JPH0831327B2 - Fuel cell oxidant gas supply device - Google Patents

Fuel cell oxidant gas supply device

Info

Publication number
JPH0831327B2
JPH0831327B2 JP61278449A JP27844986A JPH0831327B2 JP H0831327 B2 JPH0831327 B2 JP H0831327B2 JP 61278449 A JP61278449 A JP 61278449A JP 27844986 A JP27844986 A JP 27844986A JP H0831327 B2 JPH0831327 B2 JP H0831327B2
Authority
JP
Japan
Prior art keywords
oxidant gas
heat exchanger
fuel cell
gas
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61278449A
Other languages
Japanese (ja)
Other versions
JPS63133461A (en
Inventor
長之 堀内
潤 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
IHI Corp
Original Assignee
Denryoku Chuo Kenkyusho
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, IHI Corp filed Critical Denryoku Chuo Kenkyusho
Priority to JP61278449A priority Critical patent/JPH0831327B2/en
Publication of JPS63133461A publication Critical patent/JPS63133461A/en
Publication of JPH0831327B2 publication Critical patent/JPH0831327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池の酸化剤ガスを昇温して供給する
装置の改良に関し、酸化剤ガス再循環用設備(駆動源
等)を不要とするものである。
Description: TECHNICAL FIELD The present invention relates to an improvement in a device for heating and supplying an oxidant gas in a fuel cell, which eliminates the need for an oxidant gas recirculation facility (driving source or the like). To do.

〔従来の技術〕[Conventional technology]

これらの発電装置として注目され、研究開発が進めら
れている燃料電池は、天然ガスや石炭などの燃料の持っ
ている化学エネルギを直接、連続的に電気エネルギに変
換するものであり、従来の発電方法に比べカルノー効率
の制限を受けず高い総合効率が得られる。
Fuel cells, which are attracting attention as these power generators and are being researched and developed, directly and continuously convert the chemical energy of fuels such as natural gas and coal into electrical energy. Compared to the method, high overall efficiency can be obtained without being restricted by Carnot efficiency.

このような燃料電池は、一対の電極と電解質から構成
される単電池を多数直列に接続して集合電池とし、さら
に、集合電池を組合せて燃料電池本体とし、燃料ガスと
酸化剤ガスを供給することによって電力を取り出すよう
にしている。
In such a fuel cell, a large number of single cells composed of a pair of electrodes and an electrolyte are connected in series to form an assembled cell, and further the assembled cells are combined to form a fuel cell body, and a fuel gas and an oxidant gas are supplied. By doing so, we try to extract electricity.

例えば、第二世代の溶融炭酸塩型燃料電池では、電解
質としてアルミン酸リチウム(LiAlO2)粒子層中に炭酸
塩を含浸させたものが使用されている。このため電解質
部分を500℃以上に保持する必要があり、第2図に示す
ように、燃料電池本体1に供給される燃料ガス2と酸化
剤ガス3のうち、酸化剤ガス3の出口配管4を分岐させ
てリサイクルブロワ5を設置し、酸化剤ガス3の入口配
管6に接続するようにしている。
For example, in a second generation molten carbonate fuel cell, a lithium aluminate (LiAlO 2 ) particle layer impregnated with a carbonate is used as an electrolyte. Therefore, it is necessary to keep the electrolyte portion at 500 ° C. or higher. As shown in FIG. 2, of the fuel gas 2 and the oxidant gas 3 supplied to the fuel cell body 1, the outlet pipe 4 for the oxidant gas 3 The recycle blower 5 is installed by branching from the above, and is connected to the inlet pipe 6 of the oxidant gas 3.

このような酸化剤ガス2の再循環系を設けることによ
って、燃料電池本体1に入る酸化剤ガス2の温度を高
めるとともに、燃料電池本体1で発生する熱を除去す
るのに十分なガス流量を確保するようにしている。
By providing such a recirculation system for the oxidant gas 2, the temperature of the oxidant gas 2 entering the fuel cell body 1 is raised and a gas flow rate sufficient to remove the heat generated in the fuel cell body 1 is provided. I try to secure it.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、このようなリサイクルブロワ5には、700
℃程度の高温ガスが入るため軸シール等の製造上の問題
が多く、しかも、電動機等の駆動源を必要とし、所要動
力分だけ、発電効率の低下を招いてしまう。
However, such a recycling blower 5 has 700
Since a high-temperature gas of about ℃ enters, there are many problems in manufacturing such as shaft seals, moreover, a drive source such as an electric motor is required, and the power generation efficiency is reduced by the required power.

