JPH0831332B2 - Method of operating molten carbonate fuel cell - Google Patents

Method of operating molten carbonate fuel cell

Info

Publication number
JPH0831332B2
JPH0831332B2 JP62157747A JP15774787A JPH0831332B2 JP H0831332 B2 JPH0831332 B2 JP H0831332B2 JP 62157747 A JP62157747 A JP 62157747A JP 15774787 A JP15774787 A JP 15774787A JP H0831332 B2 JPH0831332 B2 JP H0831332B2
Authority
JP
Japan
Prior art keywords
cell
polarization
fuel cell
electrode
reference electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62157747A
Other languages
Japanese (ja)
Other versions
JPS643968A (en
Inventor
嘉男 岩瀬
将人 竹内
俊樹 加原
秀夫 岡田
一男 岩本
浩一 三次
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62157747A priority Critical patent/JPH0831332B2/en
Publication of JPS643968A publication Critical patent/JPS643968A/en
Publication of JPH0831332B2 publication Critical patent/JPH0831332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩型燃料電池の運転方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for operating a molten carbonate fuel cell.

〔従来の技術〕[Conventional technology]

燃料電池の燃料のもつ化学的エネルギーを電気化学的
に直接電気エネルギーに変換する装置であつて、中でも
300℃以上の高温で運転される高温燃料電池の大規模電
力源用としても開発が進められている。高温燃料電池の
うち溶融炭酸塩を電解質とする溶融炭酸塩型燃料電池の
セルの構造は、溶融炭酸塩を含浸した電解質板の両側
に、1対の電極を配設し、それぞれの電極の外側に反応
ガスを各電極へ供給する機構を有するセパレーターが配
設されており、この燃料電池は通常複数個のスタツクか
らなり、スタツクは複数個のブロツクからなりブロツク
は複数個のセルからなつている。
A device for electrochemically converting the chemical energy of fuel in a fuel cell directly into electrical energy,
Development is also in progress for large-scale power sources of high-temperature fuel cells that operate at high temperatures of 300 ° C or higher. Among the high temperature fuel cells, the cell structure of a molten carbonate fuel cell using molten carbonate as an electrolyte is such that a pair of electrodes are arranged on both sides of an electrolyte plate impregnated with molten carbonate, and the outside of each electrode. A separator having a mechanism for supplying a reaction gas to each electrode is disposed in the fuel cell.This fuel cell is usually composed of a plurality of stacks, the stack is composed of a plurality of blocks, and the block is composed of a plurality of cells. .

その溶融炭酸塩型燃料電池の作動原理はアノードの孔
を通じて燃料ガスと溶融炭酸塩電解質とが電気化学的反
応を行い、発生した電子は外部へ取出され電気エネルギ
ーとして仕事をした後カソードに戻り、酸素ガスと炭酸
ガスとを含む酸化剤ガスと反応して炭酸イオンを生じ、
この炭酸イオンが電解質へ戻される。
The operating principle of the molten carbonate fuel cell is that the fuel gas and molten carbonate electrolyte undergo an electrochemical reaction through the holes of the anode, the generated electrons are taken out to the outside and work as electric energy, and then return to the cathode, Reacting with an oxidant gas containing oxygen gas and carbon dioxide gas to generate carbonate ions,
This carbonate ion is returned to the electrolyte.

燃料電池の電極反応は一般的に反応ガス,電解質,電
極触媒の、それぞれ気体と液体と固体との3相界面で起
る反応であり、その3種のバランスで電池の性能が決る
ので、そのバンラスを制御しなければならない。
An electrode reaction of a fuel cell is generally a reaction that occurs at a three-phase interface of a gas, a liquid, and a solid of a reaction gas, an electrolyte, and an electrode catalyst, and the performance of the cell is determined by the balance of the three types. You have to control the bunras.

また、燃料電池は運転開始後、電流密度を上げる程電
池の電圧が低下するが、この現象を電池の分極という。
電池の分極は作動時の電池のセル電圧と負荷電流0のと
きの平衝電圧との差で表わされ、作動時のセル電圧が電
池の分極電圧と呼ばれる。
Further, after the operation of the fuel cell, the voltage of the cell decreases as the current density increases, and this phenomenon is called cell polarization.
The polarization of a battery is represented by the difference between the cell voltage of the battery during operation and the equilibrium voltage when the load current is 0, and the cell voltage during operation is called the polarization voltage of the battery.

電池の分極は各電極の分極を合計したもので表わされ
る。
The polarization of the battery is expressed as the sum of the polarization of each electrode.

いま、燃料電池の電圧が、電池を始動した時に低い値
を示す場合、あるいは始動後次第に低下する場合に、そ
の原因を調査するためには電池のどちらの電極の分極が
大きいのかを知ることが必要となる。
Now, when the voltage of the fuel cell shows a low value at the time of starting the cell, or when it gradually decreases after starting, it is necessary to know which electrode of the cell has a large polarization in order to investigate the cause. Will be needed.

この各電極の分極を分離して測定する方法として、文
献「電池討論会、第26回大会要旨集」第77〜80頁に記載
の如く、溶融炭酸塩型燃料電池の小型セルに参照極を内
蔵させ、交流インピーダンス法を応用してアノード分極
とカソード分極とを別々に分離して測定する方法が提案
されている。
As a method for separating and measuring the polarization of each electrode, a reference electrode is attached to a small cell of a molten carbonate fuel cell as described in the document "Battery Debates, 26th Annual Meeting Summary" pages 77-80. A method has been proposed in which the anodic polarization and the cathodic polarization are separately separated and measured by incorporating them and applying the AC impedance method.

