JPH08310890A - Production of crystal - Google Patents

Production of crystal

Info

Publication number
JPH08310890A
JPH08310890A JP11217995A JP11217995A JPH08310890A JP H08310890 A JPH08310890 A JP H08310890A JP 11217995 A JP11217995 A JP 11217995A JP 11217995 A JP11217995 A JP 11217995A JP H08310890 A JPH08310890 A JP H08310890A
Authority
JP
Japan
Prior art keywords
heated
frequency
induction heating
frequency induction
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11217995A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Yutaka Sawafuji
裕 澤藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Semiconductor Research Foundation
Original Assignee
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Tohoku Steel Co Ltd, Semiconductor Research Foundation filed Critical Tohoku Tokushuko KK
Priority to JP11217995A priority Critical patent/JPH08310890A/en
Publication of JPH08310890A publication Critical patent/JPH08310890A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves

Abstract

PURPOSE: To obtain a method useful for production of a large-sized crystal of semiconductor oxide, etc., by subjecting an object to be heated to high-frequency induction heating at a frequency to maximize electromagnetic force. CONSTITUTION: The object to be heated is subjected to the high-frequency induction heating by the frequency at which the magnitude of the skin depth P(m) expressed by the equation [δis the dielectric constant (Ωm)<-1> , μ is the relative magnetic permeability of the object to be heated, (f) is the frequency (Hz)] attains 0.3 to 2 of the radius of the object to be heated in this process for production of the crystal by the high-frequency induction heating simultaneously using the plural different frequencies. More specifically, this process is a process for production by a floating zone meting method of the high-frequency induction heating. Namely, the frequency is specified according to the dielectric constant and magnetic permeability of the object to be heated independently from the frequency for heating and melting, by which the ratio of the electromagnetic force acting on the object to be heated is increased with respect to the electric power for heating consumed in the object. The electromagnetic force is so acted as to support the melt from below in the floating zone melt method of the high-frequency induction heating, by which the growth of the large-diameter crystal is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高周波誘導加熱によ
る結晶製造方法に関するものである。さらに詳しくは、
この発明は、高周波誘導加熱浮遊帯域溶融法や、高周波
誘導加熱浮揚融解法等により半導体、酸化物等の結晶を
製造するのに有用な、高周波誘導加熱による結晶製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal manufacturing method by high frequency induction heating. For more information,
The present invention relates to a method for producing crystals by high frequency induction heating, which is useful for producing crystals of semiconductors, oxides, etc. by the high frequency induction heating floating zone melting method, the high frequency induction heating levitation melting method and the like.

【0002】[0002]

【従来の技術とその課題】従来から、半導体等の電子デ
バイスや光機能機器等における技術の発展にはめざまし
いものがあり、その発展に伴って、高品質な結晶材料に
対する需要が高まっている。このような高品質結晶材料
として、例えば、大径を備えた、高純度シリコン結晶、
酸化物結晶、あるいは、高純度金属等があり、これらの
結晶の製造方法には、これまでにも多くの工夫がなされ
てきている。
2. Description of the Related Art Conventionally, there have been remarkable technological developments in electronic devices such as semiconductors and optical functional equipments, and the demands for high-quality crystal materials have increased with the developments. As such a high-quality crystal material, for example, a high-purity silicon crystal with a large diameter,
There are oxide crystals, high-purity metals, and the like, and many methods have been devised in the methods for producing these crystals.