この発明はかかる従来技術の問題点に鑑みてなされた
もので、駆動源を不要とし、発電効率を低下させること
なく、酸化剤ガスの供給温度を反応に必要な高温に加熱
でき、しかも集合電池内で発生する熱を冷却するのに必
要なガス流量を確保できる燃料電池の酸化剤ガス供給装
置を提供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and does not require a drive source and can heat the supply temperature of the oxidant gas to the high temperature necessary for the reaction without lowering the power generation efficiency, and moreover, the assembled battery. It is intended to provide an oxidant gas supply device for a fuel cell, which can secure a gas flow rate necessary for cooling the heat generated therein.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明による燃料電池本体
を複数の集合電池で構成し、これらの集合電池の間のそ
れぞれに燃料ガスと熱交換する熱交換器および酸化剤ガ
スと熱交換する熱交換器を設け、燃料ガスの供給管を最
上流側の集合電池から前記燃料ガスとの熱交換器を介し
て下流側に流すように配管する一方、酸化剤ガスの供給
管を下流側の前記集合電池の間の入側で分岐して一方を
前記燃料ガスとの熱交換器に、他方を酸化剤ガスの熱交
換器にそれぞれ接続して出側で集合させることを繰り返
して最上流の集合電池から前記酸化剤ガスとの熱交換器
を介して下流側に流すように配管したことを特徴とする
ものである。
In order to solve the above problems, the fuel cell body according to the present invention is composed of a plurality of assembled cells, and a heat exchanger for exchanging heat with the fuel gas and a heat exchange for exchanging heat with the oxidant gas are provided between each of the assembled cells. And a pipe for supplying the fuel gas supply pipe from the assembled battery on the most upstream side to the downstream side through a heat exchanger with the fuel gas, while the supply pipe for the oxidant gas is installed on the downstream side. The most upstream assembled battery by repeating branching at the inlet side between the cells and connecting one to the heat exchanger for the fuel gas and the other to the heat exchanger for the oxidant gas and assembling at the outlet side. To the downstream side through a heat exchanger with the oxidant gas.

〔作 用〕[Work]

燃料電池本体を複数の集合電池で構成し、これらの集
合電池の間のそれぞれに燃料ガスと熱交換する熱交換器
および酸化剤ガスと熱交換する熱交換器を設け、燃料ガ
スの供給管を最上流側の集合電池から前記燃料ガスとの
熱交換器を介して下流側に流すように配管する一方、酸
化剤ガスの供給管を下流側の前記集合電池の間の入側で
分岐して一方を前記燃料ガスとの熱交換器に、他方を酸
化剤ガスの熱交換器にそれぞれ接続して出側で集合させ
ることを繰り返して最上流の集合電池から前記酸化剤ガ
スとの熱交換器を介して下流側に流すように配管してお
り、燃料電池本体を構成する各集合電池に供給する酸化
剤ガスを入側で燃料ガス及び酸化剤ガスと熱交換するよ
うにして予熱を行うようにでき、しかも酸化剤ガスの集
合電池の出側での熱交換により燃料電池本体からの全発
熱を複数の集合電池の分割数に応じて分割し、各集合電
池にすべての酸化剤ガスを流すようにし、従来のような
リサイクルブロワによるガス流量の増大をはかること無
く、十分な冷却ができるようにしている。
The fuel cell body is composed of a plurality of assembled cells, and a heat exchanger for exchanging heat with the fuel gas and a heat exchanger for exchanging heat with the oxidant gas are provided between the assembled cells, and a supply pipe for the fuel gas is provided. While piping to flow from the most upstream side assembled cell to the downstream side via the heat exchanger with the fuel gas, the oxidant gas supply pipe is branched at the inlet side between the downstream side assembled cells. One is connected to the heat exchanger for the fuel gas, and the other is connected to the heat exchanger for the oxidant gas, and the process of assembling at the outlet side is repeated, and the heat exchanger for the oxidant gas from the most upstream assembled battery is repeated. It is connected to the downstream side of the fuel cell main body through the fuel cell and is preheated by exchanging the oxidant gas to be supplied to each assembled cell that constitutes the fuel cell main body with the fuel gas and the oxidant gas on the inlet side. The heat of the oxidant gas at the outlet side of the assembled battery In this way, the total heat generated from the fuel cell main body is divided according to the number of divisions of multiple assembled cells, and all the oxidant gas is made to flow through each assembled cell to increase the gas flow rate by the conventional recycle blower. It is designed so that it can be cooled sufficiently.

