆動手段による
締結体の駆動トルクが所定値に達すると、トルク監視手
段により駆動手段を停止させるので、圧縮管,衝撃波管
の双方の締結力を一定にすることができる。そのため、
第二の従来技術に比較すると、圧縮管及び衝撃波管のフ
ランジ部を大型に形成することが不要になるので、大型
化に伴う問題を解消することができ、100MPa程度
の大きな内圧に耐えることのできる締結力を確実に得る
ことができる。
Further, in the second aspect of the present invention, as described above, the driving means has the torque monitoring means, and when the driving torque of the fastening body by the driving means reaches a predetermined value, the torque monitoring means stops the driving means. Therefore, the fastening force of both the compression tube and the shock wave tube can be made constant. for that reason,
Compared with the second conventional technique, it is not necessary to form the flange portions of the compression tube and the shock wave tube in a large size, so that the problem associated with the increase in size can be solved and a large internal pressure of about 100 MPa can be endured. The fastening force that can be obtained can be reliably obtained.

【0013】本発明の三番目の発明では、上述の如き圧
縮管と、衝撃波管と、ノズル体と、計測室と、真空タン
クと、高圧管分離接続装置とを備え、圧縮管,衝撃波管
の双方を、人手を要せず自動的に締結できるので、作業
性が良好となり、衝撃風洞装置としての信頼性を高め得
る。
According to a third aspect of the present invention, the compression tube, the shock wave tube, the nozzle body, the measurement chamber, the vacuum tank, and the high pressure tube separation / connection device as described above are provided. Since both can be automatically fastened without requiring human labor, workability is improved and reliability as an impact wind tunnel device can be improved.

【0014】[0014]

【実施例】以下、本発明の実施例を図1乃至図7により
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0015】まず、本発明の高圧管分離接続装置を説明
する前に、該高圧管分離接続装置を用いた衝撃風洞装置
について述べると、図2に示すように、圧縮管11と、
該圧縮管に接続された衝撃波管14と、該衝撃波管に接
続されたノズル16と、高圧管分離接続装置10とを備
えて構成されている。
First, before describing the high-pressure tube separation / connection device of the present invention, an impact wind tunnel device using the high-pressure tube separation / connection device will be described. As shown in FIG.
A shock wave tube 14 connected to the compression tube, a nozzle 16 connected to the shock wave tube, and a high-pressure tube separation / connection device 10 are provided.

【0016】圧縮管11は、該圧縮管内を移動するピス
トン12と、圧縮管内の上流側に配置され、高圧空気を
蓄える高圧空気貯気槽13とを有している。そして、高
圧空気貯気槽13に図示しない高圧空気源によって高圧
空気が蓄えられると、その高圧空気によりピストン12
が圧縮管11の内部を矢印の如く下流側に向かって移動
することにより、所定圧の高温高圧ガスを形成して押し
出すようにしている。
The compression pipe 11 has a piston 12 which moves in the compression pipe, and a high pressure air storage tank 13 which is arranged on the upstream side in the compression pipe and stores high pressure air. When high-pressure air is stored in the high-pressure air storage tank 13 by a high-pressure air source (not shown), the high-pressure air causes the piston 12 to move.
Moves inside the compression pipe 11 toward the downstream side as indicated by an arrow, thereby forming a high-temperature high-pressure gas having a predetermined pressure and pushing it out.

【0017】衝撃波管14は、その一端が圧縮管11に
接続されており、かつ該圧縮管11との接続部に隔膜1
5を有すると共に、内部に試験気体を充填している。こ
の衝撃波管14は、圧縮管11により所定圧の高温高圧
ガスが供給されると、その高温高圧ガスによって隔膜1
5が開かれ、内部の試験気体を下流側に加速させるよう
にしている。
The shock wave tube 14 has one end connected to the compression tube 11 and the diaphragm 1 is connected to the compression tube 11.
5 and the inside is filled with a test gas. When the high-pressure high-pressure gas having a predetermined pressure is supplied from the compression tube 11, the shock-wave tube 14 is supplied with the high-temperature high-pressure gas to cause the diaphragm 1
5 is opened to accelerate the internal test gas to the downstream side.

【0018】ノズル16は、衝撃波管14との接続端が
最も小径の断面形状をなすと共に、そこから下流側に至
るに従い次第に管路が拡径する形状をなし、衝撃波管1
4によって加速された試験気体をさらに加速させ、該試
験気体をマッハ10程度の高速気流を発生させる。ま
た、ノズル16の出口側には計測室17及び真空タンク
室18が接続され、高速気流となった試験気体を計測室
17で計測分析する一方、真空タンク室18にて収容す
る。
The nozzle 16 has a cross-sectional shape with the smallest diameter at the connection end with the shock wave tube 14, and has a shape in which the diameter of the conduit gradually expands from there to the downstream side.
The test gas accelerated by 4 is further accelerated to generate a high-speed air flow of about Mach 10. Further, a measurement chamber 17 and a vacuum tank chamber 18 are connected to the outlet side of the nozzle 16, and the test gas that has become a high-speed air flow is measured and analyzed in the measurement chamber 17, while being stored in the vacuum tank chamber 18.

【0019】高圧管分離接続装置10は、圧縮管11及
び衝撃波管14を着脱自在に接続するためのものであ
り、詳細は後述する。
The high-pressure pipe separation / connection device 10 is for detachably connecting the compression pipe 11 and the shock wave pipe 14, and will be described in detail later.