【0003】いくつかの結晶成長方法の中でも高周波誘
導加熱を利用した、高周波誘導加熱浮遊帯域溶融法(F
Z法)は特に重要な手段となっている。この高周波誘導
加熱浮遊帯域溶融法(FZ法)は、坩堝等の容器と原料
結晶が接触することなく単結晶成長を行うことが可能
で、高純度低欠陥の結晶を得ることができるという特徴
を有している。シリコン結晶では、引き上げ法と並ん
で、このFZ法が工業的に広く利用されているが、化合
物半導体においても蒸気圧制御FZ法が高品質結晶を得
るための最適な結晶成長法である。
Among several crystal growth methods, high frequency induction heating floating zone melting method (F
Z method) is a particularly important means. The high-frequency induction heating floating zone melting method (FZ method) is characterized in that a single crystal can be grown without contact between a raw material crystal and a container such as a crucible, and a high-purity and low-defect crystal can be obtained. Have The FZ method is widely used industrially for the silicon crystal as well as the pulling method, but the vapor pressure control FZ method is the optimum crystal growth method for obtaining a high quality crystal also in the compound semiconductor.

【0004】高周波誘導加熱では、加熱コイルに高周波
電流を通電し、被加熱物内に誘導電流を誘起させ、この
誘導電流のジュール熱で加熱する。誘導電流は被加熱物
の表面から限られた領域を流れ、この領域の目安として
表皮深さと呼ばれる量が用いられる。表皮深さp(m)
は次式で定義されている。
In high frequency induction heating, a high frequency current is passed through a heating coil to induce an induction current in the object to be heated, and heating is performed by Joule heat of this induction current. The induced current flows in a limited area from the surface of the object to be heated, and an amount called the skin depth is used as a standard for this area. Skin depth p (m)
Is defined by the following equation.

【0005】[0005]

【数2】 [Equation 2]

【0006】この表皮深さにより加熱深度が決まる。そ
して被加熱物内の温度分布は加熱深度により大きく影響
される。さらに、高周波誘導加熱法では、誘導電流に起
因するジュール熱だけでなく、加熱コイルに流れる高周
波電流の作る磁場と誘導電流との相互作用により、被加
熱物に電磁力も発生する。この電磁力は一般的に融帯を
締め付ける方向に作用し、融帯の形状、および、融帯の
保持性に大きな影響を与える。
[0006] The depth of heating determines the depth of heating. The temperature distribution in the object to be heated is greatly affected by the heating depth. Further, in the high frequency induction heating method, not only Joule heat caused by the induction current but also an electromagnetic force is generated in the object to be heated by the interaction between the induction current and the magnetic field created by the high frequency current flowing in the heating coil. This electromagnetic force generally acts in the direction of tightening the ligament and has a great influence on the shape of the ligament and the holding property of the ligament.

【0007】従来の高周波誘導加熱法においては、単一
の周波数を用いて高周波誘導加熱を行っているため、被
加熱物の加熱深度、および、加熱コイルから被加熱物に
作用する電磁力は、単一の周波数の値に固定されてい
る。例えば、高周波誘導加熱法のひとつである高周波誘
導加熱浮遊帯域溶融法においては、その単一の周波数は
450kHzから5MHzが多く用いられるが、主に被
加熱物内の温度分布から決められる。被加熱物内の温度
分布は成長結晶の品質に大きな影響を与えるためであ
る。
In the conventional high frequency induction heating method, since high frequency induction heating is performed using a single frequency, the heating depth of the object to be heated and the electromagnetic force acting on the object to be heated from the heating coil are It has been fixed at a single frequency value. For example, in the high frequency induction heating floating zone melting method which is one of the high frequency induction heating methods, the single frequency is often used from 450 kHz to 5 MHz, but it is mainly determined from the temperature distribution in the object to be heated. This is because the temperature distribution inside the object to be heated has a great influence on the quality of the grown crystal.