この測定で使用された燃料電池は、LiAlO2とLi/KCO3
との混合物からなる電解質板の両側に、LiAlO2を含浸さ
せたNi材からなるアノードとNiOからなるカソードとが
配設され、それぞれの電極の外側にコレクターが配設さ
れ、更にそれぞれのコレクターの外側に、反応ガス供給
溝を有するセパレーターが配設されてセルが構成され、
そのセルのアノード側のセパレーターにあけられた穴の
参照極が電解質に接続されて保持されたものとなつてい
る。
The fuel cells used in this measurement were LiAlO 2 and Li / KCO 3
An anode made of a Ni material impregnated with LiAlO 2 and a cathode made of NiO are arranged on both sides of an electrolyte plate made of a mixture of On the outside, a cell is configured by arranging a separator having a reaction gas supply groove,
The reference electrode of the hole formed in the separator on the anode side of the cell is connected to and held by the electrolyte.

この参照極は、二重のアルミナチユーブの下部にLiAl
O2とLi/KCO3との混合物の充填層が設けられ、その充填
層に参照電極としてのNiOからなる充填層を接続し、そ
の充填層に金線を接続し外部へ導く機構を有している。
This reference electrode is made of LiAl at the bottom of the double alumina tube.
A filling layer of a mixture of O 2 and Li / KCO 3 is provided, a filling layer made of NiO as a reference electrode is connected to the filling layer, and a gold wire is connected to the filling layer to lead to the outside. ing.

反応ガスは、電池のアノード側では80%H2−CO2
ス、カソード側では70%空気−CO2ガス、参照極には70
%空気−CO2ガスを使用し、各極のインピーダンス測定
をポテンシヨスタツトと周波数応答測定器とを用いて、
平衝電位において測定が行なわれている。
The reaction gas, 80% H 2 -CO 2 gas at the anode side of the battery, 70% air -CO 2 gas on the cathode side, the reference electrode 70
% Air-CO 2 gas is used, and impedance measurement of each pole is performed using a potentiostat and a frequency response measuring instrument.
Measurements are made at equilibrium potential.

しかしながら、この測定方法は有効電極面積10.5cm2
の小型セルに対して行なわれたもので、その測定操作も
繁雑であるので、この方法をそのまま、大型セルが多数
積層された燃料電池に適用することは、多数のセルにつ
いて測定を必要とすることから、測定操作が大変繁雑と
なり、測定装置も大がかりとなつて実用上ほとんど不可
能となる。
However, this measurement method is effective electrode area 10.5cm 2
Since it was carried out on a small cell, and its measurement operation is also complicated, applying this method as it is to a fuel cell in which a large number of large cells are stacked requires measurement on a large number of cells. Therefore, the measuring operation becomes very complicated, and the measuring device becomes large in scale, making it practically impossible.

従つて、大型セルが多数積層された燃料電池の始動時
あるいは始動後に電池電圧が低下して分極が目標値より
大きい値を示す場合、アノードとカソードの両方、ある
いはどちらか一方の電極の分極が目標値より大きいのか
を判断することが出来ないので、適切な是正処置をとる
ことができず、燃料電池の性能低下、ひいては寿命の低
下をまねいていた。
Therefore, when the fuel cell voltage in which a large number of large-sized cells are stacked is started or after the start time and the cell voltage drops and the polarization shows a value larger than the target value, the polarization of both the anode and the cathode, or one of the electrodes is Since it was not possible to determine whether the value was greater than the target value, it was not possible to take appropriate corrective action, which led to a decrease in the performance of the fuel cell and eventually a decrease in its life.

なお、前述の測定方法では、参照極のチユーブ内に燃
料電池の電解質としては不純物となるLiAlO2の粉末が用
いられているので、燃料電池の性能を低下させるという
問題もあつた。
In the above-mentioned measuring method, since LiAlO 2 powder which is an impurity is used as the electrolyte of the fuel cell in the tube of the reference electrode, there is a problem that the performance of the fuel cell is deteriorated.

また、燃料電池の運転方法については、特開昭60−10
566号,特開昭60−189177号,特開昭61−24166号公報に
燃料電池の長寿命化のための運転方法が提案されている
が、本発明とは関係しない。
Further, as for the operation method of the fuel cell, see JP-A-60-10
566, JP-A-60-189177, and JP-A-61-24166 propose operation methods for extending the life of fuel cells, but they are not related to the present invention.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来方法における、電池のセル電圧をアノード分極及
びカソード分極に分離して測定する方法は、単体の小型
セルに対し行なわれたものでありその測定操作も繁雑
で、かつ大がかりな精密機器を必要とするので、この方
法をそのまま、大型セルが多数積層された燃料電池に適
用することは、多数のセルについて測定を必要とするこ
とから、測定操作が大変繁雑となり、かつ測定装置も大
がかりなものとなつて、実用上ほとんど不可能となる。
In the conventional method, the method of measuring the cell voltage of a battery by separating it into anodic polarization and cathodic polarization is performed on a single small cell, and its measurement operation is complicated and requires a large-scale precision instrument. Therefore, applying this method as it is to a fuel cell in which a large number of large cells are stacked requires measurement on a large number of cells, which makes the measurement operation very complicated and requires a large measuring device. This makes it practically impossible.

従つて、大型セルが多数積層された燃料電池の作動時
に、電池のセル電圧が目標値より低い値を示した場合に
そのセルの両方の電極あるいは一方の電極のいずれの電
極の分極が目標値より大きいのかが判らないので、その
セル電圧が低下した原因が判然とせず、的確な是正処置
をとることもできず、燃料電池の性能の低下をきたして
いた。
Therefore, when operating a fuel cell in which a large number of large cells are stacked, if the cell voltage of the cell shows a value lower than the target value, the polarization of both electrodes of that cell or one of the electrodes of the cell will reach the target value. Since it is not known whether it is larger, the cause of the decrease in the cell voltage cannot be determined, and the corrective action cannot be taken, resulting in deterioration of the fuel cell performance.

