JPH08311597A - Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product - Google Patents

Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product

Info

Publication number
JPH08311597A
JPH08311597A JP7153777A JP15377795A JPH08311597A JP H08311597 A JPH08311597 A JP H08311597A JP 7153777 A JP7153777 A JP 7153777A JP 15377795 A JP15377795 A JP 15377795A JP H08311597 A JPH08311597 A JP H08311597A
Authority
JP
Japan
Prior art keywords
powder
cold
silicon steel
vessel
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7153777A
Other languages
Japanese (ja)
Inventor
Hodaka Honma
穂高 本間
Junji Kihara
諄二 木原
Tatsuhiko Aizawa
龍彦 相沢
Kenichi Ichige
健一 市毛
Hiroaki Masui
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7153777A priority Critical patent/JPH08311597A/en
Publication of JPH08311597A publication Critical patent/JPH08311597A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To easily and stably produce an ultrahigh silicon steel excellent in magnetic properties but difficult to manufacture. CONSTITUTION: A powder mixture is prepared by mixing powdery Fe and Si, containing inevitable impurities, in the proportion where the amount of Si becomes <=7% by weight. This powder mixture is filled into a vessel composed of easily cold-workable metallic material and having a thin layer, facilitating the separation of the powder from the vessel, on the internal surface, in the position between the powder and the vessel. Then, the powder is subjected, together with the vessel, to cold rolling, to cold forging, or to cold drawing. In this method, the draft of the powder layer is regulated to >=70% by reduction of area, and further, annealing is done in the course of or after cold rolling. By this procedure, the ultrahigh silicon steel excellent in soft-magnetic properties can be produced, and also the intermediate product before the annealing and the final product can be produced. By this method, the ultrahigh performance silicon steel sheet having extremely high silicon content, without causing brittle crack, brittle fracture, etc., can be easily produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超高性能電磁鋼の製造方
法並びにその中間製品及び超高性能電磁製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-high performance electromagnetic steel, its intermediate products and ultra-high performance electromagnetic products.

【0002】[0002]

【従来の技術】Siを含む鋼は、固有電気抵抗が通常の
鋼よりも大きいため、交流磁化における渦電流発生阜が
減少し、磁気的なエネルギー損失が小さくなることか
ら、軟磁性材料として従来より、回転器や、発電器、変
圧器の鉄心として用いられてきた。Si含有量は増加す
ればするほど磁気特性は向上するが、それとともに鋼が
脆くなるという性質があり、圧延、特に冷間圧延を含む
工程を前提とする工業製品として生産されるもののSi
含有量にはおのずと上限があった。従って、一般的な製
鋼、熱間圧延、冷間圧延、焼鈍を経る方法による商用に
供される珪素鋼板のSi含有量は、およそ4%を上限と
されてきた。
2. Description of the Related Art Since steel containing Si has a larger specific electric resistance than ordinary steel, eddy current generation in AC magnetization is reduced and magnetic energy loss is reduced. Therefore, it has been used as an iron core for rotating machines, generators, and transformers. Although the magnetic properties are improved as the Si content is increased, the steel becomes brittle with the Si content, and Si is produced as an industrial product premised on a process including rolling, particularly cold rolling.
The content naturally had an upper limit. Therefore, the Si content of the commercially available silicon steel sheet by the method of general steelmaking, hot rolling, cold rolling, and annealing has been set to about 4% as the upper limit.

【0003】一方、Si量が6.5%程度に達すると磁
歪が極めて小さくなり、それに伴って磁気特性が格段に
向上することが知られている。また、M.Goertz
の研究によると、6.5%Si鋼の単結晶は、〈10
0〉方向に磁化された場合最大透磁率が3800000
(静電単位)に達することが示されており(J.App
l.Phys,; vol.22,No.7,p964
(1951))、これはこれまで公知にされている軟磁
性材料の中で最大のものである。
On the other hand, it is known that when the Si content reaches about 6.5%, the magnetostriction becomes extremely small and the magnetic characteristics are remarkably improved accordingly. In addition, M. Goertz
According to the research of, the single crystal of 6.5% Si steel is
When magnetized in the 0> direction, the maximum magnetic permeability is 3800000.
It has been shown to reach (electrostatic unit) (J. App.
l. Phys ,; vol. 22, no. 7, p964
(1951)), which is the largest soft magnetic material known so far.