【0008】しかしながら、従来の単一の周波数を選択
した高周波誘導加熱浮遊帯域溶融法では、大径のGaA
s等の化合物半導体の単結晶を成長させることは困難で
ある。GaAs等の化合物半導体を高周波誘導加熱浮遊
帯域法で単結晶成長させる場合、結晶の化学量論的組成
を厳密に制御するため封管中において最適(砒素)蒸気
圧を印可し成長することが必要である。このため加熱コ
イルは封管外に設置され、結晶と加熱コイルの間隔が大
きくなり、しいては融帯の幅が大きく、垂れ落ちやす
く、大径の結晶成長は通常困難である。
However, in the conventional high-frequency induction heating floating zone melting method in which a single frequency is selected, GaA having a large diameter is used.
It is difficult to grow a single crystal of a compound semiconductor such as s. When growing a single crystal of a compound semiconductor such as GaAs by the high frequency induction heating floating zone method, it is necessary to apply the optimum (arsenic) vapor pressure in the sealed tube to strictly grow the stoichiometric composition of the crystal. Is. For this reason, the heating coil is installed outside the sealed tube, the distance between the crystal and the heating coil becomes large, and the width of the melt zone is wide, and it easily drops, and it is usually difficult to grow large-diameter crystals.

【0009】一方、最近になって、高周波誘導加熱法の
一つとしての、高周波誘導加熱浮揚融解法に関して、大
径の結晶の製造の可能性を探るべく、様々の検討が進め
られている。この高周波誘導加熱浮揚融解法は、スリッ
トを有したコンセントレータとその外周部に配した一次
コイルからなる高周波誘導加熱コイル(一般的にコール
ドクルーシブルと呼ばれている)を用いて被加熱物を浮
揚させ、その後、結晶を成長させることを特徴としてい
る。
On the other hand, in recent years, various studies have been conducted on the high frequency induction heating levitation melting method, which is one of the high frequency induction heating methods, in order to explore the possibility of producing large-diameter crystals. This high-frequency induction heating levitation melting method uses a high-frequency induction heating coil (generally called a cold crucible) consisting of a concentrator with a slit and a primary coil arranged around the concentrator to levitate the object to be heated. , And then is characterized by growing a crystal.

【0010】しかしながら、このような高周波誘導加熱
浮揚融解法においては、融解条件が種々検討されてはい
るものの、実用レベルの大容量の被加熱物を浮揚させる
には、非常に大きな力が必要であり、現在においても、
実用化レベルの大容量の被加熱物を浮揚させることには
成功しておらず、大型結晶の製造にはまだ多くの問題が
残っていると言わざるをえない。
However, in such a high-frequency induction heating levitation melting method, although various melting conditions have been studied, a very large force is required to levitate a large-scale object to be heated at a practical level. Yes, even today
It has been unsuccessful to levitate a large-capacity object to be heated at a practical level, and it must be said that many problems still remain in the production of large crystals.

【0011】最近、高周波誘導加熱浮揚融解法では、異
なる2つの周波数を利用することも検討されてきている
が、如何なる周波数を選択するべきか十分に検討されて
いない。この発明は、以上の通りの事情に鑑みてなされ
たものであり、従来技術の欠点を解消し、大径結晶の提
供を可能とする、高周波誘導加熱による新しい結晶製造
方法を提供することを目的としている。
Recently, in the high-frequency induction heating levitation melting method, it has been studied to use two different frequencies, but it has not been sufficiently examined what kind of frequency should be selected. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a new crystal production method by high-frequency induction heating, which solves the drawbacks of the prior art and enables the provision of large-diameter crystals. I am trying.

【0012】[0012]

【課題を解決するための手段】この発明は、上記の課題
を解決するために、複数の異なる周波数を同時に使用す
る高周波誘導加熱による結晶製造方法であって、被加熱
物に作用する電磁力を最大とする周波数により高周波誘
導加熱することを特徴とする結晶製造方法を提供する。
In order to solve the above-mentioned problems, the present invention is a method for producing a crystal by high-frequency induction heating which uses a plurality of different frequencies at the same time. Provided is a crystal production method characterized by high-frequency induction heating at a frequency that is maximized.

【0013】そしてまた、この発明は、複数の異なる周
波数を同時に使用する高周波誘導加熱による結晶製造方
法であって、次式
The present invention is also a method for producing a crystal by high-frequency induction heating which uses a plurality of different frequencies at the same time.