〔実施例〕〔Example〕

以下この発明の一実施例を図面に基づい詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明の燃料電池の酸化剤ガス供給装置の
一実施例として燃料電池を2つに分け、燃料ガスと酸化
剤ガスを直列に流した場合の概略構成図である。
FIG. 1 is a schematic configuration diagram in a case where a fuel cell is divided into two and a fuel gas and an oxidant gas are flown in series as an embodiment of an oxidant gas supply device for a fuel cell of the present invention.

この燃料電池の酸化剤ガス供給装置10では、燃料電池
本体11が2つの集合電池11a,11bで構成され、燃料ガス1
2および酸化剤ガス13が直列に供給されて集合電池11aを
通過したのち、集合電池11bに送られるようになってい
る。
In this oxidant gas supply device 10 for a fuel cell, the fuel cell body 11 is composed of two assembled cells 11a and 11b.
2 and the oxidant gas 13 are supplied in series, pass through the collective battery 11a, and then are sent to the collective battery 11b.

この2つの集合電池11a,11bの間に設けれた燃料用接
続管14と酸化剤ガス用接続管15のそれぞれの中間部に
は、第1の熱交換器16と第2の熱交換器17とが介装して
ある。
A first heat exchanger 16 and a second heat exchanger 17 are provided at intermediate portions of the fuel connection pipe 14 and the oxidant gas connection pipe 15 provided between the two assembled batteries 11a and 11b. And are installed.

そして、第1の熱交換器16と第2の熱交換器17には、
図示しないブロワ等で加圧されて供給される酸化剤ガス
13用の供給管18が2つに分岐されて接続され、第1およ
び第2の熱交換器16,17を通過したのち、、再び一緒に
集められて集合電池11aから燃料電池本体11に供給され
るよう配管されている。
And, in the first heat exchanger 16 and the second heat exchanger 17,
Oxidizer gas pressurized and supplied by a blower (not shown)
The supply pipe 18 for 13 is branched and connected in two, passes through the first and second heat exchangers 16 and 17, and is then collected together and supplied from the collective battery 11a to the fuel cell main body 11. Have been plumbed to be.

これら第1および第2の熱交換器16,17としては、熱
交換する2つの流体がいずれも気体であることを考慮し
て選定すれば良い。
The first and second heat exchangers 16 and 17 may be selected in consideration of the fact that the two fluids that exchange heat are both gases.

また、図示省略したが、燃料ガス12および酸化剤ガス
13の配管系には、必要なバルブや流量計等が設けてあ
る。
Although not shown, the fuel gas 12 and the oxidant gas
The 13 piping systems are provided with necessary valves and flow meters.

かように構成した燃料電池の酸化剤ガス供給装置10で
は、図示しないブロワ等で送給される酸化剤ガス13は供
給管18から分岐されて第1の熱交換器16および第2の熱
交換器17に送られる。
In the oxidant gas supply device 10 of the fuel cell configured as described above, the oxidant gas 13 supplied by a blower (not shown) is branched from the supply pipe 18 to form the first heat exchanger 16 and the second heat exchanger. Sent to vessel 17.