【0004】6.5%Si鋼は、これらの優位性がある
ことが知られながら、上述したようにSiを多く含む鋼
は脆く、鋼板等に仕上げるための圧延や、実用に供する
ための成形加工等が困難であり、実用材として市場に供
されることは容易ではなかった。
While it is known that 6.5% Si steel has these advantages, steel containing a large amount of Si is brittle as described above, and is rolled for finishing into a steel plate or the like, and formed for practical use. Since it was difficult to process, it was not easy to put it on the market as a practical material.

【0005】このような超高性能電磁鋼を製造する技術
は、これまでいくつか提案されている。例えば、特開昭
62−227032号公報では、Si含有量の少ない鋼
を圧延し、圧延後の焼鈍時にSiを含むガスを雰囲気中
に導入し、浸珪によってSi含有量を増加させる方法が
開示されている。しかしながらこの方法は、気相中から
鋼板表面を介してSiを鋼中に拡散侵入させるために特
殊雰囲気での浸珪加熱処理が必要で、そのため設備コス
トと運転コストが高いし、さらに最終製品へ成形加工す
る前に6.5%程度のSiを含有する低延性の合金にな
るためその成形加工に際してコストの高い技術を有す
る。
Several techniques for producing such ultra-high performance electromagnetic steel have been proposed so far. For example, JP-A-62-227032 discloses a method of rolling steel having a low Si content, introducing a gas containing Si into the atmosphere during annealing after rolling, and increasing the Si content by siliconizing. Has been done. However, this method requires siliconizing heat treatment in a special atmosphere in order to diffuse and infiltrate Si into the steel from the gas phase through the surface of the steel sheet, which results in high equipment cost and operating cost, and further to the final product. Since it becomes a low-ductility alloy containing about 6.5% Si before forming, it has a high cost technology for forming.

【0006】また、特開昭63−227717号公報に
は、冷間加工に先立つ熱間加工において鋼中に歪を残留
させ、冷間加工を容易ならしめる方法が開示されている
が、実用に際しては、冷間圧延において、鋼板を室温よ
り高い温度に保持しないと、耳割れ等の発牛しない安定
した生産が困難になることから、十分な生産性、低コス
トを実現することが難しい。このように、Siを多く含
む鋼は、その特性の優位性が広く知られていながら、製
造の困難さから実用化が難しく、実生産量も僅かな量に
とどまっているのが実状である。
[0006] Further, Japanese Patent Laid-Open No. 63-227717 discloses a method in which strain is left in steel during hot working prior to cold working to facilitate cold working. In cold rolling, unless the steel sheet is kept at a temperature higher than room temperature, stable production without ear cracking and other cattle production becomes difficult, and it is difficult to realize sufficient productivity and low cost. As described above, steel containing a large amount of Si is widely known for its superiority in properties, but it is difficult to put it into practical use due to the difficulty in manufacturing, and the actual production amount is actually small.

【0007】[0007]

【発明が解決しようとする課題】本発明は、製造や成形
加工に困難を極める軟磁気特性に優れ磁歪の小さな超高
性能電磁鋼板を、容易にかつ安定に製造し、回転器、発
電器、変圧器等の電気磁気特性向上に大きな寄与をもた
らす素材を提供することを目的としてなされた。
DISCLOSURE OF THE INVENTION The present invention easily and stably manufactures an ultra-high-performance electromagnetic steel sheet having excellent soft magnetic properties and small magnetostriction, which is extremely difficult to manufacture and form, and is capable of producing a rotor, a generator, It was made for the purpose of providing a material that greatly contributes to the improvement of the electromagnetic characteristics of a transformer or the like.

【0008】[0008]

【課題を解決するための手段】従来技術のように鋳造等
によって得られる鋼塊を製造の出発素材とせず、粉末を
出発素材とし、従来法において製造の障壁となっていた
鋼の割れを回避するため、粉末より成形体を作る方法を
考察した。単純に圧粉成形しただけでは、粉末同士の接
着性が不足し、十分な成形が困難であり、圧粉体をある
容器に封入し冷間圧延もしくは冷間鍛造もしくは冷間引
き抜き等の加工によって、粉末同士をさらに圧着させる
必要がある。
[Means for Solving the Problems] A steel ingot obtained by casting or the like as in the prior art is not used as a starting material for production, but powder is used as a starting material to avoid cracking of steel which is a barrier to production in the conventional method. Therefore, a method of forming a molded body from powder was considered. Adhesiveness between the powders is insufficient and it is difficult to perform sufficient molding simply by compacting, and the compact is sealed in a container and cold rolled or cold forged or cold drawn. It is necessary to further press-bond the powders together.