【0020】この衝撃風洞装置は、衝撃波管14内の試
験気体をマッハ10程度の高速気流とすることにより、
地球上の大気圏に宇宙往還機のような飛来艇が突入した
ときとほぼ同様の気流状態を生成するためのものであ
る。そのため、特に、圧縮管11と衝撃波管14との接
続部には瞬間的に最大100MPaの内圧がかかるの
で、両者の接続部を高圧管分離接続装置10により、密
にかつ均一に締め付けて接続する必要があり、しかも運
転によってピストン12が圧縮管11内を下流側に移動
したとき、そのピストン12を取り出して再び運転可能
にセットすると共に、圧縮管11内を清掃したり等する
必要があることから、高圧管分離接続装置10により、
圧縮管11と衝撃波管14とを分離しかつ接続する必要
がある。
In this shock wind tunnel device, the test gas in the shock tube 14 is made into a high-speed air flow of about Mach 10,
This is to generate almost the same airflow state as when a flying boat such as a space shuttle enters the atmosphere on the earth. Therefore, in particular, since a maximum internal pressure of 100 MPa is instantaneously applied to the connecting portion between the compression tube 11 and the shock wave tube 14, both connecting portions are tightly and uniformly tightened and connected by the high-pressure pipe separation connecting device 10. In addition, when the piston 12 moves to the downstream side in the compression pipe 11 due to the operation, it is necessary to take out the piston 12 and set it to be operable again, and to clean the inside of the compression pipe 11 etc. From the high pressure pipe separation connection device 10,
It is necessary to separate and connect the compression tube 11 and the shock wave tube 14.

【0021】実施例の高圧管分離接続装置は図1に示す
ように、大別すると、締結体としての大型ナット1と、
該大型ナット1を駆動するナット駆動機構2とを有して
構成されている。
As shown in FIG. 1, the high pressure pipe disconnecting and connecting device of the embodiment is roughly classified into a large nut 1 as a fastening body,
A nut driving mechanism 2 for driving the large-sized nut 1 is provided.

【0022】大型ナット1は、圧縮管11のフランジ部
に刻設されたねじ部11aと螺合し、圧縮管11の外周
上を回転しながら軸方向に移動可能に装着され、しかも
内側ストッパ1aがフランジ部の内側端面11bに突き
当たると、それ以上移動しないように構成されている。
そのため、大型ナット1は、内周にねじ部11aと螺合
するねじ孔(符示せず)と、該ねじ孔より若干の小径を
なして内側端面11bに突き当たる内側ストッパ1aと
を有する形状に形成されている。そして、大型ナット1
は、圧縮管11のフランジ部上を衝撃波管14方向に向
かって回転移動すると、衝撃波管14のフランジ部の外
周に設けたねじ部14aと螺合することにより、圧縮管
11と衝撃波管14とを接続し、しかも、内側ストッパ
1aが圧縮管11のフランジ部の内側端面11bに突き
当たることにより、圧縮管11と衝撃波管14とを密に
かつ均一に接続するようにしている。また大型ナット1
が反対方向に回転移動すると、衝撃波管14のねじ部1
4aとの螺合を解除することにより、圧縮管11と衝撃
波管14とを分離するようにしている。
The large nut 1 is screwed with a threaded portion 11a formed on the flange portion of the compression pipe 11, and is mounted movably in the axial direction while rotating on the outer periphery of the compression pipe 11, and the inner stopper 1a is also provided. When it hits the inner end surface 11b of the flange portion, it does not move any further.
Therefore, the large-sized nut 1 is formed in a shape having a threaded hole (not shown) which is screwed into the threaded portion 11a on the inner circumference and an inner stopper 1a having a diameter slightly smaller than the threaded hole and abutting the inner end surface 11b. Has been done. And large nut 1
When rotating on the flange portion of the compression tube 11 in the direction of the shock wave tube 14, the screw thread is engaged with the threaded portion 14a provided on the outer circumference of the flange portion of the shock wave tube 14, so that the compression tube 11 and the shock wave tube 14 are connected to each other. In addition, the inner stopper 1a abuts the inner end surface 11b of the flange portion of the compression tube 11 to connect the compression tube 11 and the shock wave tube 14 densely and uniformly. Also large nut 1
Is rotated in the opposite direction, the threaded portion 1 of the shock wave tube 14
The compression tube 11 and the shock wave tube 14 are separated by releasing the screw engagement with 4a.

【0023】ナット駆動機構2は、回転駆動源3と、該
回転駆動源3の出力軸3aに装着された第一ギヤ4と、
該第一ギヤ4と噛合する第二ギヤ5と、該第二ギヤ5を
一端部に取付けた伝達軸6と、伝達軸6の他端部に取付
けられ、かつ大型ナット1のギヤ部1bと噛合する駆動
ギヤ7とを有している。従って、回転駆動源3が駆動さ
れると、第一ギヤ4と共に第二ギヤ5が回転し、それに
伴い駆動ギヤ7も回転することにより、大型ナット1を
圧縮管11の軸周りに回転させると共に、圧縮管11及
び衝撃波管14の軸方向に移動させる。そのため、大型
ナット1の外周には、駆動ギヤ7と噛合するギヤ部1b
が刻設されている。回転駆動源3としては、最終的に大
型ナット1を回転させるため、強トルクが必要となるこ
とから、例えば油圧モータが好ましいが、電動モータで
あってもよいのは勿論であり、大型ナット1の近傍位置
に載置された台9に設置されている。
The nut drive mechanism 2 includes a rotary drive source 3 and a first gear 4 mounted on an output shaft 3a of the rotary drive source 3.
A second gear 5 meshing with the first gear 4, a transmission shaft 6 having the second gear 5 attached to one end, and a gear portion 1b of the large nut 1 attached to the other end of the transmission shaft 6. It has a drive gear 7 which meshes. Therefore, when the rotary drive source 3 is driven, the second gear 5 rotates together with the first gear 4, and the drive gear 7 also rotates accordingly, thereby rotating the large nut 1 around the axis of the compression pipe 11. , The compression tube 11 and the shock wave tube 14 are moved in the axial direction. Therefore, on the outer periphery of the large nut 1, a gear portion 1b that meshes with the drive gear 7 is formed.
Is engraved. The rotary drive source 3 is preferably a hydraulic motor, for example, because a large torque is required for finally rotating the large nut 1, but an electric motor may be used as a matter of course. Is installed on a table 9 placed near the position.