こうすることにより、第1の熱交換器16では、初段の
集合電池11aを通過した燃料ガス12と熱交換され、酸化
剤ガス13が550℃程度まで加熱される。また、第2の熱
交換器17では、初段の集合電池11aを通過し、内部を冷
却することによって700℃程度まで加熱された酸化剤ガ
ス13とこれから初段の集合電池11aに供給される酸化剤
ガス13とが熱交換され、集合電池11b入口酸化剤ガスお
よび第2の熱交換器出口酸化剤ガスそれぞれが550℃程
度まで冷却ないしは加熱される。
By doing so, the first heat exchanger 16 exchanges heat with the fuel gas 12 that has passed through the first-stage assembled battery 11a, and the oxidant gas 13 is heated to about 550 ° C. Further, in the second heat exchanger 17, the oxidant gas 13 which has passed through the first-stage assembled battery 11a and has been heated to about 700 ° C. by cooling the inside thereof and the oxidant to be supplied to the first-stage assembled battery 11a from now on. The gas 13 is heat-exchanged with each other, and the inlet battery 11b inlet oxidant gas and the second heat exchanger outlet oxidant gas are cooled or heated to about 550 ° C., respectively.

こうして第1および第の熱交換器16,17を通過して予
熱された酸化剤ガス13は再び一緒にされて初段の集合電
池11aから燃料電池本体11に供給される。
The oxidant gases 13 preheated by passing through the first and the first heat exchangers 16 and 17 are combined again and supplied to the fuel cell main body 11 from the first-stage assembled battery 11a.

そして、初段の集合電池11a内の電気化学反応に供さ
れると同時に内部を冷却するが、酸化剤ガス13の流量
は、従来のリサイクルブロワで再循環する場合のように
供給管18から供給された流量に再循環される酸化剤ガス
の流量が加わることがなく供給流量のまま燃料電池本体
11に供給されるが、この場合でも、燃料電池本体11が2
つの集合電池11a,11bに分けられており、それぞれの発
熱量も半分なので、酸化剤ガス13の流量が従来に比べて
少なくても十分な冷却ができる。
Then, while being supplied to the electrochemical reaction in the first-stage assembled battery 11a, the inside is cooled at the same time, but the flow rate of the oxidant gas 13 is supplied from the supply pipe 18 as in the case of being recirculated by a conventional recycle blower. The flow rate of the recirculated oxidant gas is not added to the specified flow rate, and the fuel cell main
The fuel cell body 11 is supplied to the
It is divided into two assembled batteries 11a and 11b, and the heat generation amount of each is also half. Therefore, sufficient cooling can be performed even when the flow rate of the oxidant gas 13 is smaller than in the conventional case.

一方、初段の集合電池11aを通過して550℃から700℃
程度に加熱された酸化剤ガス13は、上述のように、第2
の熱交換器17で冷却され、550℃程度となって次段の集
合電池11bに供給され、電気化学反応に供されると同時
に内部を冷却して排気系に送られる。
On the other hand, after passing through the first-stage assembled battery 11a, 550 ℃ to 700 ℃
The oxidant gas 13 which has been heated to a certain degree is used as the second gas as described above.
It is cooled by the heat exchanger 17 and is supplied to the next-stage assembled battery 11b at about 550 ° C. and is supplied to the electrochemical reaction, and at the same time, the inside is cooled and sent to the exhaust system.

この集合電池11bでも、酸化剤ガス13が初段の集合電
池11aへの入口温度とほぼ等しい550℃程度で供給され、
一方、集合電池11bからの発生熱量も半分程度となって
いるので、十分な冷却が行なわれる。
Also in this assembled battery 11b, the oxidant gas 13 is supplied at about 550 ° C., which is almost equal to the inlet temperature to the first-stage assembled battery 11a,
On the other hand, since the amount of heat generated from the assembled battery 11b is about half, sufficient cooling is performed.

なお、上記実施例では、酸化剤ガスの第1および第2
の熱交換器への流量は、燃料電池本体の入口での必要温
度により適宜調整するようにする。
In the above-mentioned embodiment, the first and second oxidizing gas are used.
The flow rate to the heat exchanger is adjusted appropriately according to the required temperature at the inlet of the fuel cell body.