本発明の目的は、上記問題点を解除して、大型セルが
多数積層された燃料電池において、その電池のセル電圧
が目標値より小さい値を示した場合、分極が目標値より
大きい電極を識別できる燃料電池を提供するとともに、
その燃料電池の運転時に分極が目標値より大きい電極を
正常な状態に戻すことの出来る有効な手段を備えた、燃
料電池の運転方法を提供することにある。
An object of the present invention is to solve the above problem and identify an electrode whose polarization is larger than a target value in a fuel cell in which a large number of large cells are stacked, when the cell voltage of the battery shows a value smaller than the target value. While providing a fuel cell that can
It is an object of the present invention to provide a method for operating a fuel cell, which is provided with effective means capable of returning an electrode whose polarization is larger than a target value to a normal state during operation of the fuel cell.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、燃料電池の少なくとも1個のセル
に、アノード、カソード電極とは絶縁状態で、かつ前記
電解質に接触するように設けられ、セルの電圧をアノー
ド分極およびカソード分極に分離して測定する参照端子
を設けるとともに、燃料電池の運転作動時に、この参照
極端子よりセル電圧をアノード分極及びカソード分極に
分離して測定し、かつ前記セル電圧が目標値より小さい
場合には、前記セルの電極の分極として目標値より大き
い方の電極の反応ガスの一部若しくは全てを一時遮断状
態にして燃料電池を運転するようになし所期の目的を達
成するようにしたものである。
That is, the present invention is provided in at least one cell of a fuel cell so as to be in contact with the electrolyte while being insulated from anode and cathode electrodes, and measuring the cell voltage by separating it into anode polarization and cathode polarization. When the fuel cell is in operation, the cell voltage is separated into anode polarization and cathode polarization from the reference electrode terminal for measurement, and when the cell voltage is smaller than the target value, As a polarization of the electrode, a part or all of the reaction gas of the electrode having a larger value than the target value is temporarily cut off to operate the fuel cell to achieve the intended purpose.

〔作用〕[Action]

燃料電池の少なくとも1個のセルが参照極端子を保持
することにより、そのセルの片方の電極との組合わせで
電池となり、この電池の電圧と参照極端子の有する基準
電位とからその電極の分極が判るので、セル電圧をアノ
ード分極とカソード分極とに分離して測定し、そして燃
料電池の作動時に前記セル電圧をアノード分極とカソー
ド分極とに分離して測定することにより、前記セルの電
圧が目標値より小さい値を示す場合に分極が目標値より
大きい電極を識別できるので、分極が目標値より大きい
電極について、負荷をかけた状態でその反応ガスの一部
ないし全てを一時遮断すると、その電極の分極が大きく
変化してその電極の表面が電解質で適度に濡れた状態に
なるとともに三相界面の反応場が増大して活性化が進む
ので、その電極の分極が小さくなりセル電圧が回復す
る。
Since at least one cell of the fuel cell holds the reference electrode terminal, it becomes a cell in combination with one of the electrodes of the cell, and the polarization of that electrode depends on the voltage of this cell and the reference potential of the reference electrode terminal. Therefore, by separately measuring the cell voltage into anodic polarization and cathode polarization, and by measuring the cell voltage into anodic polarization and cathodic polarization during operation of the fuel cell, the voltage of the cell is Electrodes with a polarization larger than the target value can be identified when they show a value smaller than the target value.For electrodes with a polarization larger than the target value, if some or all of the reaction gas is temporarily cut off under a load, The polarization of the electrode changes significantly, the surface of the electrode becomes appropriately wet with the electrolyte, and the reaction field at the three-phase interface increases and activation proceeds. Is the cell voltage is restored small.

〔実施例〕〔Example〕

本発明により、燃料電池の各スタツク又は各ブロツク
の少なくとも1個のセルに参照極端子を保持させること
により、負荷をかけた状態で電極の分極を分離して測定
することが出来るので、燃料電池の運転開始時に目標と
する電池電圧が得られない場合あるいは次第に低下する
場合、第3図に模式的に示すように電極の分極を分離し
て測定することにより、セル電圧の低下をまねいた電極
の分極の増大がアノードなのかカソードなのかあるいは
両方なのかを判断することが出来る。
According to the present invention, by holding the reference electrode terminal in at least one cell of each stack or each block of the fuel cell, it is possible to separate and measure the polarization of the electrode under load, so that the fuel cell can be measured. If the target battery voltage cannot be obtained at the start of operation of the cell or gradually decreases, the polarization of the electrode is separated and measured as schematically shown in FIG. 3 to measure the decrease in the cell voltage. It is possible to determine whether the increase in the polarization of is the anode, the cathode, or both.

第3図(A)はセルの電流−電位特性を示し、横軸は
電流密度であり、縦軸はセル電圧であつて、セル電圧が
正常な場合は実線の電流−電位特性1であるのが、電池
が劣化すると破線の電流−電位特性1′となり、矢印の
量だけ余計にセルの分極が増大して劣化していることを
示している。
FIG. 3 (A) shows the current-potential characteristics of the cell, the horizontal axis is the current density, the vertical axis is the cell voltage, and when the cell voltage is normal, the solid line shows the current-potential characteristics 1. However, when the battery is deteriorated, the current-potential characteristic 1'indicated by the broken line is obtained, and it is shown that the polarization of the cell is excessively increased by the amount indicated by the arrow and is deteriorated.

一方、第3図(B1)〜(B3)は同図(A)で示したセ
ルの電流−電位特性に対する各極の電流−電位特性を3
通りのケースに別けて示し、横軸が電流密度であり、縦
軸が電極の電位である。
On the other hand, FIGS. 3 (B1) to (B3) show the current-potential characteristics of each electrode with respect to the current-potential characteristics of the cell shown in FIG. 3 (A).
The current density is plotted on the horizontal axis and the electrode potential is plotted on the vertical axis.

第3図(B1)〜(B3)において、セル電圧が正常な場
合はアノードとカソードの分極は電流−電位特性2,3で
表わされるが、電池が劣化した後のアノードとカソード
の分極はそれぞれ電流−電位特性2′,3′で表わされ
る。
In Fig. 3 (B1) to (B3), when the cell voltage is normal, the polarization of the anode and cathode is represented by the current-potential characteristics 2 and 3, but the polarization of the anode and cathode after deterioration of the battery is respectively It is represented by current-potential characteristics 2'and 3 '.