【0024】また、前記ナット駆動機構2は、上述の如
き回転駆動源3と、第一ギヤ4,第二ギヤ5,駆動ギヤ
7からなる動力伝達手段とを有する他、トルク監視手段
8をも有している。該トルク監視手段8は、例えばトル
クメータからなっており、大型ナット1が駆動ギヤ7に
よって回転し、圧縮管11及び衝撃波管14の双方を接
続しているとき、該双方の管の締め付けトルクが所定値
に達した時点で、回転駆動源3の駆動を停止させるよう
にしている。なお、トルク監視手段8は、図1では回転
駆動源3の出力軸3aに直接装着されているが、図3に
示すように、伝達軸6の延長部に装着されてもよい。
The nut drive mechanism 2 has the rotary drive source 3 and the power transmission means including the first gear 4, the second gear 5 and the drive gear 7, as well as the torque monitoring means 8. Have The torque monitoring means 8 is composed of, for example, a torque meter, and when the large nut 1 is rotated by the drive gear 7 and connects both the compression pipe 11 and the shock wave pipe 14, the tightening torque of both pipes is The drive of the rotary drive source 3 is stopped when the predetermined value is reached. The torque monitoring means 8 is directly mounted on the output shaft 3a of the rotary drive source 3 in FIG. 1, but may be mounted on an extension of the transmission shaft 6 as shown in FIG.

【0025】実施例の高圧管分離接続装置は、上記の如
き構成よりなるので、次にその動作について図1を参照
して述べる。まず、大型ナット1が圧縮管11上におい
て図1に破線にて示す位置にあって、かつ衝撃波管14
から外れた位置にあるとき、圧縮管11と衝撃波管14
とを接続する場合には、圧縮管11と衝撃波管14とを
突き合わせた状態にしておいた後、ナット駆動機構2の
回転駆動源3により大型ナット1を接続方向に駆動する
と、第一ギヤ4,第二ギヤ5,駆動ギヤ7が回転すると
共に、該駆動ギヤ7の回転により大型ナット1が回転し
ながら圧縮管11及び衝撃波管14にまたがって移動
し、その際、大型ナット1の内側ストッパ1aが圧縮管
11のフランジ部の内側端面11bに突き当たった状態
で回転移動すると、圧縮管11に対し衝撃波管14が締
め付けられることにより、圧縮管11及び衝撃波管14
の双方を接続することができる。従って、ナット駆動機
構2が圧縮管11上の大型ナット1を回転移動させるこ
とにより、圧縮管11及び衝撃波管14の双方を接続す
るので、第一の従来技術に比較すると、人手を要せず自
動的に締結することができ、容易に接続することができ
る。
The high-pressure pipe disconnecting / connecting device of the embodiment has the above-mentioned structure, and its operation will be described below with reference to FIG. First, the large nut 1 is located on the compression pipe 11 at the position shown by the broken line in FIG.
When in a position away from the
In the case of connecting with, the compression tube 11 and the shock wave tube 14 are made to abut against each other, and then the large-sized nut 1 is driven in the connecting direction by the rotary drive source 3 of the nut drive mechanism 2. , The second gear 5 and the drive gear 7 rotate, and the rotation of the drive gear 7 causes the large-sized nut 1 to rotate and move over the compression pipe 11 and the shock wave tube 14, and at this time, the inner stopper of the large-sized nut 1 When 1a is rotationally moved in a state of abutting the inner end surface 11b of the flange portion of the compression tube 11, the shock tube 14 is fastened to the compression tube 11, so that the compression tube 11 and the shock wave tube 14
Both can be connected. Therefore, since the nut drive mechanism 2 rotationally moves the large nut 1 on the compression tube 11 to connect both the compression tube 11 and the shock wave tube 14, no labor is required as compared with the first conventional technique. It can be automatically fastened and easily connected.

【0026】また前記接続時、ナット駆動機構2がトル
ク監視手段8を有し、回転駆動源3による大型ナット1
の駆動トルクが所定値に達すると、トルク監視手段8に
より回転駆動源3を停止させるので、圧縮管11,衝撃
波管14の双方の締結力を一定にすることができる。そ
のため、第二の従来技術に比較すると、圧縮管11及び
衝撃波管14のフランジ部を大型に形成することが不要
になるので、大型化に伴う問題を解消することができ、
100MPa程度の大きな内圧に耐えることのできる締
結力を確実に得ることができる。しかも、トルク監視手
段8により回転駆動源3を停止させるので、回転駆動源
3が過負荷運転状態となるのを防止することができると
共に、大型ナット1による圧縮管11,衝撃波管14の
締結力が過大となるのも防止することができる。
At the time of connection, the nut driving mechanism 2 has the torque monitoring means 8 and the large nut 1 by the rotary driving source 3 is connected.
When the driving torque of (1) reaches a predetermined value, the torque monitoring means 8 stops the rotary drive source 3, so that the fastening force of both the compression tube 11 and the shock wave tube 14 can be made constant. Therefore, as compared with the second conventional technique, it is not necessary to form the flange portions of the compression tube 11 and the shock wave tube 14 in a large size, so that it is possible to solve the problem associated with the increase in size.
A fastening force capable of withstanding a large internal pressure of about 100 MPa can be reliably obtained. Moreover, since the torque monitor 8 stops the rotary drive source 3, it is possible to prevent the rotary drive source 3 from being in an overloaded operation state, and at the same time, the fastening force of the compression pipe 11 and the shock wave pipe 14 by the large-sized nut 1. Can be prevented from becoming excessive.

【0027】図4乃至図6は高圧管分離接続装置の他の
実施例を夫々示している。図4乃至図6に示す夫々の実
施例は、ナット駆動機構2の前記トルク監視手段8とし
て、リミットスイッチを用いたものである。具体的に述
べると、図4に示す実施例のリミットスイッチ81は、
衝撃波管14のフランジ部に取付けられ、大型ナット1
が圧縮管11及び衝撃波管14を締結したとき、該大型
ナット1の先端面1cがリミットスイッチ81のスイッ
チを作動させることにより、回転駆動源3を停止させる
ようにしている。従って、リミットスイッチ81により
大型ナット1の移動量を監視すると共に、圧縮管11,
衝撃波管14の双方の締結力を監視することもできる。
FIGS. 4 to 6 respectively show other embodiments of the high-pressure pipe separating / connecting device. Each of the embodiments shown in FIGS. 4 to 6 uses a limit switch as the torque monitoring means 8 of the nut drive mechanism 2. Specifically, the limit switch 81 of the embodiment shown in FIG.
A large nut 1 attached to the flange of the shock tube 14.
When the compression tube 11 and the shock wave tube 14 are fastened together, the tip surface 1c of the large nut 1 operates the switch of the limit switch 81 to stop the rotary drive source 3. Accordingly, the movement amount of the large nut 1 is monitored by the limit switch 81, and the compression pipe 11,
It is also possible to monitor both fastening forces of the shock tube 14.