【0014】[0014]

【数3】 (Equation 3)

【0015】で表される表皮深さP(m)の大きさを、
被加熱物の半径に対して、0.3〜2とする周波数によ
り高周波誘導加熱することを特徴とする結晶製造方法も
提供し、より具体的には、高周波誘導加熱浮遊帯域溶融
法による上記の製造法を提供する。
The size of the skin depth P (m) represented by
Also provided is a crystal manufacturing method characterized by performing high-frequency induction heating at a frequency of 0.3 to 2 with respect to the radius of an object to be heated, and more specifically, a high-frequency induction heating floating zone melting method as described above. Provide a manufacturing method.

【0016】[0016]

【作用】すなわち、この発明は、加熱融解するための周
波数とは独立に、被加熱物の導電率、および、透磁率に
応じて、周波数を特定化し、被加熱物内で消費される加
熱電力に対して、被加熱物に作用する電磁力の割合を大
きくさせる。その結果、例えば、高周波誘導加熱浮遊帯
域溶融法においは、当該周波数の流れる加熱コイルを融
帯形成位置よりも下部に配置することにより、その電磁
力が融帯を下から支えるようにすることで、大径の結晶
成長が可能となる。また、高周波誘導加熱浮揚融解法に
おいては、その電磁力により、大容量の被加熱物を効率
よく浮揚させることが可能となる。 このような、電磁
力の周波数に対する依存性については、従来の高周波加
熱誘導法においては、まったく考慮されておらず、その
意味において、この発明は、非常に新規性があるものと
思われる。
That is, the present invention specifies the frequency independently of the frequency for heating and melting according to the conductivity and magnetic permeability of the object to be heated, and the heating power consumed in the object to be heated. On the other hand, the ratio of the electromagnetic force acting on the object to be heated is increased. As a result, for example, in the high-frequency induction heating floating zone melting method, by placing the heating coil of the relevant frequency below the zone forming position, the electromagnetic force can support the zone from below. Therefore, large-diameter crystal growth becomes possible. Further, in the high frequency induction heating levitation melting method, it becomes possible to efficiently levitate a large amount of object to be heated by its electromagnetic force. Such dependence of electromagnetic force on the frequency is not considered at all in the conventional high-frequency heating induction method, and in that sense, the present invention seems to be very novel.

【0017】この発明において、「表皮深さ/被加熱物
の半径」と「電磁力(N)/加熱電力(W)」との関係
は、図1に示した通りであり、周波数が十分低い、即ち
「表皮深さ/被加熱物の半径」が大きいと加熱電力に電
磁力の割合はほぼ一定である。周波数が高く、表皮厚さ
が小さくなり「表皮深さ/被加熱物の半径」が小さくな
ると0.59あたりを境にして、加熱電力に対する電磁
力の割合は減少してくる。また、被加熱物に作用する電
磁力及び加熱電力の効率は周波数が下がれば減少するの
で有効に電磁力を利用するには最適の周波数範囲が存在
する。
In the present invention, the relationship between "skin depth / radius of object to be heated" and "electromagnetic force (N) / heating power (W)" is as shown in FIG. 1, and the frequency is sufficiently low. That is, when “skin depth / radius of object to be heated” is large, the ratio of electromagnetic force to heating power is almost constant. When the frequency is high, the skin thickness is small, and the “skin depth / radius of the object to be heated” is small, the ratio of the electromagnetic force to the heating power decreases at around 0.59. Further, the efficiency of the electromagnetic force and heating power acting on the object to be heated decreases as the frequency decreases, so that there is an optimum frequency range for effectively utilizing the electromagnetic force.