同図(B1)はカソード分極大の場合、同図(B2)はカ
ソード分極、アノード分極とも大の場合、同図(B3)は
アノード分極大の場合の電流−電位特性を示す。これら
の図により、電池の性能が劣化しセル電圧が低下した場
合、そのセルのどちらの電極の分極が目標値より大きい
のかが容易に判別できる。
The figure (B1) shows the current-potential characteristics when the cathode polarization is large, the figure (B2) shows the cases where both the cathode polarization and the anode polarization are large, and the figure (B3) shows the current-potential characteristics when the anode polarization is large. From these figures, when the battery performance deteriorates and the cell voltage decreases, it is possible to easily determine which electrode of the cell has the polarization larger than the target value.

一方、燃料電池の電極の性能については、電極材料本
来の物性による触媒活性の外、反応場が電極材、電解質
および反応ガスの三者の接する三層界面となるので、電
極表面における電解質の適正範囲の存在確率、いわゆる
濡れの状態が重要なポイントとなるとともに、同じ意味
で気体と固体との界面では活性点における吸着種のガス
種類も重要となる。即ち、負荷をかけた状態で反応ガス
を一時遮断すると電極の分極が大きく変化するのにとも
ない、電極の表面状態が変化し活性化が進行するのであ
る。
On the other hand, regarding the performance of the electrode of the fuel cell, in addition to the catalytic activity due to the physical properties of the electrode material, the reaction field is the three-layer interface where the electrode material, the electrolyte and the reaction gas come into contact with each other. The existence probability of the range, that is, the so-called wet state is an important point, and in the same sense, the kind of gas of the adsorbed species at the active point is also important at the interface between the gas and the solid. That is, when the reaction gas is temporarily shut off under a load, the surface state of the electrode changes and the activation progresses as the polarization of the electrode changes significantly.

ここで燃料電池の一例として溶融炭酸塩型燃料電池を
あげ、その反応を考えてみる。
Here, a molten carbonate fuel cell will be taken as an example of the fuel cell, and its reaction will be considered.

アノード反応は、 H2+CO3 2-→CO2+H2O+2e- カソード反応は O2+2CO2+4e-→2CO3 2- である。The anode reaction, H 2 + CO 3 2- → CO 2 + H 2 O + 2e - cathodic reaction is O 2 + 2CO 2 + 4e - → 2CO 3 is 2.

これに金属からなるアノードと酸化物からなるカソー
ドそれぞれの電極触媒Mを関与させ、アノードでは水素
ガス、カソードでは炭酸ガスを反応系から除外して電子
の移動を考えると次の式が成立つ。
When the electrocatalyst M of each of the anode made of a metal and the cathode made of an oxide is involved in this, hydrogen gas is excluded from the reaction system in the anode and carbon dioxide gas is excluded from the reaction system in the cathode, and the transfer of electrons is considered, the following formula is established.

アノード反応は、 M+CO3 2-→CO2+MO+2e- 又は、 M+CO3 2-→M2++CO3 2-+2e- カソード反応は、 M+O2+4e-→M+2O2- 等である。The anode reaction is M + CO 3 2- → CO 2 + MO + 2e −, or the M + CO 3 2- → M 2+ + CO 3 2- + 2e cathode reaction is M + O 2 + 4e → M + 2O 2− .

この結果、アノードにおいて水素ガスを一時遮断する
と、電極表面の酸化,溶出あるいは酸化と溶出のいずれ
かが起り、電極表面が濡れ易くなるとともにカソード側
から炭酸イオンが移動してくることから、反応場の増
大,活性化が考えられる。また、カソードにおいて炭酸
ガスを一時遮断すると電極表面の酸化および電極表面の
炭酸イオンのアノード方向への移動により、反応場の増
大,活性化の進行が考えられる。
As a result, when hydrogen gas is temporarily cut off at the anode, either oxidation or elution of the electrode surface or oxidation and elution occurs, which makes it easier for the electrode surface to become wet and causes carbonate ions to move from the cathode side. Is considered to be increased and activated. Further, when the carbon dioxide gas is temporarily cut off at the cathode, it is considered that the reaction field increases and the activation progresses due to the oxidation of the electrode surface and the movement of carbonate ions on the electrode surface toward the anode.

本発明の実施例の詳細について図により説明する。 Details of embodiments of the present invention will be described with reference to the drawings.

第1実施例 本実施例で用いた溶融炭酸塩型燃料電池のブロツクは
第4図に示すように、LiCO3とK2CO3との混合炭酸塩から
なる電解質を板状に成形した電解質6と、その電解質6
の両側に配設された1対の電極と、それぞれの電極の外
側に配設されて反応ガスを供給する溝を有するセパレー
ター5と、そのセパレーター5に取付けられ、各セルの
電圧をとり出すセパレーター電圧端子7とから構成され
たセルを3個積層したものである。
First Example As shown in FIG. 4, the block of the molten carbonate fuel cell used in this example is an electrolyte 6 formed by plate-forming an electrolyte composed of a mixed carbonate of LiCO 3 and K 2 CO 3. And its electrolyte 6
A pair of electrodes arranged on both sides of the separator, a separator 5 arranged outside each of the electrodes and having a groove for supplying a reaction gas, and a separator attached to the separator 5 for extracting the voltage of each cell Three cells each composed of the voltage terminal 7 are laminated.

このブロツク4の上端のセパレーター5に、第1図ま
たは第5図に示す参照極10を電解質6まで到達させられ
る参照極用穴8をあける。
The separator 5 at the upper end of the block 4 is provided with a reference electrode hole 8 for allowing the reference electrode 10 shown in FIG. 1 or 5 to reach the electrolyte 6.