【0028】図5に示す実施例のリミットスイッチ82
は、圧縮管11のフランジ部において、内側端面11b
側に設けた凹部11cに取付けられ、大型ナット1が圧
縮管11及び衝撃波管14を締結しかつ大型ナット1の
内側ストッパ1aが圧縮管11の内側端面11bに突き
当たったとき、内側ストッパ1aがリミットスイッチ8
2のスイッチを作動させることにより、回転駆動源3を
停止させる。従って、図5に示す実施例は、圧縮管11
上における大型ナット1の移動量を監視して一定のトル
クを得るようにしたものであり、基本的には図4に示す
実施例と同様の作用効果がある。
The limit switch 82 of the embodiment shown in FIG.
Is the inner end surface 11b of the flange portion of the compression pipe 11.
When the large nut 1 is fastened to the compression pipe 11 and the shock wave pipe 14 and the inner stopper 1a of the large nut 1 abuts the inner end surface 11b of the compression pipe 11, the inner stopper 1a is limited. Switch 8
The rotary drive source 3 is stopped by operating the switch 2 of FIG. Therefore, the embodiment shown in FIG.
The amount of movement of the large nut 1 above is monitored to obtain a constant torque, and basically the same operational effect as the embodiment shown in FIG. 4 is obtained.

【0029】なお、圧縮管11,衝撃波管14の各フラ
ンジ部には、リミットスイッチ82の配線83を通すた
めの挿通孔11d,14cが軸方向に設けられている。
Insertion holes 11d and 14c for passing the wiring 83 of the limit switch 82 are axially provided in the flange portions of the compression tube 11 and the shock wave tube 14, respectively.

【0030】図6に示す実施例のリミットスイッチ84
は、衝撃波管14より下方位置の床85に設置されてい
る。一方、衝撃波管14の外周部にはリミットスイッチ
84と対応する位置に作動片86が取付けられ、大型ナ
ット1の駆動により、圧縮管11に対し衝撃波管14が
移動して双方を締結したとき、衝撃波管14の作動片8
6がリミットスイッチ84のスイッチを作動させること
により、回転駆動源3を停止させる。従って、この実施
例では、圧縮管11に対する衝撃波管14の移動量を監
視することにより、双方の管11,14の締結トルクを
一定に管理するようにしている。
Limit switch 84 of the embodiment shown in FIG.
Are installed on the floor 85 below the shock tube 14. On the other hand, an operating piece 86 is attached to the outer peripheral portion of the shock wave tube 14 at a position corresponding to the limit switch 84, and when the shock wave tube 14 is moved with respect to the compression tube 11 by driving the large-sized nut 1, both are fastened. Operation piece 8 of shock tube 14
6 operates the limit switch 84 to stop the rotary drive source 3. Therefore, in this embodiment, by monitoring the amount of movement of the shock wave tube 14 with respect to the compression tube 11, the fastening torque of both tubes 11 and 14 is managed to be constant.

【0031】なお、衝撃波管14にはこれの移動を円滑
に行うため、床85上を転動するコロガリガイド87が
設けられており、分離及び接続に際し、圧縮管11に対
する衝撃波管14の移動時、コロガリガイド87がリミ
ットスイッチ84と衝突することはないように配置され
ている。
In order to smoothly move the shock wave tube 14, there is provided a rolling guide 87 that rolls on the floor 85, and when the shock wave tube 14 is moved with respect to the compression tube 11 at the time of disconnection and connection. The roller guide 87 is arranged so as not to collide with the limit switch 84.

【0032】以上述べた図示実施例では、ナット駆動機
構2が台9に設置され、またナット駆動機構2の駆動ギ
ヤ7が大型ナット1のギヤ部1bと噛合している状態を
示したが、これらナット駆動機構2は必要に応じ移動さ
せることもできる。図7はナット駆動機構2が移動し得
るように構成された例を示している。即ち、前記ナット
駆動機構2は図7では詳細に図示していないが、大型ナ
ット1に対するセット位置Aとそれより手前方向に離れ
た後退位置Bとの間で、或いはセット位置Aとそれより
軸方向に離れた後退側方位置Cとの間で移動できるよう
に構成されている。この場合、ナット駆動機構2の移動
は、台9に連結されたシリンダ等の駆動源によって自動
的に行うことができ、或いは床に設けられたガイド手段
(図示せず)によって台9を手動で行うようにしてもよ
く、何れにしろ台9を退避させた後、再びセット位置A
に戻すと、ナット駆動機構2の回転駆動源7が大型ナッ
ト1のギヤ部1bと的確に噛合できればよい。このよう
に、ナット駆動機構2を移動可能に構成すれば、衝撃風
洞装置の圧縮管11と衝撃波管14とを分離し、圧縮管
11からピストン12を取り出すときに必要なスペース
を十分確保することができるので、作業性を損なうおそ
れがない。
In the illustrated embodiment described above, the state in which the nut drive mechanism 2 is installed on the base 9 and the drive gear 7 of the nut drive mechanism 2 meshes with the gear portion 1b of the large nut 1 has been shown. These nut drive mechanisms 2 can be moved as needed. FIG. 7 shows an example in which the nut drive mechanism 2 is movable. That is, although the nut driving mechanism 2 is not shown in detail in FIG. 7, it is arranged between the set position A for the large-sized nut 1 and the retracted position B distant from the set position A, or the set position A and the axis thereof. It is configured so as to be movable between the retracted side position C and the retracted side position C. In this case, the movement of the nut drive mechanism 2 can be automatically performed by a drive source such as a cylinder connected to the base 9, or the base 9 can be manually moved by a guide means (not shown) provided on the floor. In any case, after the base 9 is evacuated, the set position A is set again.
If the rotation driving source 7 of the nut driving mechanism 2 can be accurately meshed with the gear portion 1b of the large-sized nut 1, then. As described above, if the nut drive mechanism 2 is configured to be movable, the compression tube 11 and the shock wave tube 14 of the shock wind tunnel device are separated from each other, and a sufficient space for taking out the piston 12 from the compression tube 11 is secured. Since work can be done, there is no risk of impairing workability.