【0018】またさらに、この図1からわかるように、
「表皮深さ/被加熱物の半径」を0.59よりも大きく
なるように、周波数を低くしても、電磁力を大きく得る
効果は少なくなることがわかる。したがって、この発明
では、表皮深さP(m)については、一般的には、被加
熱物の半径に対して、0.3〜2の範囲とする。この表
皮深さとなるように周波数を設定し、電磁力を最大とす
る。さらに好ましくは、0.34〜0.84程度の表皮
深さとなるようにする。この範囲に「表皮深さ/被加熱
物の半径」を選択することにより、効率的に被加熱物に
作用する電磁力を得ることが可能となる。
Furthermore, as can be seen from FIG. 1,
It can be seen that even if the frequency is lowered so that “skin depth / radius of heated object” becomes larger than 0.59, the effect of obtaining a large electromagnetic force becomes small. Therefore, in the present invention, the skin depth P (m) is generally in the range of 0.3 to 2 with respect to the radius of the object to be heated. The frequency is set so that this skin depth is reached, and the electromagnetic force is maximized. More preferably, the skin depth is about 0.34 to 0.84. By selecting "skin depth / radius of heated object" in this range, it becomes possible to efficiently obtain the electromagnetic force acting on the heated object.

【0019】以下、実施例を示し、さらに詳しくこの発
明について説明する。
The present invention will be described in more detail below with reference to examples.

【0020】[0020]

【実施例】実施例1 被加熱物で消費される電力と、加熱コイルから被加熱物
に作用する電磁力とを、有限要素法により計算した。計
算は3次元モデルで用い、そのr−z平面を図2に示し
た。ここでAは加熱コイル、Bは被加熱物である。
Example 1 The power consumed by the object to be heated and the electromagnetic force acting on the object to be heated from the heating coil were calculated by the finite element method. The calculation was used in a three-dimensional model, and its rz plane is shown in FIG. Here, A is a heating coil and B is an object to be heated.

【0021】この図2に示したように、加熱コイル
(A)は内径17mm、外径25mm、厚さ2mmの1
ターンコイルであり、また、被加熱物(B)の大きさ
は、半径8.5mm、長さ10mmであり、被加熱物の
下面とコイル下面との距離は10mmであった。このモ
デルを用いて、導電率が1e7、1e6、および、1.
32e5(Ωm)-1の3通りの被加熱物を考え、周波数
と「電磁力(N)/加熱電力(W)」との関係を示すと
図3の通りとなる。この図3において、横軸は周波数で
あり、縦軸は「電磁力(N)/加熱電力(W)」であ
り、加熱電力は被加熱物全体で消費される電力(単位
W)、電磁力は上向きに働く電磁力の成分(単位N)で
示されてある。
As shown in FIG. 2, the heating coil (A) has an inner diameter of 17 mm, an outer diameter of 25 mm and a thickness of 2 mm.
It was a turn coil, and the size of the object to be heated (B) was 8.5 mm in radius and 10 mm in length, and the distance between the lower surface of the object to be heated and the lower surface of the coil was 10 mm. Using this model, the conductivity of 1e7, 1e6, and 1.
Considering three types of objects to be heated of 32e5 (Ωm) −1 , the relationship between frequency and “electromagnetic force (N) / heating power (W)” is shown in FIG. In FIG. 3, the horizontal axis represents frequency, and the vertical axis represents “electromagnetic force (N) / heating power (W)”. The heating power is the power consumed by the entire object to be heated (unit W), the electromagnetic force. Is indicated by the component (unit N) of the electromagnetic force acting upward.