【0009】冷延の場合、圧粉体をそのまま圧延に供す
ると形状が保持できない。従って、粉末を鋼製のパイプ
に詰めて封入し、パイプごと冷延を行ったが、一例とし
てSiの重量比率が6.5%となるように粉末を調合し
圧延を行い、70%程度圧延したところ、それ自体で延
性を有する成形体を得ることができた。
In the case of cold rolling, if the green compact is directly subjected to rolling, the shape cannot be maintained. Therefore, the powder was packed in a steel pipe, sealed, and cold-rolled together with the pipe. As an example, the powder was mixed and rolled so that the weight ratio of Si was 6.5%, and rolled by about 70%. As a result, it was possible to obtain a molded product having ductility by itself.

【0010】なお、パイプの内面に酸洗等を行って活性
度を高め、金属面が直接粉末に触れるようにすると、圧
延後パイプと成形体が圧着されて成形体を剥離すること
ができず、本発明の目的に合致しなかった。むしろパイ
プ内面に若干の酸化被膜もしくは汚れ等が付着している
と成形体の剥離が容易となることが発見された。
If the inner surface of the pipe is pickled to increase its activity so that the metal surface comes into direct contact with the powder, the pipe and the molded body are pressed after rolling and the molded body cannot be separated. , Did not meet the purpose of the present invention. Rather, it has been discovered that if a slight amount of oxide film or dirt adheres to the inner surface of the pipe, the molded product can be peeled off easily.

【0011】一方、図1に示すダイスを用いて冷間鍛造
を行ったところ、この場合も加工回数数十回の時点で成
形体自体に延性が現れた。このような方法で目的とする
超高性能電磁鋼を製造することが可能であることが示唆
されたが、この成形体の時点では磁気特性が極めて悪
く、予想された製品にはなっていないことが解った。
On the other hand, when cold forging was carried out using the die shown in FIG. 1, ductility appeared in the molded product itself in this case also when the number of times of processing was several tens. It was suggested that it is possible to manufacture the target ultra-high performance electromagnetic steel by such a method, but at the time of this compact, the magnetic properties were extremely poor and it was not the expected product. I understand.

【0012】この成形体の構造を、X線回折によって調
べたところ、bcc−FeとSiと目される2種類の回
折線が現れた。即ちこの成形体は、FeとSiが混ざっ
てはいるが合金状態にはないことが判明した。このこと
が良好な磁気特性が得られなかった原因と考えられ、こ
の成形体をさらに水素中あるいは高真空中で焼結するこ
とで、SiがFeと合金化しつつ拡散して均質な珪素鉄
合金即ち珪素鋼を得た。
When the structure of this molded article was examined by X-ray diffraction, two types of diffraction lines, which were classified as bcc-Fe and Si, appeared. That is, it was found that this compact, although mixed with Fe and Si, was not in an alloy state. It is considered that this is the reason why good magnetic properties could not be obtained. By further sintering the compact in hydrogen or high vacuum, Si is alloyed with Fe and diffused to form a homogeneous silicon-iron alloy. That is, silicon steel was obtained.

【0013】この結果、冷間圧延によって得られた成形
体を1100℃以上の温度で1時間程度焼鈍したとこ
ろ、保磁力が25A/m以下という良好な軟磁性材料を
初めて得ることができた。なお、図2に焼結温度と相対
密度との関係を示す。図2のように1100℃以上の焼
結温度で相対密度は95%以上になることが明らかにさ
れた。
As a result, when the molded body obtained by cold rolling was annealed at a temperature of 1100 ° C. or higher for about 1 hour, a good soft magnetic material having a coercive force of 25 A / m or less could be obtained for the first time. Note that FIG. 2 shows the relationship between the sintering temperature and the relative density. As shown in FIG. 2, it was revealed that the relative density becomes 95% or more at the sintering temperature of 1100 ° C. or more.