【0033】なお、大型ナット1の内周側のねじ部や外
周側のギヤ部1b、また圧縮管11,衝撃波管のねじ部
は多条としてリードを大きくすれば、双方の管11,1
4の分離及び接続時の時間短縮を図ることも可能とな
る。また何れの図示実施例とも、高圧管分離接続装置1
0が圧縮管11と衝撃波管14間に適用した例を示した
が、衝撃波管14とノズル16間の分離接続にも同様に
利用することもできる。
It should be noted that the threaded portion on the inner peripheral side of the large-sized nut 1 and the gear portion 1b on the outer peripheral side, the compression tube 11 and the threaded portion of the shock wave tube have multiple threads, and if the leads are made large, both tubes 11, 1
It is also possible to reduce the time required for disconnecting and connecting 4 in FIG. Further, in any of the illustrated embodiments, the high-pressure pipe separation connection device 1
Although 0 has been shown as an example in which it is applied between the compression tube 11 and the shock wave tube 14, it can be similarly used for the separation connection between the shock wave tube 14 and the nozzle 16.

【0034】[0034]

【発明の効果】以上述べたように、本発明の請求項1〜
4によれば、駆動手段により締結体を接続方向に駆動
し、圧縮管に対し衝撃波管が締め付けられることによ
り、圧縮管及び衝撃波管の双方を接続することができる
ように構成したので、人手を要せず自動的に締結するこ
とができ、容易に接続することができる効果がある。
As described above, the claims 1 to 3 of the present invention are as follows.
According to the fourth aspect, the fastener is driven in the connecting direction by the drive means, and the shock wave tube is fastened to the compression tube, so that both the compression tube and the shock wave tube can be connected. There is an effect that it can be automatically fastened without needing and can be easily connected.

【0035】また特に、請求項2〜4によれば、駆動手
段による締結体の駆動トルクが所定値に達すると、トル
ク監視手段により駆動手段を停止させるので、圧縮管,
衝撃波管の双方の締結力を一定にすることができる結
果、圧縮管及び衝撃波管のフランジ部を大型に形成する
ことが不要になり、大型化に伴う問題を解消し得る効果
がある。しかも、請求項3,4によれば、駆動手段が過
負荷運転状態となるのを防止できると共に、締結体によ
る圧縮管,衝撃波管の締結力が過大となるのも防止する
ことができるので、装置としての信頼性を向上し得る効
果がある。
According to the second to fourth aspects, when the driving torque of the fastening body by the driving means reaches a predetermined value, the driving means is stopped by the torque monitoring means.
As a result of being able to make the fastening force of both the shock wave tubes constant, it is not necessary to form the flange portions of the compression tube and the shock wave tube in a large size, and there is an effect that the problems associated with the increase in size can be solved. Moreover, according to the third and fourth aspects, it is possible to prevent the driving means from being in an overload operation state, and it is also possible to prevent the fastening force of the compression pipe and the shock wave pipe by the fastening body from becoming excessive. This has the effect of improving the reliability of the device.

【0036】そして、請求項5〜8によれば、圧縮管,
衝撃波管の双方を、人手を要せず自動的に締結できるの
で、作業性が良好となり、衝撃風洞装置としての信頼性
を高め得る効果がある。特に、請求項6〜8によれば、
100MPa程度の大きな内圧に耐えることのできる締
結力を確実に得ることができ、自動締結化,大型化に伴
う問題の解消,装置としての信頼性を得ることができる
結果、実用上極めて有益となる効果がある。さらに、請
求項9によれば、駆動手段が締結体に対するセット位置
と締結体から離れた後退位置との間で移動し得るので、
衝撃風洞装置の圧縮管と衝撃波管とを分離したときに必
要なスペースを十分確保することができ、作業性を損な
うおそれもない効果がある。
According to claims 5 to 8, the compression pipe,
Since both of the shock wave tubes can be automatically fastened without requiring human labor, workability is improved, and reliability of the shock wind tunnel device can be improved. Particularly, according to claims 6 to 8,
As a result, a fastening force capable of withstanding a large internal pressure of about 100 MPa can be reliably obtained, problems associated with automatic fastening and upsizing can be solved, and reliability as a device can be obtained, which is extremely useful in practice. effective. Further, according to claim 9, since the drive means can move between the set position with respect to the fastening body and the retracted position away from the fastening body,
A sufficient space can be secured when the compression tube and the shock wave tube of the shock wind tunnel device are separated, and there is an effect that workability is not impaired.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高圧管分離接続装置の一実施例を示す
要部拡大の上半断面図。
FIG. 1 is an upper half cross-sectional view showing an enlarged main part of an embodiment of a high-pressure pipe separation / connection device of the present invention.

【図2】本発明の高圧管分離接続装置を適用した衝撃風
洞装置の一実施例を示す概略配管図。
FIG. 2 is a schematic piping diagram showing an embodiment of an impact wind tunnel device to which the high-pressure pipe separation / connection device of the present invention is applied.

【図3】高圧管分離接続装置におけるトルク監視手段の
他の設置例を示す上半断面説明図。
FIG. 3 is an explanatory diagram of an upper half section showing another example of installation of the torque monitoring means in the high pressure pipe disconnection connection device.

【図4】本発明の高圧管分離接続装置の他の実施例を示
し、衝撃波管にリミットスイッチを取付けたトルク監視
手段の説明図。
FIG. 4 is an explanatory view of a torque monitoring means in which a limit switch is attached to the shock wave tube, showing another embodiment of the high-pressure tube separation / connection device of the present invention.