第1図に示す参照極10の構造は、先端に穴を有する外
筒の参照極チユーブ12の内側に、先端が開放された細径
の参照極チユーブ12が設けられ、その内側に参照極端子
11が配設されている。この参照極10を参照極用穴8に挿
入してセルの電解質6に接触させ、外筒の参照極チユー
ブ12内の先端部にセルの電解質6と同一材質の電解質6
を充填してセルの電解質6と接続させ、その充填した電
解質6の中へ参照極端子11を埋め込み、参照極ガスとし
て炭酸ガスと酸素ガスとの混合ガス(2/1モル比)を図
中の矢印で示すように内側の参照極チユーブ12から供給
し、その先端から出た混合ガスが外側の参照極チユーブ
12内を通つて参照極10の外へ出る。
The structure of the reference electrode 10 shown in FIG. 1 is such that a reference electrode tube 12 of an outer cylinder having a hole at its tip is provided with a reference electrode tube 12 of small diameter having an open tip, and the reference electrode terminal is provided inside thereof.
11 are arranged. This reference electrode 10 is inserted into the reference electrode hole 8 and brought into contact with the electrolyte 6 of the cell, and the electrolyte 6 of the same material as the electrolyte 6 of the cell is attached to the tip of the reference electrode tube 12 of the outer cylinder.
Is filled in to connect with the electrolyte 6 of the cell, the reference electrode terminal 11 is embedded in the filled electrolyte 6, and a mixed gas of carbon dioxide gas and oxygen gas (2/1 molar ratio) is used as the reference electrode gas in the figure. The gas supplied from the inner reference electrode tube 12 as indicated by the arrow in FIG.
It goes through 12 and goes out of the reference electrode 10.

第5図に示す参照極10の構造は、先端と側面とに穴を
有する参照極チユーブ12の内側に参照極端子11が設けら
れたもので、その参照極端子11の先端部がセルの電解質
6に接触しており、参照極ガスが参照極チユーブ12の上
部から供給され下部側面の穴からチユーブ外へ出され
る。
The structure of the reference electrode 10 shown in FIG. 5 is such that the reference electrode terminal 11 is provided inside the reference electrode tube 12 having holes at the tip and the side surface, and the tip of the reference electrode terminal 11 is the electrolyte of the cell. 6 is in contact with the reference electrode 6, and the reference electrode gas is supplied from the upper portion of the reference electrode tube 12 and discharged from the tube through the hole on the lower side surface.

この構造の参照極10をセル毎に設置する場合は、第7
図に示すように上端のセルに対しては上端のセパレータ
ー5に参照極用穴8を設け、それ以外のセルに対しては
各セルに設けられるセパレーター5と電解質6とを一部
外側へセル毎にずらせて出張らせ、その出張つた部分に
参照極用穴8を設け、それぞれの穴に対応させて上端の
セパレーター5に参照極ガイドリング13を設けるケース
と、第8図に示すように、セパレーター5と電解質6の
縦横の比率を変え、長さ方向の端に沿つて各セルの電解
質6に届くまで貫通した参照極用穴8を並べて設け、そ
の部分のみ電解質6を残して他はカツトするか、あるい
は目的のセルまで貫通した穴を設けるケースとがある。
If the reference electrode 10 of this structure is installed in each cell,
As shown in the figure, a reference electrode hole 8 is provided in the upper separator 5 for the upper cell, and the separator 5 and the electrolyte 6 provided in each cell are partially outwardly provided for the other cells. Each case is shifted to make a business trip, a reference electrode hole 8 is provided in the tripped part, and a reference electrode guide ring 13 is provided in the separator 5 at the upper end corresponding to each hole, as shown in FIG. , The vertical and horizontal ratios of the separator 5 and the electrolyte 6 are changed, and the reference electrode holes 8 penetrating until reaching the electrolyte 6 of each cell are provided side by side along the lengthwise end, and the electrolyte 6 is left only in that portion There are cases of cutting or providing a hole penetrating to a target cell.

次に参照極10の構造をより単純にした例を第6図に示
す。これは例えば白金線のように電気化学的に使用する
領域ではそのもの自体は不変である性質を有する材料を
参照極端子11として、セルの電解質6の中に埋め込むケ
ースである。
Next, FIG. 6 shows an example in which the structure of the reference electrode 10 is simplified. This is a case where a material, such as a platinum wire, which itself is invariable in an electrochemically used region is embedded in the electrolyte 6 of the cell as the reference electrode terminal 11.

電解質6がテープキヤステイング法によりテープ状に
作成されたものを重ね合わせたものであるならば、その
間に挾み込むだけで可能となる。
If the electrolyte 6 is formed by stacking tape-shaped ones formed by the tape casting method, it is possible only by sandwiching between them.

しかしこの場合、参照極の電位基準としての安定性は
一定組成の反応ガスによる参照極の電位でなくなるため
に低くなり、各セルの電極の電位の相対性は第1図又は
第5図に示す参照極の場合に比べて低くなることは避け
られない。
However, in this case, the stability of the reference electrode as the potential reference is low because the potential of the reference electrode due to the reaction gas having a constant composition is lost, and the relative potential of the electrode of each cell is shown in FIG. 1 or FIG. It is inevitable that it will be lower than in the case of the reference electrode.

第2実施例 溶融炭酸塩型燃料電池の小セルに参照極端子を保持さ
せて測定された電流−電位特性を第2図に示す。横軸は
セルの電流密度であり、縦軸はセル電圧と電極電位の電
位である。
Second Example FIG. 2 shows current-potential characteristics measured with a reference electrode terminal held in a small cell of a molten carbonate fuel cell. The horizontal axis represents the cell current density, and the vertical axis represents the cell voltage and the electrode potential.

同図中○印でプロツトしたのがセルの電流−電位特性
1′,1″であり、□印がカソードの電流−電位特性
2′,2″であり、△印がアノードの電流−電位特性
3′,3″である。
In the figure, the plots with ○ are the current-potential characteristics 1 ', 1 "of the cell, the squares are the current-potential characteristics 2', 2" of the cathode, and the triangles are the current-potential characteristics of the anode. 3 ', 3 ".