【0014】さらに、Si量が重量で8.0%となるよ
うな配合比で粉末を鋼管に詰め、同様な冷間圧延を行っ
た。ところが今度は、圧延率をいくら高めても成形体に
靭・延性が現れず、特に圧延率が70%を超えるあたり
で一度成形されたものが破壊されたような粉末形状を呈
するようになった。そこでその原因を調べるためこの粉
末をX線回折で調査したところ、Siの回折線が現れ
ず、bcc−Feに相当する回折線しか現れなかった。
Further, the powder was packed in a steel pipe at a compounding ratio such that the amount of Si was 8.0% by weight, and the same cold rolling was performed. However, this time, no matter how much the rolling rate was increased, the toughness and ductility did not appear in the molded body, and in particular, when the rolling rate exceeded 70%, the molded body became a powder shape that was destroyed. . When this powder was examined by X-ray diffraction to investigate the cause, no Si diffraction line appeared, and only a diffraction line corresponding to bcc-Fe appeared.

【0015】成分としてはSiが含有されていることは
確認されたので、これは即ち、FeとSiが合金化して
いることを意味する。発明者らはこの現象を説明するた
めに組織観察等の様々な調査を行い、その結果以下に述
べるようなことが生じているのではないか、との結論に
達した。
Since it has been confirmed that Si is contained as a component, this means that Fe and Si are alloyed. The inventors have conducted various investigations such as tissue observation to explain this phenomenon, and as a result, they have concluded that the following may occur.

【0016】即ち、Siは脆くFeは延性に富むため、
Si量が6.5%程度の配合比の時は、Si粉末はあま
り加工されず、そのかわりFeが集中的に加工されてS
i粉を覆い包むようになる。するとその後の圧延によっ
ても、Si粉は移動をするだけで加工されず、FeがS
iを結び付ける接着剤のような役割をして延性を保ちな
がら加工されていく。
That is, since Si is brittle and Fe is rich in ductility,
When the Si content is about 6.5%, the Si powder is not processed so much, and instead Fe is processed intensively and S
It comes to cover i powder. Then, even in the subsequent rolling, the Si powder only moves and is not processed, and Fe does not change to S.
It acts like an adhesive that binds i and is processed while maintaining ductility.

【0017】Si量が8.0%程度にまでなると、今度
はSi粉を覆うのに十分な量のFeがなく、Si粉同士
が触れあって砕かれていく。その結果Siが微細に粉砕
されFe中に吸収され合金化するいわゆるメカニカルア
ロイングが起こり、得られた成形体は延性を失い加工性
に乏しいものとなり中間製品として極めて不具合であ
る。実際、両者の加工途中の金属組織写真を図3(焼結
前試料の断面組織)に示すと、6.5%Si材はSi粒
が離ればなれになっているのに対し、8.0%Si−F
e成形休はすでに同一相の粒になっていることが判る。
When the amount of Si reaches about 8.0%, there is not enough Fe to cover the Si powder, and the Si powders come into contact with each other and are crushed. As a result, so-called mechanical alloying occurs in which Si is finely pulverized and absorbed in Fe to form an alloy, and the resulting molded article loses ductility and is poor in workability, which is an extremely defective intermediate product. In fact, a photograph of the metallographic structure of the two during processing is shown in FIG. 3 (cross-sectional structure of the sample before sintering), where the 6.5% Si material is separated from the Si grains, while the 8.0% Si -F
e It can be seen that the molding pauses are already in the same phase.

【0018】このような調査結果に基づき、発明者らの
見出した現象がどの範囲まで適用できるのかを調べたと
ころ、Si量が7%までは靭・延性を有する成形体が得
られたが、それを超えると成形体が得られないことが解
った。なお、この成形体は中間製品であるが、それ自体
靭・延性を有するので、例えばこれを元にチッピング
し、再成形して異形材を製造し、後に焼結して製品を得
ることも可能である。
On the basis of the results of such investigations, it was investigated to what extent the phenomenon found by the inventors could be applied. As a result, a compact having toughness and ductility was obtained up to a Si content of 7%. It was found that a molded product could not be obtained if the amount was exceeded. This molded product is an intermediate product, but since it has toughness and ductility by itself, it is also possible to obtain a product by, for example, chipping based on this product, remolding it to manufacture a profile, and then sintering it. Is.