【図5】同じく圧縮管にリミットスイッチを取付けたト
ルク監視手段の説明図。
FIG. 5 is an explanatory view of a torque monitoring means in which a limit switch is also attached to the compression pipe.

【図6】同じく床にリミットスイッチを設置したトルク
監視手段の説明図。
FIG. 6 is an explanatory view of a torque monitoring means similarly having a limit switch installed on the floor.

【図7】本発明の高圧管分離接続装置のさらに他の実施
例を示し、ナット駆動機構の移動を示す説明図。
FIG. 7 is an explanatory view showing still another embodiment of the high-pressure pipe separation / connection device of the present invention, showing the movement of the nut drive mechanism.

【符号の説明】[Explanation of symbols]

1…大型ナット、2…ナット駆動機構、8,81,8
2,84…トルク監視手段、10…高圧管分離接続装
置、11…圧縮管、12…ピストン、14…衝撃波管、
15…隔膜、16…ノズル、17…計測室、18…真空
タンク室。
1 ... Large nut, 2 ... Nut drive mechanism, 8, 81, 8
2, 84 ... Torque monitoring means, 10 ... High-pressure tube separation / connection device, 11 ... Compression tube, 12 ... Piston, 14 ... Shock wave tube,
15 ... Diaphragm, 16 ... Nozzle, 17 ... Measuring chamber, 18 ... Vacuum tank chamber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 隆介 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryusuke Abe 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管とを着脱自在に接続する高圧管分離接続装
置であって、該高圧管分離接続装置は、圧縮管上に軸周
りに回転可能にかつ軸方向に移動可能に装着され、圧縮
管及び衝撃波管を互いに着脱自在に接続する締結体と、
該締結体を駆動する駆動手段とを有することを特徴とす
る高圧管分離接続装置。
1. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has a desired high-temperature and high-pressure gas. Is a high-pressure tube disconnecting and connecting device for detachably connecting to a shock wave tube having a diaphragm for accelerating the test gas, wherein the high-pressure tube disconnecting and connecting device is rotatable on the compression tube around the axis and in the axial direction. A fastening body that is movably mounted and that detachably connects the compression tube and the shock wave tube to each other,
A high-pressure pipe separating / connecting device comprising: a driving unit that drives the fastening body.
【請求項2】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管とを着脱自在に接続する高圧管分離接続装
置であって、該高圧管分離接続装置は、圧縮管上に軸周
りに回転可能にかつ軸方向に移動可能に装着され、圧縮
管及び衝撃波管を互いに着脱自在に接続する締結体と、
該締結体を駆動する駆動手段と、締結体の締結力を一定
にさせる締結力監視手段とを有することを特徴とする高
圧管分離接続装置。
2. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has the desired high-temperature and high-pressure gas. Is a high-pressure tube disconnecting and connecting device for detachably connecting to a shock wave tube having a diaphragm for accelerating the test gas, wherein the high-pressure tube disconnecting and connecting device is rotatable on the compression tube around the axis and in the axial direction. A fastening body that is movably mounted and that detachably connects the compression tube and the shock wave tube to each other,
A high-pressure pipe disconnection and connection device comprising: a driving unit that drives the fastening body, and a fastening force monitoring unit that keeps the fastening force of the fastening body constant.
【請求項3】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管とを着脱自在に接続する高圧管分離接続装
置であって、該高圧管分離接続装置は、圧縮管上に軸周
りに回転可能にかつ軸方向に移動可能に装着され、圧縮
管及び衝撃波管を互いに着脱自在に接続する締結体と、
該締結体を駆動する駆動手段と、締結体の締結力を一定
にさせる締結力監視手段とを有し、該締結力監視手段
は、駆動手段の駆動トルクを監視し、かつ所定の締結力
に達した時点で締結体の駆動を停止させることを特徴と
する高圧管分離接続装置。
3. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has a desired high-temperature and high-pressure gas. Is a high-pressure tube disconnecting and connecting device for detachably connecting to a shock wave tube having a diaphragm for accelerating the test gas, wherein the high-pressure tube disconnecting and connecting device is rotatable on the compression tube around the axis and in the axial direction. A fastening body that is movably mounted and that detachably connects the compression tube and the shock wave tube to each other,
It has a driving means for driving the fastening body and a fastening force monitoring means for making the fastening force of the fastening body constant, and the fastening force monitoring means monitors the driving torque of the driving means and determines the predetermined fastening force. A high-pressure pipe disconnection and connection device characterized in that the driving of the fastening body is stopped when it reaches.
【請求項4】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管とを着脱自在に接続する高圧管分離接続装
置であって、該高圧管分離接続装置は、圧縮管上に軸周
りに回転可能にかつ軸方向に移動可能に装着され、圧縮
管及び衝撃波管を互いに着脱自在に接続する締結体と、
該締結体を駆動する駆動手段と、締結体の締結力を一定
にさせる締結力監視手段とを有し、該締結力監視手段
は、圧縮管における締結体の移動量と、圧縮管に対する
衝撃波管の移動量との何れか一方を監視し、かつ所定の
移動量に達した時点で締結体の駆動を停止させることを
特徴とする高圧管分離接続装置。
4. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has the desired high-temperature and high-pressure gas. Is a high-pressure tube disconnecting and connecting device for detachably connecting to a shock wave tube having a diaphragm for accelerating the test gas, wherein the high-pressure tube disconnecting and connecting device is rotatable on the compression tube around the axis and in the axial direction. A fastening body that is movably mounted and that detachably connects the compression tube and the shock wave tube to each other,
It has a drive means for driving the fastening body, and a fastening force monitoring means for making the fastening force of the fastening body constant, and the fastening force monitoring means is a movement amount of the fastening body in the compression tube and a shock wave tube for the compression tube. And a driving amount of the fastening body is stopped when a predetermined movement amount is reached.
【請求項5】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管と、該衝撃波管の下流端に接続され、試験
気体をさらに加速させて高速気流を形成するノズル体
と、該ノズル体の下流側に配置され、高速気流を計測す
る計測室と、ノズル体の計測室より下流側に配置され、
真空室を形成する真空タンクと、圧縮管及び衝撃波管を
着脱自在に接続する高圧管分離接続装置とを備え、該高
圧管分離接続装置は、圧縮管上に軸周りに回転可能にか
つ軸方向に移動可能に装着され、圧縮管及び衝撃波管を
互いに着脱自在に接続する締結体と、該締結体を駆動す
る駆動手段とを有することを特徴とする衝撃風洞装置。
5. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has a desired high-temperature and high-pressure gas. A shock wave tube having a diaphragm for accelerating the test gas, a nozzle body connected to the downstream end of the shock wave tube, further accelerating the test gas to form a high-speed airflow, and arranged on the downstream side of the nozzle body, It is arranged on the downstream side of the measurement room for measuring high-speed air flow and the measurement room for the nozzle body.
A vacuum tank forming a vacuum chamber and a high-pressure pipe disconnection connecting device that detachably connects the compression pipe and the shock wave pipe are provided, and the high-pressure pipe disconnecting connection device is rotatable on the compression pipe about an axis and in an axial direction. An impact wind tunnel device comprising: a fastening body that is movably attached to the compression tube and a shock wave tube that detachably connects the compression tube and the shock wave tube to each other; and a driving unit that drives the fastening body.