同図中の各破線は、この小型セルを650℃に昇温し、4
5時間運転した後の電位を示している。電流−電位特性
は、本発明による第6図の方式の参照極端子11によりア
ノード分極、カソード分極に分離して測定した結果であ
る。
The dashed lines in the figure indicate that this small cell is heated to 650 ° C,
The electric potential after driving for 5 hours is shown. The current-potential characteristic is the result of measurement by separating it into anodic polarization and cathodic polarization by the reference electrode terminal 11 of the method of FIG. 6 according to the present invention.

この方式では参照極ガスとして反応ガスを用いてない
ため、開路電位の値に再現性は少ないが、分極の値とし
ては評価できる。
In this method, since the reaction gas is not used as the reference electrode gas, the open circuit potential value has little reproducibility, but it can be evaluated as the polarization value.

この測定結果から、この小型セルはアノード分極が大
きく、セル性能として低いことが判る。
From this measurement result, it is understood that this small cell has a large anode polarization and a low cell performance.

この小型セルのアノードの反応ガスである水素ガスを
一時遮断することにより、セルの電流−電位特性は1′
から1″へ回復し、アノードも3′から3″へ回復して
いる。
By temporarily shutting off hydrogen gas, which is a reaction gas of the anode of this small cell, the current-potential characteristic of the cell is 1 '.
To 3 ″ from 3 ′ to 3 ″.

この小型セルのアノードの水素ガスを一時的に遮断し
た時にアノードとセルの電位が変化する様子を第9図に
示した。
FIG. 9 shows how the electric potentials of the anode and the cell change when the hydrogen gas of the anode of this small cell is temporarily cut off.

この図の横軸は経過時間を、縦軸はセルとアノードの
分極を示す。セルの分極はセルの電圧がセルの開路電圧
(この場合1.10V)即ち平衝電圧からセルの分極電圧即
ちセル電圧に低下した低下分で表わされ、アノードの分
極はアノードの電位がアノードの平衝電位からアノード
の分極電位に低下した低下分で表わされている。
The horizontal axis of this figure shows the elapsed time, and the vertical axis shows the polarization of the cell and the anode. The polarization of a cell is represented by the decrease in the voltage of the cell from the open circuit voltage of the cell (in this case 1.10V), that is, the parallel voltage, that is, the polarization voltage of the cell, that is, the cell voltage. It is represented by the amount of decrease from the equilibrium potential to the polarization potential of the anode.

曲線Aはセルの分極を示し、曲線Bはアノードの分極
を示す。負荷電流150mA/cm2の状態で、アノード側の水
素ガスを遮断することによりアノードの界面状態は大き
く変化し、水素ガスの再供給によりアノードの分極が減
少しセルの分極も減少して、セルの性能が回復してい
る。
Curve A shows the polarization of the cell and curve B shows the polarization of the anode. When the load current is 150 mA / cm 2 , shutting off the hydrogen gas on the anode side changes the interfacial state of the anode significantly, and re-supply of hydrogen gas reduces the polarization of the anode and also reduces the polarization of the cell. Is recovering its performance.

第10図は数回の水素ガス遮断を行つた場合の運転経過
時間約220時間のセルの性能特性を示したものである。
この図の横軸は遮断した水素ガスの再供給開始後の時間
であり,縦軸はセル電圧である。
Figure 10 shows the performance characteristics of the cell when the hydrogen gas was shut off several times and the elapsed operating time was about 220 hours.
The horizontal axis of this figure is the time after the start of resupply of the interrupted hydrogen gas, and the vertical axis is the cell voltage.

曲線Aはセルを運転開始した時に、負荷電流150mA/cm
2の状態で水素ガスを遮断し、再供給後2時間内のセル
電圧の経時変化を示し、曲線Bはこのセルを引続き運転
後2回目の水素ガス遮断を行い運転70時間目に再供給を
開始した後5時間内のセル電圧の経時変化を示し、曲線
Cは3回目の水素ガス遮断を行い、90時間目に再供給を
開始した後9時間内のセル電圧の経時変化を示し、曲線
Dは4回目の水素ガス遮断を行い、185時間目に再供給
を開始した後12時間内のセル電圧の経時変化を示し、曲
線Eは5回目の水素ガス遮断を行い、210時間目に再供
給を開始した後19時間内のセル電圧の経時変化を示した
ものである。
Curve A shows a load current of 150mA / cm when the cell is put into operation.
In the state of 2 , the hydrogen gas was shut off, and the time course of the cell voltage within 2 hours after re-supply was shown. Curve B continued to run this cell and shut off the hydrogen gas for the second time and re-supply at 70 hours of operation. The time-dependent change of the cell voltage within 5 hours after the start, the curve C shows the time-dependent change of the cell voltage within 9 hours after starting the hydrogen gas interruption for the third time and starting the resupply at the 90th time. D shows the change with time of the cell voltage within 12 hours after starting the resupply at 185 hours after performing the fourth hydrogen gas cutoff, and curve E shows the fifth hydrogen gas cutoff at 210 hours. It shows the change with time of the cell voltage within 19 hours after starting the supply.

この図から判るように、遮断した水素ガスの再供給開
始後のセル電圧の低下速度は、水素ガスの遮断を行う度
に低減し、セル電圧の安定化の様子がよく表われてお
り、数回行うことにより安定した性能となつている。
As can be seen from this figure, the rate of decrease of the cell voltage after the re-supply of the interrupted hydrogen gas is started is reduced each time the hydrogen gas is interrupted, and the stabilization of the cell voltage is well represented. Stable performance is achieved by repeating the operation.