【0019】以上のことから、本発明の骨子は、不可避
的不純物を含んだ粉末状のFe,Siを、Si量が重量
で7%以下となる比率で混合し、容易に冷間加工できる
金属材質からなる容器に充填し、かつ容器内面に粉末と
の分離を容易にする薄い層を有し、容器ごと冷間圧延そ
の他の冷間加工後容器相当部分を剥離除去することを特
徴とする、軟磁気特性に優れ磁歪の小さい超高性能電磁
鋼の製造方法及び、冷間加工後容器相当部分を剥離除去
した後、1100℃以上の温度で焼鈍することを特徴と
する、前記の軟磁気特性に優れ磁歪の小さい超高性能電
磁鋼の製造方法及び、この製造方法においてFeの地に
Siが混在した優れた加工性を有する前記の粉体の中間
製品及び、Feの地にSiが拡散した優れた軟磁気特性
を持つ超高性能電磁製品である。
From the above, the skeleton of the present invention is a metal which can be easily cold worked by mixing powdery Fe and Si containing unavoidable impurities in a ratio such that the Si content is 7% or less by weight. Filling a container made of material, and having a thin layer on the inner surface of the container to facilitate the separation of the powder, characterized by peeling and removing the container corresponding portion after cold rolling or other cold working together with the container, A method for producing an ultra-high-performance electromagnetic steel having excellent soft magnetic characteristics and small magnetostriction, and characterized in that after cold working, a container-corresponding portion is peeled off and annealed at a temperature of 1100 ° C. or higher. And a method for producing an ultra-high-performance electromagnetic steel having a small magnetostriction, an intermediate product of the above powder having excellent workability in which Si is mixed in the Fe base, and Si diffused in the Fe base in the manufacturing method. Ultra-high performance electricity with excellent soft magnetic properties It is a product.

【0020】以下、本発明を詳細に説明する。成形前粉
体のSi配合比は、7%を超えるとメカニカルアロイン
グ現象が生じ、靭・延性に富む成形体が得られなくなる
ので、7%以下とする。下限は特に設けないが、3.8
%程度になると鋳造によって得られた鋼塊の冷間圧延が
容易になるので、本発明の工業的メリットは小さくな
る。
The present invention will be described in detail below. If the Si compounding ratio of the pre-molding powder exceeds 7%, a mechanical alloying phenomenon occurs, and a molded product rich in toughness and ductility cannot be obtained, so it is set to 7% or less. No lower limit is set, but 3.8
%, The cold rolling of the steel ingot obtained by casting becomes easy, so that the industrial merit of the present invention becomes small.

【0021】冷間加工が冷間圧延である場合、圧粉だけ
では加工中の形状を保持することができないので、パイ
プ、箱等の容器に詰めて密封する必要がある。この時容
器の材質は圧延可能であるだけでなく、粉体のメタルフ
ローを抑え込めるだけの強度を有していなければならな
い。
When the cold working is cold rolling, it is necessary to pack and seal it in a container such as a pipe or a box because the shape being processed cannot be maintained only by compacting. At this time, the material of the container must be not only rollable, but also strong enough to suppress the metal flow of the powder.

【0022】また、容器の内面は粉体と圧着されないた
めに、極薄い非金属層を有している必要がある。これは
自然に生成した酸化層、混入した各種無機物粉あるいは
ボンデ処理、メッキ処理、潤滑油、汚れ等のいかなるも
のでも良い。冷間鍛造等の場合は、ダイスが容器の替わ
りをする場合もある。
Further, since the inner surface of the container is not pressed against the powder, it is necessary to have an extremely thin non-metal layer. This may be a naturally-occurring oxide layer, various inorganic powders mixed in, or bond treatment, plating treatment, lubricating oil, dirt, and the like. In the case of cold forging, the die may replace the container in some cases.

【0023】得られた成形体の焼鈍温度は、図2,図4
に示すように1100℃に満たないと十分な強度を持た
ず材料としての形をなさないうえ、また軟磁気特性も発
現しないので、1100℃以上とした。1100℃未満
では、SiとFeの合金化が十分に生じないためと考え
られる。
The annealing temperature of the obtained molded body is as shown in FIGS.
If the temperature is lower than 1100 ° C, the material does not have a sufficient strength and does not form a shape as a material, and the soft magnetic properties are not exhibited. It is considered that if the temperature is lower than 1100 ° C, alloying of Si and Fe does not sufficiently occur.