【請求項6】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管と、該衝撃波管の下流端に接続され、試験
気体をさらに加速させて高速気流を形成するノズル体
と、該ノズル体の下流側に配置され、高速気流を計測す
る計測室と、ノズル体の計測室より下流側に配置され、
真空室を形成する真空タンクと、圧縮管及び衝撃波管を
着脱自在に接続する高圧管分離接続装置とを備え、該高
圧管分離接続装置は、圧縮管上に軸周りに回転可能にか
つ軸方向に移動可能に装着され、圧縮管及び衝撃波管を
互いに着脱自在に接続する締結体と、該締結体を駆動す
る駆動手段と、締結体の締結力を一定にさせる締結力監
視手段とを有することを特徴とする衝撃風洞装置。
6. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has a desired high-temperature and high-pressure gas. A shock wave tube having a diaphragm for accelerating the test gas, a nozzle body connected to the downstream end of the shock wave tube, further accelerating the test gas to form a high-speed airflow, and arranged on the downstream side of the nozzle body, It is arranged on the downstream side of the measurement room for measuring high-speed air flow and the measurement room for the nozzle body.
A vacuum tank forming a vacuum chamber and a high-pressure pipe disconnection connecting device that detachably connects the compression pipe and the shock wave pipe are provided, and the high-pressure pipe disconnecting connection device is rotatable on the compression pipe about an axis and in an axial direction. A fastening body movably attached to the compression tube and the shock wave tube so as to detachably connect to each other, a driving means for driving the fastening body, and a fastening force monitoring means for making the fastening force of the fastening body constant. An impact wind tunnel device.
【請求項7】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管と、該衝撃波管の下流端に接続され、試験
気体をさらに加速させて高速気流を形成するノズル体
と、該ノズル体の下流側に配置され、高速気流を計測す
る計測室と、ノズル体の計測室より下流側に配置され、
真空室を形成する真空タンクと、圧縮管及び衝撃波管を
着脱自在に接続する高圧管分離接続装置とを備え、該高
圧管分離接続装置は、圧縮管上に軸周りに回転可能にか
つ軸方向に移動可能に装着され、圧縮管及び衝撃波管を
互いに着脱自在に接続する締結体と、該締結体を駆動す
る駆動手段と、締結体の締結力を一定にさせる締結力監
視手段とを有し、該締結力監視手段は、駆動手段の駆動
トルクを監視し、かつ所定の締結力に達した時点で締結
体の駆動を停止させることを特徴とする衝撃風洞装置。
7. A compression pipe having a piston that moves downstream by a high-temperature high-pressure source to form and push out a desired high-temperature high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has a desired high-temperature high-pressure gas. A shock wave tube having a diaphragm for accelerating the test gas, a nozzle body connected to the downstream end of the shock wave tube, further accelerating the test gas to form a high-speed airflow, and arranged on the downstream side of the nozzle body, It is arranged on the downstream side of the measurement room for measuring high-speed air flow and the measurement room for the nozzle body.
A vacuum tank forming a vacuum chamber and a high-pressure pipe disconnection connecting device that detachably connects the compression pipe and the shock wave pipe are provided, and the high-pressure pipe disconnecting connection device is rotatable on the compression pipe about an axis and in an axial direction. Has a fastening body that is movably mounted on the fastening tube and detachably connects the compression tube and the shock wave tube to each other, a driving means that drives the fastening body, and a fastening force monitoring means that keeps the fastening force of the fastening body constant. The fastening wind force monitoring device is characterized in that the fastening force monitoring means monitors the driving torque of the driving means and stops the driving of the fastening body when a predetermined fastening force is reached.
【請求項8】 高温高圧源により下流側に移動し、所望
の高温高圧気体を形成して押し出すピストンを有する圧
縮管と、該圧縮管の下流端に接続され、かつ所望の高温
高圧気体により内部の試験気体を加速をさせる隔膜を有
する衝撃波管と、該衝撃波管の下流端に接続され、試験
気体をさらに加速させて高速気流を形成するノズル体
と、該ノズル体の下流側に配置され、高速気流を計測す
る計測室と、ノズル体の計測室より下流側に配置され、
真空室を形成する真空タンクと、圧縮管及び衝撃波管を
着脱自在に接続する高圧管分離接続装置とを備え、該高
圧管分離接続装置は、圧縮管上に軸周りに回転可能にか
つ軸方向に移動可能に装着され、圧縮管及び衝撃波管を
互いに着脱自在に接続する締結体と、該締結体を駆動す
る駆動手段と、締結体の締結力を一定にさせる締結力監
視手段とを有し、該締結力監視手段は、圧縮管における
締結体の移動量と、圧縮管に対する衝撃波管の移動量と
の何れか一方を監視し、かつ所定の移動量に達した時点
で締結体の駆動を停止させることを特徴とする衝撃風洞
装置。
8. A compression pipe having a piston that moves downstream by a high-temperature and high-pressure source to form and push out a desired high-temperature and high-pressure gas, and a compression pipe that is connected to the downstream end of the compression pipe and that has the desired high-temperature and high-pressure gas. A shock wave tube having a diaphragm for accelerating the test gas, a nozzle body connected to the downstream end of the shock wave tube, further accelerating the test gas to form a high-speed airflow, and arranged on the downstream side of the nozzle body, It is arranged on the downstream side of the measurement room for measuring high-speed air flow and the measurement room for the nozzle body.
A vacuum tank forming a vacuum chamber and a high-pressure pipe disconnection connecting device that detachably connects the compression pipe and the shock wave pipe are provided, and the high-pressure pipe disconnecting connection device is rotatable on the compression pipe about an axis and in an axial direction. Has a fastening body that is movably mounted on the fastening tube and detachably connects the compression tube and the shock wave tube to each other, a driving means that drives the fastening body, and a fastening force monitoring means that keeps the fastening force of the fastening body constant. The fastening force monitoring means monitors either one of the movement amount of the fastening body in the compression tube and the movement amount of the shock wave tube with respect to the compression pipe, and drives the fastening body when the predetermined movement amount is reached. An impact wind tunnel device characterized by being stopped.
【請求項9】 前記駆動手段は、締結体に対するセット
位置と、締結体から離れた後退位置との間で移動可能に
構成したことを特徴とする請求項5〜8の何れか一項に
記載の衝撃風洞装置。
9. The driving means is configured to be movable between a set position with respect to the fastening body and a retracted position separated from the fastening body. Impact wind tunnel device.
JP12001995A 1995-05-18 1995-05-18 High-pressure pipe separating/connecting device and impact wind tunnel device Pending JPH08313392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001995A JPH08313392A (en) 1995-05-18 1995-05-18 High-pressure pipe separating/connecting device and impact wind tunnel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001995A JPH08313392A (en) 1995-05-18 1995-05-18 High-pressure pipe separating/connecting device and impact wind tunnel device