【0022】この図3において、「電磁力(N)/加熱
電力(W)」の大きさが一定値から減少し始める周波数
では、「表皮深さ/被加熱物の半径」の大きさは0.5
9である。実施例2 上記実施例1で計算を行った被加熱物と同一形状の黒
鉛、外径17mm、長さ10mmを用い、次の実施例3
で述べるものと同一のコンセントレータ付き加熱コイル
から働く電磁力及び加熱温度を測定した。電磁力は電子
天秤から絶縁性糸で黒鉛を吊るして測定し、加熱温度は
黒鉛内に熱電対を埋め込み測定した。測定周波数は3.
1kHz、4.8kHz、10.1kHz、413kH
zである。3.1kHz、4.8kHz、10.1kH
zの場合のコイル電流は1041A、413kHzでは
コイル電流は103Aである。この結果を図4に示す。
加熱温度は室温からの差(K)である。図3の縦軸は電
磁力(N)/加熱電力(W)であり、この図4とは縦軸
の量は異なる。図4では表皮深さ/半径の大きさが0.
3から2.0の間で最大になる。やはり0.3から2.
0あたりに加熱周波数を選択すべきであることがわか
る。実施例3 蒸気圧制御高周波誘導加熱浮遊帯域溶融法による単結晶
成長における実施例を図5に示す。
In FIG. 3, at the frequency where the magnitude of "electromagnetic force (N) / heating power (W)" starts to decrease from a constant value, the magnitude of "skin depth / radius of heated object" is 0. .5
9 Example 2 The following Example 3 was used using graphite having the same shape as the object to be heated calculated in Example 1 above, an outer diameter of 17 mm and a length of 10 mm.
The electromagnetic force and the heating temperature acting from the same heating coil with a concentrator as those described in 1. were measured. The electromagnetic force was measured by suspending graphite with an insulating thread from an electronic balance, and the heating temperature was measured by embedding a thermocouple in graphite. The measurement frequency is 3.
1 kHz, 4.8 kHz, 10.1 kHz, 413 kHz
z. 3.1 kHz, 4.8 kHz, 10.1 kHz
In the case of z, the coil current is 1041A and the coil current is 103A at 413 kHz. The result is shown in FIG.
The heating temperature is the difference (K) from room temperature. The vertical axis of FIG. 3 is electromagnetic force (N) / heating power (W), and the amount of the vertical axis is different from that of FIG. In FIG. 4, the skin depth / radius size is 0.
Maximum between 3 and 2.0. After all 0.3 to 2.
It can be seen that the heating frequency around 0 should be selected. Example 3 FIG. 5 shows an example of single crystal growth by a vapor pressure controlled high frequency induction heating floating zone melting method.

【0023】この図5においては、原料結晶(1)、お
よび、種結晶(2)は、石英封管(4)内に配置し、揮
発しやすい成分元素の蒸気圧を制御した状態で融帯
(3)を形成させ、化学量論組成が厳密に制御された単
結晶を育成する。この図5において、i1 とi2 は独立
した一次コイルであり、それぞれ直接、高周波誘導発振
機に接続される。c1 とc2 は、ぞれぞれi1 とi2 の
加熱コイルのコンセントレータであり、その各々にはス
リットが設けられている。
In FIG. 5, the raw material crystal (1) and the seed crystal (2) are arranged in a quartz sealed tube (4), and the melt zone is controlled in a state where the vapor pressures of component elements that are easily volatilized are controlled. (3) is formed to grow a single crystal whose stoichiometric composition is strictly controlled. In FIG. 5, i1 and i2 are independent primary coils, which are directly connected to the high frequency induction oscillator. c1 and c2 are concentrators for the heating coils of i1 and i2, respectively, each of which is provided with a slit.

【0024】コンセントレータc1 の平面図は図6に示
した通りであり、またさらに、コンセントレータc2 の
平面図は図7に示した通りである。この一次コイルi1
からコンセントレータc1 に誘導される誘導電流は、ス
リット部で折り返し内周部を逆向きに流れる。この内周
部を流れる電流により主に結晶が加熱され、融帯が形成
される。
A plan view of the concentrator c1 is as shown in FIG. 6, and further, a plan view of the concentrator c2 is as shown in FIG. This primary coil i1
The induced current induced from the concentrator c1 to the concentrator c1 is turned back at the slit portion and flows in the opposite direction in the inner peripheral portion. Crystals are mainly heated by the current flowing through the inner peripheral portion, and a melt zone is formed.