〔発明の効果〕〔The invention's effect〕

上記一実施例とともに具体的に説明したようにこの発
明によれば、燃料電池本体を複数の集合電池で構成し、
これらの集合電池の間のそれぞれに燃料ガスと熱交換す
る熱交換器および酸化剤ガスと熱交換する熱交換器を設
け、燃料ガスの供給管を最上流側の集合電池から前記燃
料ガスとの熱交換器を介して下流側に流すように配管す
る一方、酸化剤ガスの供給管を下流側の前記集合電池の
間の入側で分岐して一方を前記燃料ガスとの熱交換器
に、他方を酸化剤ガスの熱交換器にそれぞれ接続して出
側で集合させることを繰り返して最上流の集合電池から
前記酸化剤ガスとの熱交換器を介して下流側に流すよう
に配管したので、燃料電池本体を構成する各集合電池に
供給する酸化剤ガスを入側で燃料ガス及び酸化剤ガスと
熱交換するようにして予熱を行うようにでき、しかも酸
化剤ガスの集合電池の出側での熱交換により燃料電池本
体からの全発熱を複数の集合電池の分割数に応じて分割
し、各集合電池にすべての酸化剤ガスを流すようにし、
従来のようなサイクルブロワによるガス流量の増大をは
かること無く、十分な冷却ができる。
According to the present invention as specifically described with the above one embodiment, the fuel cell main body is composed of a plurality of assembled cells,
A heat exchanger for exchanging heat with the fuel gas and a heat exchanger for exchanging heat with the oxidant gas are provided between each of the assembled cells, and a fuel gas supply pipe is provided between the assembled cell on the most upstream side and the fuel gas. While piping to flow to the downstream side through the heat exchanger, the supply pipe of the oxidant gas is branched at the inlet side between the assembled cells on the downstream side and one is a heat exchanger with the fuel gas, The other was connected to a heat exchanger for oxidant gas and repeatedly collected at the outlet side, so that piping was made to flow from the most upstream assembled battery to the downstream side via the heat exchanger with the oxidant gas. , Preheating can be performed by exchanging the oxidant gas supplied to each of the assembled cells constituting the fuel cell main body with the fuel gas and the oxidant gas at the inlet side, and the outlet side of the assembled cell of the oxidant gas The total heat generated from the fuel cell body is Divided according to the number of divisions of a set battery, so as to flow all of the oxidant gas to each set battery,
Sufficient cooling can be performed without increasing the gas flow rate by the conventional cycle blower.

したがって、リサイクルブロワの所要動力分だけエネ
ルギ消費が減少し、燃料電池システムの効率向上がはか
れ、送電端効率が1%以上良くなる。
Therefore, the energy consumption is reduced by the amount of power required by the recycle blower, the efficiency of the fuel cell system is improved, and the efficiency at the power transmission end is improved by 1% or more.

また、リサイクルブロワの廃止により動的機器が減
り、装置の信頼性が向上するとともに、保守点検も容易
となる。
In addition, the elimination of the recycle blower reduces the number of dynamic equipment, improves the reliability of the equipment, and facilitates maintenance and inspection.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の燃料電池の酸化剤ガス供給装置の一
実施例にかかる概略構成図、第2図は従来例の概略構成
図である。 10……燃料電池の酸化剤ガス供給装置、11……燃料電池
本体、11a,11b……集合電池、12……燃料ガス、13……
酸化剤ガス、14……燃料用接続管、15……酸化剤ガス用
接続管、16……第1の熱交換器、17……第2の熱交換
器、18……供給管。
FIG. 1 is a schematic configuration diagram according to an embodiment of an oxidant gas supply device for a fuel cell of the present invention, and FIG. 2 is a schematic configuration diagram of a conventional example. 10 …… Fuel cell oxidant gas supply device, 11 …… Fuel cell body, 11a, 11b …… Assembly cell, 12 …… Fuel gas, 13 ……
Oxidant gas, 14 ... Fuel connection pipe, 15 ... Oxidant gas connection pipe, 16 ... First heat exchanger, 17 ... Second heat exchanger, 18 ... Supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料電池本体を複数の集合電池で構成し、
これらの集合電池の間のそれぞれに燃料ガスと熱交換す
る熱交換器および酸化剤ガスと熱交換する熱交換器を設
け、燃料ガスの供給管を最上流側の集合電池から前記燃
料ガスとの熱交換器を介して下流側に流すように配管す
る一方、酸化剤ガスの供給管を下流側の前記集合電池の
間の入側で分岐して一方を前記燃料ガスとの熱交換器
に、他方を前記酸化剤ガスの熱交換器にそれぞれ接続し
て出側で集合させることを繰り返して最上流の集合電池
から前記酸化剤ガスとの熱交換器を介して下流側に流す
ように配管したことを特徴とする燃料電池の酸化剤ガス
供給装置。
1. A fuel cell body comprising a plurality of assembled cells,
A heat exchanger for exchanging heat with the fuel gas and a heat exchanger for exchanging heat with the oxidant gas are provided between each of the assembled cells, and a fuel gas supply pipe is provided between the assembled cell on the most upstream side and the fuel gas. While piping to flow to the downstream side through the heat exchanger, the supply pipe of the oxidant gas is branched at the inlet side between the assembled cells on the downstream side and one is a heat exchanger with the fuel gas, Repeatedly connecting the other to the oxidant gas heat exchanger and collecting them on the outlet side, and piping to flow from the most upstream assembled battery to the downstream side via the oxidant gas heat exchanger. An oxidant gas supply device for a fuel cell, comprising:
JP61278449A 1986-11-21 1986-11-21 Fuel cell oxidant gas supply device Expired - Lifetime JPH0831327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61278449A JPH0831327B2 (en) 1986-11-21 1986-11-21 Fuel cell oxidant gas supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61278449A JPH0831327B2 (en) 1986-11-21 1986-11-21 Fuel cell oxidant gas supply device