この実施例のセルはアノード分極の大きい場合であつ
たが、カソード分極が大きく、セル性能を下げている場
合もある。その場合はこのセルの場合とは逆に、カソー
ドの反応ガスである炭酸ガスの遮断を数回行うことによ
りカソード分極が減少し、セル性能を回復する。なお、
このような性能回復のための処置は適切に行うべきであ
つて、アノード分極が大きい時にカソードの炭酸ガスを
遮断しても性能回復がはかれないことはもとより、逆に
カソードの性能低下につながる危険性も高い。この意味
でも電池電圧をアノード分極及びカソード分極に分離し
て問題点を把握することは重要であると言える。
Although the cell of this embodiment has a large anode polarization, it may have a large cathode polarization, resulting in poor cell performance. In that case, contrary to the case of this cell, the cathode polarization is reduced and the cell performance is restored by cutting off the carbon dioxide gas, which is the reaction gas of the cathode, several times. In addition,
It is necessary to take appropriate measures for such performance recovery, and even if the carbon dioxide gas of the cathode is cut off when the anode polarization is large, not only the performance is not recovered, but also the performance of the cathode is deteriorated. High risk. In this sense as well, it can be said that it is important to separate the battery voltage into anode polarization and cathode polarization to understand the problem.

〔発明の効果〕〔The invention's effect〕

本発明の構成によれば、複数個のセルを積層した燃料
電池においても、燃料電池の少なくとも1個のセルが参
照極端子を保持することにより、そのセルの電圧をアノ
ード分極とカソード分極とに分離して測定できるので、
セル電圧が目標値より小さい場合どちらの電極が大きい
のかを的確に知られ、かつ少なくとも1個のセルが参照
極端子を保持する燃料電池の作動時に、そのセルの電圧
が目標値より小さい場合電極の分極として大きい方の電
極の反応ガスの一部ないし全てを一時遮断することによ
り、その電極表面の酸化,溶出あるいは酸化と溶出のい
ずれかが起きてその電極表面を適度に濡れ易くし、反応
場を増大させ活性化させるので、その電極の分極が減少
し、セルの電圧が回復して正常な運転状態に復帰すると
ともに電池の寿命が長くなる。
According to the configuration of the present invention, even in a fuel cell in which a plurality of cells are stacked, at least one cell of the fuel cell holds the reference electrode terminal, so that the voltage of the cell is changed to anodic polarization and cathodic polarization. Since it can be measured separately,
If the cell voltage is smaller than the target value, it is precisely known which electrode is larger, and at the time of operation of the fuel cell in which at least one cell holds the reference electrode terminal, if the voltage of the cell is smaller than the target value, the electrode By temporarily blocking part or all of the reaction gas of the larger electrode as the polarization of the electrode, either oxidation or elution of the electrode surface or oxidation and elution occurs, and the electrode surface is easily wetted appropriately to Since the field is increased and activated, the polarization of the electrode is reduced, the voltage of the cell is restored, the normal operating condition is restored, and the battery life is extended.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による参照極の縦断面図であり、第2図
は本発明による水素ガスの遮断によるアノード分極の減
少、セル電圧の回復を示す電池の電流−電位特性図であ
り、第3図は本発明による電池のセル電圧の分極分離と
セル電圧低下の要因別のモデルを示す図であり、第4図
は本発明による電池の1個のブロツクの構成を示す図で
あり、第5図は本発明による別構造の参照極の縦断面図
であり、第6図は簡単な参照極端子の縦断面図であり、
第7図は各セルに参照極を用いる場合のブロツク構成を
示す図であり、第8図は各セルに参照極を用いる場合の
別のブロツク構成を示す図であり、第9図は1回の水素
ガスの遮断および再供給開始後のアノード分極及びセル
の分極の経時変化を示す図であり、第10図は数回の水素
ガスの遮断および再供給開始によるセル電圧の低下速度
の変化を示す図である。 5……セパレーター、6……電解質、11……参照極端
子。
FIG. 1 is a vertical cross-sectional view of a reference electrode according to the present invention, and FIG. 2 is a current-potential characteristic diagram of a battery showing reduction of anodic polarization and recovery of cell voltage due to interruption of hydrogen gas according to the present invention. FIG. 3 is a diagram showing a model according to factors of polarization separation of cell voltage and cell voltage drop of the battery according to the present invention, and FIG. 4 is a diagram showing a configuration of one block of the battery according to the present invention. 5 is a vertical sectional view of a reference electrode having another structure according to the present invention, and FIG. 6 is a vertical sectional view of a simple reference electrode terminal.
FIG. 7 is a diagram showing a block configuration when a reference electrode is used for each cell, FIG. 8 is a diagram showing another block configuration when a reference electrode is used for each cell, and FIG. FIG. 10 is a diagram showing changes with time in anodic polarization and cell polarization after shutting off hydrogen gas and starting re-supply, and FIG. 10 shows changes in cell voltage lowering rate by shutting off hydrogen gas and starting re-supply several times. FIG. 5 …… Separator, 6 …… Electrolyte, 11 …… Reference electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 秀夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 岩本 一男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 三次 浩一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭62−31957(JP,A) 特開 昭57−77955(JP,A) 特開 昭61−264683(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Okada, 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture, Hitate Works, Ltd. (72) Inventor, Kazuo Iwamoto 4026, Kuji Town, Hitachi City, Ibaraki, Nitate Works, Ltd. Hitachi Research Laboratory (72) Inventor Koichi Miyoshi 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Institute, Ltd. (72) Inventor Yuichi Kamo 4026 Kuji Town, Hitachi City, Ibaraki Hitachi Research Institute, Ltd. (56) References JP-A-62-31957 (JP, A) JP-A-57-77955 (JP, A) JP-A-61-264683 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶融炭酸塩の電解質と、該電解質の両側に
配設された1対の電極と、該1対の電極のそれぞれの外
側に配設され、反応ガスを供給する機構を有するセパレ
ーターとからなる燃料電池セルが複数個積層されたスタ
ックからなる溶融炭酸塩型燃料電池の運転方法におい
て、 前記燃料電池の少なくとも1個のセルに、前記電極とは
絶縁状態で、かつ前記電解質に接触するように設けら
れ、セルの電圧をアノード分極およびカソード分極に分
離して測定する参照端子を設けるとともに、 燃料電池の運転作動時に、この参照極端子よりセル電圧
をアノード分極及びカソード分極に分離して測定し、か
つ前記セル電圧が目標値より小さい場合には、前記セル
の電極の分極として目標値より大きい方の電極の反応ガ
スの一部若しくは全てを一時遮断状態にして燃料電池を
運転するようにしたことを特徴とする溶融炭酸塩型燃料
電池の運転方法。
1. A separator having a molten carbonate electrolyte, a pair of electrodes disposed on both sides of the electrolyte, and a separator disposed outside each of the pair of electrodes and having a mechanism for supplying a reaction gas. In a method for operating a molten carbonate fuel cell comprising a stack of a plurality of fuel cell units, each of which comprises a stack of a plurality of fuel cell units, and at least one cell of the fuel cell is in an insulated state from the electrode and is in contact with the electrolyte. A reference terminal for measuring the cell voltage by separating it into anodic polarization and cathodic polarization is provided, and the cell voltage is separated into anodic polarization and cathodic polarization from this reference electrode terminal during operation of the fuel cell. If the cell voltage is smaller than the target value, the polarization of the electrode of the cell may be partially or completely removed from the reaction gas of the electrode larger than the target value. The method of operating a molten carbonate fuel cell is characterized in that so as to operate the fuel cell in the blocking state.
JP62157747A 1987-06-26 1987-06-26 Method of operating molten carbonate fuel cell Expired - Fee Related JPH0831332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157747A JPH0831332B2 (en) 1987-06-26 1987-06-26 Method of operating molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157747A JPH0831332B2 (en) 1987-06-26 1987-06-26 Method of operating molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS643968A JPS643968A (en) 1989-01-09
JPH0831332B2 true JPH0831332B2 (en) 1996-03-27