【0025】この一次コイルi1 には450kHzから
5MHz程度の周波数を用いることが望ましい。一次コ
イルi2 はすり鉢状に巻いた形状が望ましく、コンセン
トレータc2 にはコンセントレータc1 と同様の誘導電
流が流れ、コンセントレータc2 の内周部に流れる誘導
電流で融帯に浮力を作用させる。
It is desirable to use a frequency of about 450 kHz to 5 MHz for the primary coil i1. The primary coil i2 is preferably shaped like a mortar, and an induced current similar to that of the concentrator c1 flows through the concentrator c2, and the induced current flowing in the inner peripheral portion of the concentrator c2 exerts buoyancy on the melt zone.

【0026】さらにすり鉢状の一次コイルi2 から発生
する漏れ磁束による電磁力は融帯を持ち上げる方向に作
用するため、融帯の保持性はさらに増加する。この図
5、図6および図7に示した高周波誘導加熱コイルを用
いて、融液の導電率の値が1e6(Ωm)-1程度の単結
晶を製造する場合一次コイルi2 には10kHzの高周
波電流を流すことで、17mm径の単結晶成長が可能とな
る。
Further, since the electromagnetic force due to the leakage magnetic flux generated from the mortar-shaped primary coil i2 acts in the direction of lifting the ligament, the holding property of the ligament is further increased. When a single crystal having a melt conductivity of about 1e6 (Ωm) -1 is manufactured using the high frequency induction heating coils shown in FIGS. 5, 6 and 7, the primary coil i2 has a high frequency of 10 kHz. A single crystal with a diameter of 17 mm can be grown by passing an electric current.

【0027】またさらにこの発明においては、一次コイ
ルi1 、i2 を完全に同心円状に巻く必要はなく、コン
セントレータc1 ,c2 を使用することで融帯に作用す
る電磁力の対称性は大きく改善する。
Further, according to the present invention, it is not necessary to wind the primary coils i1 and i2 completely concentrically, and by using the concentrators c1 and c2, the symmetry of the electromagnetic force acting on the fusion zone is greatly improved.

【0028】[0028]

【発明の効果】以上詳しく説明した通り、この発明によ
り、大型のGaAsなどの化合物半導体結晶、および、
大型のAlGaAsなどの混晶半導体結晶等の製造が可
能となる。
As described in detail above, according to the present invention, a large compound semiconductor crystal such as GaAs, and
It is possible to manufacture a large mixed crystal semiconductor such as AlGaAs.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明において、「表皮深さ/被加熱物の半
径」と「電磁力(N)/加熱電力(W)」との関係を示
した図である。
FIG. 1 is a diagram showing a relationship between “skin depth / radius of an object to be heated” and “electromagnetic force (N) / heating power (W)” in the present invention.

【図2】この発明の実施例において、加熱コイルおよび
被加熱物の配置を示した断面図である。
FIG. 2 is a sectional view showing the arrangement of heating coils and objects to be heated in the embodiment of the present invention.

【図3】この発明の実施例において、周波数と「電磁力
(N)/加熱電力(W)」との関係を示した図である。
FIG. 3 is a diagram showing a relationship between frequency and “electromagnetic force (N) / heating power (W)” in the example of the present invention.

【図4】この発明の実施例において、周波数と「電磁力
(N)/加熱温度(K)」との関係を示した図である。
FIG. 4 is a diagram showing a relationship between frequency and “electromagnetic force (N) / heating temperature (K)” in an example of the present invention.

【図5】この発明の実施例において、高周波誘導加熱コ
イルを示した構成図である。
FIG. 5 is a configuration diagram showing a high frequency induction heating coil in an embodiment of the present invention.

【図6】この発明の実施例において、コンセントレータ
c1 を示した平面図である。
FIG. 6 is a plan view showing a concentrator c1 according to the embodiment of the present invention.