Publications (2)

Publication Number Publication Date
JPS63133461A JPS63133461A (en) 1988-06-06
JPH0831327B2 true JPH0831327B2 (en) 1996-03-27

Family

ID=17597492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61278449A Expired - Lifetime JPH0831327B2 (en) 1986-11-21 1986-11-21 Fuel cell oxidant gas supply device

Country Status (1)

Country Link
JP (1) JPH0831327B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512411B2 (en) * 1992-11-25 2004-03-29 エス. スー,マイケル Integration of regenerative and radiative heat in high-temperature electrochemical converters
JP2021150156A (en) * 2020-03-18 2021-09-27 東京瓦斯株式会社 Fuel cell system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124136A (en) * 1974-02-13 1975-09-30
JPS58166673A (en) * 1982-03-26 1983-10-01 Mitsubishi Electric Corp Temperature-humidity exchanger of fuel cell
JPS6039773A (en) * 1983-08-12 1985-03-01 Mitsubishi Electric Corp Layer-built fuel cell

Also Published As

Publication number Publication date
JPS63133461A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
KR0175066B1 (en) Method and installation for generating electric power
US6458477B1 (en) Fuel cell stacks for ultra-high efficiency power systems
RU2601873C2 (en) Solid-oxide fuel cell high-efficiency reform-and-recirculate system
Harvey et al. Gas turbine cycles with solid oxide fuel cells—part I: improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology
JP2942999B2 (en) Molten carbonate fuel cell power generator
CN108417876A (en) A kind of high-temperature fuel cell coupled electricity-generation system and method
CN111477914A (en) Energy recycling system and method for fuel cell system
CN106997957A (en) The method of fuel cell module and this module of operation including heat exchanger
RU2653055C1 (en) Power supply plant based on solid oxide fuel cells
JP2002319428A (en) Molten carbonate fuel cell power generating device
JPS6257072B2 (en)
CN212011147U (en) Hybrid high-temperature fuel cell power generation system
JPH10507867A (en) Fuel cell equipment and method of operating fuel cell equipment
CN1151575C (en) Electric generation system combining solid oxide fuel battery with turbogenerator
JPH03274674A (en) Fuel cell power generation plant system
JPH0831327B2 (en) Fuel cell oxidant gas supply device
JPH0552036B2 (en)
US20100285381A1 (en) Method and apparatus for operating a fuel cell in combination with an orc system
Leeper The hybrid cycle: integration of a fuel cell with a gas turbine
CN113594516B (en) Distributed biomass power generation system and power generation method of plasma-assisted hydrogen production-fuel cell
Fry et al. Design of a prototype fuel cell/composite cycle power station
JPH04144069A (en) Fuel cell
JP2001076750A (en) High temperature fuel cell facility
Archer et al. Power generation by combined fuel cell and gas turbine systems
JP2832640B2 (en) Molten carbonate fuel cell power generator