【0024】なお、本発明の方法で、Feの一部にM
n,Al,Ni,Cr,Co,Nb,V,Ti,Cu等
の元素成分が、その合計が1%以下含まれることは、成
形体の靭・延性を損なわず、かつ高Si鋼の磁性を損な
わないので、本発明の本質を何ら損なうものではない。
In the method of the present invention, part of Fe is M
The fact that the total content of elemental components such as n, Al, Ni, Cr, Co, Nb, V, Ti, and Cu is 1% or less does not impair the toughness and ductility of the formed body, and the magnetic properties of high Si steels. Therefore, it does not impair the essence of the present invention.

【0025】[0025]

【実施例】純度99.9%、平均粒径40μmのFe及
びSi粉末を、重量でSiが6.5%となるように配合
して十分混合し、内径25mm、長さ150mmの鋼製
パイプに充填し、パイプの両端を溶接によって封をし、
ロール径300mmの2hi冷間圧延機によって、圧下
力20t/passで厚み0.5mmまで15パスで圧
延した。圧延後、圧延材のエッジ部を切り落としたとこ
ろ、元パイプの鋼の部分は箔となって成形体から極めて
容易に剥離することができた。
EXAMPLE Fe and Si powders having a purity of 99.9% and an average particle size of 40 μm were mixed and mixed sufficiently so that Si was 6.5% by weight, and a steel pipe having an inner diameter of 25 mm and a length of 150 mm was prepared. And then seal both ends of the pipe by welding,
A 2 hi cold rolling machine with a roll diameter of 300 mm was used for rolling with a rolling force of 20 t / pass to a thickness of 0.5 mm in 15 passes. After rolling, when the edge of the rolled material was cut off, the steel portion of the original pipe became a foil and could be peeled off very easily from the molded body.

【0026】得られたSiを含む成形体は靭・延性に富
んでおり、剪断、打ち抜き等の加工にも十分耐えられ
た。成形体の密度は6.5%Si鋼の約90%であっ
た。その後この成形体を打ち抜きによって31mm×3
50mmサイズに加工し、水素中で1300℃にて1時
間の焼鈍を行ったところ密度が成形体の1.1倍とな
り、寸法は30mm×320mmとなった。
The obtained molded article containing Si was rich in toughness and ductility, and could sufficiently withstand processing such as shearing and punching. The density of the compact was about 90% of 6.5% Si steel. After that, this molded body is punched out to obtain 31 mm × 3
When processed into a size of 50 mm and annealed in hydrogen at 1300 ° C. for 1 hour, the density was 1.1 times that of the compact, and the dimensions were 30 mm × 320 mm.

【0027】この試料の磁気特性を測定したところ、直
流エプシュタイン測定で保磁力19.1A/m、最大透
磁率54000(静電単位)、磁歪は、歪ゲージを試料
に貼付する方法では検出レベル以下であった。焼鈍後の
硬さは、50kgビッカース硬度測定で370Hvであ
った。また、結晶粒径は約40μmで、図5(6.5%
珪素鋼の断面組織)に示すように異相はなく、合金化は
完全に行われていることが判った。
When the magnetic characteristics of this sample were measured, the coercive force was 19.1 A / m, the maximum magnetic permeability was 54000 (electrostatic unit) in DC Epstein measurement, and the magnetostriction was at the detection level by the method of attaching a strain gauge to the sample. It was below. The hardness after annealing was 370 Hv as measured by 50 kg Vickers hardness. Also, the crystal grain size is about 40 μm, which is shown in FIG. 5 (6.5%).
It was found that there is no different phase as shown in (Cross section structure of silicon steel) and alloying is completely performed.