【図7】この発明の実施例において、コンセントレータ
c2 を示した平面図である。
FIG. 7 is a plan view showing a concentrator c2 in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A 加熱コイル B 被加熱物 1 原料結晶 2 種結晶 3 融帯 4 石英封管 i1 、i2 一次コイル c1 ,c2 コンセントレ−タ A heating coil B heated object 1 raw material crystal 2 seed crystal 3 fused zone 4 quartz sealed tube i1, i2 primary coil c1, c2 concentrator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の異なる周波数を同時に使用する高周
波誘導加熱による結晶製造方法であって、被加熱物に作
用する電磁力を最大とする周波数により高周波誘導加熱
することを特徴とする結晶製造方法。
1. A method for producing a crystal by high-frequency induction heating using a plurality of different frequencies at the same time, wherein the high-frequency induction heating is performed at a frequency that maximizes the electromagnetic force acting on the object to be heated. .
【請求項2】複数の異なる周波数を同時に使用する高周
波誘導加熱による結晶製造方法であって、次式 【数1】 で表される表皮深さP(m)の大きさを、被加熱物の半
径に対して0.3〜2とする周波数により高周波誘導加
熱することを特徴とする結晶製造方法。
2. A method for producing a crystal by high frequency induction heating, which uses a plurality of different frequencies simultaneously, comprising: The method for producing a crystal is characterized in that high-frequency induction heating is performed at a frequency that makes the skin depth P (m) represented by the following in the range of 0.3 to 2 with respect to the radius of the object to be heated.
【請求項3】高周波誘導加熱浮遊帯域溶融法による請求
項1または2の製造法。
3. The method according to claim 1, which is a high-frequency induction heating floating zone melting method.
JP11217995A 1995-05-10 1995-05-10 Production of crystal Pending JPH08310890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11217995A JPH08310890A (en) 1995-05-10 1995-05-10 Production of crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11217995A JPH08310890A (en) 1995-05-10 1995-05-10 Production of crystal

Publications (1)

Publication Number Publication Date
JPH08310890A true JPH08310890A (en) 1996-11-26

Family

ID=14580236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11217995A Pending JPH08310890A (en) 1995-05-10 1995-05-10 Production of crystal

Country Status (1)

Country Link
JP (1) JPH08310890A (en)

Similar Documents

Publication Publication Date Title
CN100374628C (en) Method and device for prodn. of silicon single crystal, silicon single crystal, and silicon semiconductor wafers with determined defect distributions
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
CN101133193B (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
EP2083098B1 (en) Apparatus for manufacturing semiconductor single crystal ingot and method using the same
US20100107968A1 (en) Method and apparatus for producing a single crystal
JPH0633218B2 (en) Silicon single crystal manufacturing equipment
TW463224B (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
CN110129890A (en) A method of loop construction and magnetic control pulling of crystals for magnetic control pulling of crystals
TWI411708B (en) Method of solidification of a non-metallic melt
CN103060902B (en) Direct forming prepares method and the silicon chip direct-forming device of band silicon
JPH08268792A (en) High-frequency induction heater
US6238477B1 (en) Process and device for the production of a single crystal
JPH08310890A (en) Production of crystal
JPS6027684A (en) Apparatus for producing single crystal
KR101411275B1 (en) The appratus of silicon for solar cell and the method thereof
JP3589077B2 (en) Method for producing silicon single crystal, and single crystal and silicon wafer produced by this method
US9422636B2 (en) Method and apparatus for producing single crystals composed of semiconductor material
CN112210819A (en) Preparation method and equipment of crystal bar
JP3628355B2 (en) High frequency induction heating coil device
CN109023506A (en) A kind of preheating device reducing zone melting single-crystal carbon content
JP2004517797A (en) Magnetic field heating furnace for manufacturing semiconductor substrate and method of using the same
JPH055796B2 (en)
JP6601420B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
JP2005104751A (en) Single crystal growing apparatus
JPS61186282A (en) Production of single crystal