Publications (1)

Publication Number Publication Date
JPH08313392A true JPH08313392A (en) 1996-11-29

Family

ID=14775900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001995A Pending JPH08313392A (en) 1995-05-18 1995-05-18 High-pressure pipe separating/connecting device and impact wind tunnel device

Country Status (1)

Country Link
JP (1) JPH08313392A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039354B1 (en) * 2009-01-29 2011-06-08 한국표준과학연구원 rotatable pipe connector
CN102853987A (en) * 2012-09-25 2013-01-02 南京航空航天大学 Tester for researching ice accretion and ice prevention of aero-engine cowling in icing wind tunnel
CN104458201A (en) * 2014-12-12 2015-03-25 中国航天空气动力技术研究院 Stage separation wind tunnel free flight test device
JP2016510145A (en) * 2013-02-19 2016-04-04 エックストラリス・テクノロジーズ・リミテッド Sampling point
WO2019208841A1 (en) * 2018-04-23 2019-10-31 Lim Min Sub Pipe connection device and tightening device for same
JP2021511465A (en) * 2018-01-30 2021-05-06 ゼネラル・エレクトリック・カンパニイ Hose connection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039354B1 (en) * 2009-01-29 2011-06-08 한국표준과학연구원 rotatable pipe connector
CN102853987A (en) * 2012-09-25 2013-01-02 南京航空航天大学 Tester for researching ice accretion and ice prevention of aero-engine cowling in icing wind tunnel
JP2016510145A (en) * 2013-02-19 2016-04-04 エックストラリス・テクノロジーズ・リミテッド Sampling point
US10247644B2 (en) 2013-02-19 2019-04-02 Garrett Thermal Systems Limited Air sampling system for a low-temperature space that enables removal of ice build-up within a sampling conduit
CN104458201A (en) * 2014-12-12 2015-03-25 中国航天空气动力技术研究院 Stage separation wind tunnel free flight test device
JP2021511465A (en) * 2018-01-30 2021-05-06 ゼネラル・エレクトリック・カンパニイ Hose connection system
WO2019208841A1 (en) * 2018-04-23 2019-10-31 Lim Min Sub Pipe connection device and tightening device for same

Similar Documents

Publication Publication Date Title
JP2544888B2 (en) Inspection method for pipe lining materials
EP3126096B1 (en) Interface device for tensioning a nut and a bolt assembly
JP5364708B2 (en) Manual core rotating device
KR100312071B1 (en) Liner for insertion in pipes
JPH08313392A (en) High-pressure pipe separating/connecting device and impact wind tunnel device
EP3273015A1 (en) Calibration device for carrying out a disassembly method for gas turbines
CN111579200B (en) Screw temperature control film clamping device
CN109540071B (en) Circumferential tooth gap measuring and coloring positioning device for bevel gear pair
CN112388294A (en) Flaring pipe joint tightening machine
US11624388B2 (en) Turnbuckle link-gage
CN116557657A (en) Pipeline connecting flange and system thereof
CN110159847A (en) A kind of pipe union and clamp device convenient for fastening
CN109227440B (en) Centering device for planetary gear type clutch driven disc
US4805253A (en) Device for brushing threaded bores
CN113305771B (en) Electrician's equipment with clean function
CN220854049U (en) Bellows performance test device
CN117006247B (en) Cable corrugated aluminum sheath air tightness test device and preparation method thereof
CN221516756U (en) Refrigeration pipe fitting butt joint appurtenance
US10598917B2 (en) Borescope grip
CN221033690U (en) Two-end matching connection structure of driving shaft
JP2007260846A (en) Device for inserting lining pipe member into existing pipe
CN208304885U (en) A kind of novel via hole box spanner
JPH01320397A (en) Rotary fluid machine
CN115703222A (en) Aircraft engine rotor disc disassembling tool
US7517191B1 (en) Operational maintenance of air-conditioning installations