【0028】比較材として、重量で7.2%となるよう
Si粉を配合したものの、同様のプロセスでの作成を試
みたが、中間形成体の段階で鋼内部に微小な亀裂が入っ
ており、打ち抜き加工は不可能であった。そこでこれを
放電加工によって31mm×350mmに加工し、13
00℃×1hrの焼鈍を行ったが、鋼板中の亀裂は完全
に取り除くことはできなかった。
As a comparative material, although Si powder was blended so as to have a weight of 7.2%, an attempt was made by the same process, but there were minute cracks inside the steel at the stage of the intermediate formed body. However, punching was impossible. Then, this was processed into 31 mm x 350 mm by electric discharge machining, and
Although annealing was performed at 00 ° C for 1 hr, cracks in the steel sheet could not be completely removed.

【0029】その結果保磁力は150A/m、最大透磁
率も2500(静電単位)程度と極めて特性の悪いもの
しか得られなかった。気相法による6.5%Si鋼の製
造も試みたが、磁気特性を測定する際の試料の打ち抜き
加工が困難で、放電加工によってエプシュタイン試料を
作成した。この時の特性は、保磁力が25.3A/m、
最大透磁率が45000(静電単位)で、本発明材より
劣っていた。また、図6には、本発明材と、比較材とし
て、7.2%Si材、気相法による6.5%Si材の、
打ち抜き加工時の端面形状を示す。本発明材は直線状に
加工がなされているのに対し、比較材はいずれも切り欠
きが生じていることが判る。以上より、本発明の方法よ
りなる超高性能電磁鋼は打ち抜き性等の加工性、及び磁
気特性、表面外観が他の方法より優れていることが実証
された。
As a result, the coercive force was 150 A / m and the maximum magnetic permeability was about 2500 (electrostatic unit), and only very poor properties were obtained. An attempt was made to manufacture 6.5% Si steel by a vapor phase method, but it was difficult to punch the sample when measuring the magnetic properties, and an Epstein sample was prepared by electric discharge machining. The characteristics at this time are that the coercive force is 25.3 A / m,
The maximum magnetic permeability was 45,000 (electrostatic unit), which was inferior to the material of the present invention. In addition, in FIG. 6, the present invention material, the comparative material of 7.2% Si material, 6.5% Si material by the vapor phase method,
The end face shape at the time of punching is shown. It can be seen that the inventive material is processed linearly, whereas the comparative materials are all notched. From the above, it was demonstrated that the ultra-high performance electromagnetic steel produced by the method of the present invention is superior to other methods in workability such as punchability, magnetic characteristics, and surface appearance.

【0030】[0030]

【発明の効果】本発明により、脆性による割れ、破壊等
なしに珪素を極めて多く含有する超高性能な電磁鋼板を
容易に製造できる。
According to the present invention, an ultra-high performance electromagnetic steel sheet containing an extremely large amount of silicon can be easily manufactured without cracking or breaking due to brittleness.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は冷間鍛造に用いたダイスの説
明図、(c),(d)は冷間鍛造サイクルである。
1A and 1B are explanatory views of a die used for cold forging, and FIGS. 1C and 1D are cold forging cycles.

【図2】(a),(b)は6.5%Si材成形体の相対
密度と焼結温度、強度の関係を示すグラフである。
2A and 2B are graphs showing the relationship between the relative density of a 6.5% Si material compact, the sintering temperature, and the strength.

【図3】(a),(b)はSi6.5%材と8.0%材
の成形中間体の金属組織を示す電子顕微鏡写真である。
FIGS. 3 (a) and 3 (b) are electron micrographs showing the metal structure of a molded intermediate of Si6.5% material and 8.0% material.

【図4】(a),(b)は成形体の焼鈍温度と、磁気特
性の関係を示すグラフである。
4 (a) and 4 (b) are graphs showing the relationship between the annealing temperature of the compact and the magnetic characteristics.

【図5】(a),(b),(c)は最終製品の金属組織
を示す電子顕微鏡写真である。
5 (a), (b) and (c) are electron micrographs showing the metal structure of the final product.

【図6】(a),(b),(c)は本発明材と比較材の
加工状況を示す説明図である。
6 (a), (b) and (c) are explanatory views showing the processing states of the material of the present invention and the comparative material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市毛 健一 東京都文京区本郷7−3−1 東京大学 工学部内 (72)発明者 増井 浩昭 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kenichi Ichige 7-3-1 Hongo, Bunkyo-ku, Tokyo, Faculty of Engineering, University of Tokyo (72) Inventor Hiroaki Masui 20-1 Shintomi, Futtsu Shin Nippon Steel Co., Ltd. Within the development headquarters

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不可避的不純物を含んだ粉末状のFe,
Siを、Si量が重量で7%以下となる比率で混合し、
容易に冷間加工できる金属材質からなる容器に充填し、
かつ容器内面に粉末との分離を容易にする薄い層を有
し、容器ごと冷間圧延その他の冷間加工後容器相当部分
を剥離除去することを特徴とする超高性能電磁鋼の製造
方法。
1. A powdery Fe containing inevitable impurities,
Si is mixed at a ratio such that the amount of Si is 7% or less by weight,
Fill a container made of metal material that can be easily cold worked,
A method for producing an ultra-high-performance electromagnetic steel, characterized in that it has a thin layer on the inner surface of the container for facilitating separation from the powder, and the container-equivalent portion is peeled off after cold rolling or other cold working together with the container.
【請求項2】 冷間加工後容器相当部分を剥離除去した
後、1100℃以上の温度で焼鈍することを特徴とする
請求項1記載の超高性能電磁鋼の製造方法。
2. The method for producing an ultra-high performance electromagnetic steel according to claim 1, wherein after cold working, a portion corresponding to the container is peeled off and then annealed at a temperature of 1100 ° C. or higher.
【請求項3】 請求項1において、Feの地にSiが混
在した優れた加工性を有する粉体の中間製品。
3. The powdery intermediate product according to claim 1, wherein Si is mixed in the Fe base.
【請求項4】 請求項2において、Feの地にSiが拡
散した優れた軟磁気特性を持つ超高性能電磁製品。
4. The ultra-high performance electromagnetic product according to claim 2, which has excellent soft magnetic characteristics in which Si is diffused in the Fe base.
JP7153777A 1995-05-17 1995-05-17 Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product Withdrawn JPH08311597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7153777A JPH08311597A (en) 1995-05-17 1995-05-17 Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7153777A JPH08311597A (en) 1995-05-17 1995-05-17 Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product

Publications (1)

Publication Number Publication Date
JPH08311597A true JPH08311597A (en) 1996-11-26

Family

ID=15569917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7153777A Withdrawn JPH08311597A (en) 1995-05-17 1995-05-17 Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product

Country Status (1)

Country Link
JP (1) JPH08311597A (en)

Similar Documents

Publication Publication Date Title
US6946097B2 (en) High-strength high-temperature creep-resistant iron-cobalt alloys for soft magnetic applications
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
JP5308916B2 (en) Soft magnetic powder for dust magnetic body and dust magnetic body using the same
Tang et al. Refinement of oxide particles by addition of Hf in Ni-0.5 mass% Al-1 mass% Y2O3 alloys
Kawahara Effect of additive elements on cold workability in FeCo alloys
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
CN104952578B (en) R-T-B series alloy powders and R-T-B based sintered magnets
Kustas et al. Emerging opportunities in manufacturing bulk soft-magnetic alloys for energy applications: A review
CA2418497A1 (en) High performance soft magnetic parts made by powder metallurgy for ac applications
SE540267C2 (en) Iron powder for dust core and insulation-coated iron powder for dust core
EP0135980B1 (en) Method for producing iron-silicon alloy articles
JP2533922B2 (en) Sintered target member and manufacturing method thereof
JPS63274763A (en) Alloy target for magneto-optical recording
JPH08311597A (en) Production of ultrahigh performance silicon steel, and its intermediate product, and ultrahigh performance silicon steel product
Saji et al. Formation Process of Amorphous Phase during Mechanical Alloying for Al-6 and 12 AT% Ti Mixed Powders
Dillon Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications
CN100581689C (en) Method for manufacturing complex phase permanent magnet
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JPH0247815A (en) Manufacture of r-fe-b permanent magnet
Miura et al. Preparation of nanocrystalline high-nitrogen stainless steel powders by mechanical alloying and their hot compaction
JPS61208808A (en) Manufacture of sintered magnet
JP2002275601A (en) Low core loss silicon steel sheet and production method therefor
Fraser et al. The Properties of Cobalt–Iron Alloys Prepared by Powder Rolling
WO1995012691A1 (en) Manufacture of silicon steel plate having excellent magnetic characteristic
JP2000119792A (en) Production of soft magnetic alloy sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806