Family

ID=15656464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157747A Expired - Fee Related JPH0831332B2 (en) 1987-06-26 1987-06-26 Method of operating molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0831332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390756A (en) * 2012-05-09 2013-11-13 中国科学院大连化学物理研究所 Preparation method of dynamic hydrogen electrode of proton exchange membrane fuel cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053184B2 (en) * 1988-08-12 2000-06-19 三菱電機株式会社 Analysis method of battery characteristics
US5085949A (en) * 1991-02-05 1992-02-04 Kabushiki Kaisha Toshiba Fuel cell generation system
KR100393283B1 (en) * 2001-06-18 2003-07-31 한국에너지기술연구원 Polymer electrolyte membrane/electrode assembly with metal wire end in it, and its manufacturing method for polymer electrolyte membrane fuel cell
JP4362266B2 (en) * 2002-05-10 2009-11-11 本田技研工業株式会社 Fuel gas supply shortage detection method and fuel cell control method
KR100618233B1 (en) * 2004-05-18 2006-09-01 에스케이씨 주식회사 System for determining polarization property of a membrane electrode assembly for a polymer electrolyte membrane fuel cell
CN111272855B (en) * 2020-03-25 2024-07-09 素水能源科技(苏州)有限公司 Testing device for single electrode electrochemical test under fuel cell working state

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490021A1 (en) * 1980-09-05 1982-03-12 Thomson Csf ELECTROCHEMICAL CELL TYPE DEVICE WITH SOLID ELECTROLYTE AND METHOD OF MANUFACTURING THE SAME
JPS61264683A (en) * 1985-05-17 1986-11-22 Fuji Electric Co Ltd Measuring device for current distribution at electrode part of fuel cell
JPH0821413B2 (en) * 1985-08-05 1996-03-04 株式会社日立製作所 Fuel cell generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390756A (en) * 2012-05-09 2013-11-13 中国科学院大连化学物理研究所 Preparation method of dynamic hydrogen electrode of proton exchange membrane fuel cell

Also Published As

Publication number Publication date
JPS643968A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
Barfod et al. Break down of losses in thin electrolyte SOFCs
EP0275356B1 (en) Solid electrolyte fuel cell and method for preparing it
US7749623B2 (en) Method of controlling fuel cell system
US8557468B2 (en) High performance electrolyte for molten carbonate fuel cells comprising carbonate electrolyte doped with additive material(s) and lithium precursor(s)
Nguyen Technological status of nickel oxide cathodes in molten carbonate fuel cells—a review
KR20080016858A (en) High-lithium electrolyte for use in molten carbonate fuel cells and method for making same
JPH0927336A (en) Fuel cell stack diagnostic method
Bronstein et al. Lanthanum trifluoride as a membrane in a reference electrode for use in certain molten fluorides
JPH0831332B2 (en) Method of operating molten carbonate fuel cell
Lagergren et al. Investigation of porous electrodes by current interruption: application to molten carbonate fuel cell cathodes
JP2011210420A (en) Electrochemical cell
Bonino et al. Electrochemical behavior of solid cathode materials in organic electrolyte lithium batteries: Copper sulfides
Baumgartner NiO solubility in molten Li/K carbonate under molten carbonate fuel cell cathode environments
JP2516274B2 (en) Fuel cell power plant
JP5450067B2 (en) High performance cathode with controlled operating temperature range
JPH069143B2 (en) Fuel cell storage method
US10511051B1 (en) Li-water secondary electrochemical battery
JP6720846B2 (en) Electrochemical device system
US20180019494A1 (en) Regeneration of fuel cell electrodes
JPH06288980A (en) Electrochemical sensor, fuel cell, and monitoring method for electrolyte content
JPH0622153B2 (en) How to operate a fuel cell
JP3094767B2 (en) Fuel cell electrolyte replenishment method
US949506A (en) Art of rejuvenating storage batteries.
KR20170094343A (en) Method for regenerating the electrolyte solution of a rechargeable redox flow battery
US3553025A (en) Fuel cell with an electrode comprising barium tantalum bronze or strontium niobium bronze

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees