JPH083106A - Production of naphthalenedicarboxylic acid and benzonitrile compound - Google Patents
Production of naphthalenedicarboxylic acid and benzonitrile compoundInfo
- Publication number
- JPH083106A JPH083106A JP6164696A JP16469694A JPH083106A JP H083106 A JPH083106 A JP H083106A JP 6164696 A JP6164696 A JP 6164696A JP 16469694 A JP16469694 A JP 16469694A JP H083106 A JPH083106 A JP H083106A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- benzonitriles
- temperature
- acids
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はナフタレンジカルボン酸
類の製造方法に関し、特にナフタレンジカルボン酸類と
同時にベンゾニトリル類も製造する方法に関するもので
ある。ナフタレンジカルボン酸類はポリエステルや液晶
ポリマーの原料として有用であり、ベンゾニトリル類は
ベンゾグアナミン、溶剤や農薬の原料として、また有機
合成中間体として有用である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing naphthalenedicarboxylic acids, and more particularly to a method for producing benzonitriles as well as naphthalenedicarboxylic acids. Naphthalene dicarboxylic acids are useful as raw materials for polyesters and liquid crystal polymers, and benzonitriles are useful as raw materials for benzoguanamine, solvents and agricultural chemicals, and as organic synthetic intermediates.
【0002】[0002]
【従来の技術】ナフタレンジカルボン酸類のうちでは
2,6−ナフタレンジカルボン酸(以下、2,6−ND
CAと略記する)が最も重要な化合物であり、その2,
6−NDCAの製造方法としては次の3つの方法が知ら
れている。 2,6−ジメチルナフタレン、2,6−ジイソプロピ
ルナフタレンなどの2,6−ジアルキルナフタレンを酢
酸溶媒中で遷移金属と臭素などの触媒の存在下で液相酸
化する方法 NDCAアルカリ金属塩をヘンケル転位させる方法 2,6−ナフタレンジニトリルを加水分解する方法2. Description of the Related Art Among naphthalenedicarboxylic acids, 2,6-naphthalenedicarboxylic acid (hereinafter referred to as 2,6-ND)
(Abbreviated as CA) is the most important compound,
The following three methods are known as methods for producing 6-NDCA. Method for liquid phase oxidation of 2,6-dialkylnaphthalene such as 2,6-dimethylnaphthalene and 2,6-diisopropylnaphthalene in acetic acid solvent in the presence of a transition metal and a catalyst such as bromine NDCA Alkali metal salt Henkel rearrangement Method Hydrolyzing 2,6-naphthalenedinitrile
【0003】の方法としては、コバルト−マンガン−
臭素を触媒として用い、2,6−ジメチルナフタレンを
原料とした2,6−NDCAの製造方法が報告されてい
る(特公昭56−3337号公報参照)。この方法の収
率は95%と高いものの、酢酸や臭素など腐食性の高い
物質を使用するため、高価な材質の反応装置を必要とす
るなど、製法上問題点が多い。As a method of, cobalt-manganese-
A method for producing 2,6-NDCA using 2,6-dimethylnaphthalene as a raw material using bromine as a catalyst has been reported (see Japanese Patent Publication No. 56-3337). Although the yield of this method is as high as 95%, it uses many highly corrosive substances such as acetic acid and bromine, and thus requires a reaction apparatus made of an expensive material.
【0004】一方、2,6−ジメチルナフタレンに比べ
て合成しやすい2,6−ジイソプロピルナフタレンを原
料として用いた液相酸化による2,6−NDCAの製造
方法は数多く報告されている。例えば、コバルト−マン
ガン−臭素を触媒として用いた方法(特開平4−334
344号公報参照)、コバルト−マンガン−臭素−アミ
ンを触媒として用いた方法(特開平5−9152号公報
参照)、コバルト−セリウム−臭素を触媒として用いた
方法(特公平5−30818号公報参照)、コバルト−
マンガン−希土類金属−臭素を触媒として用いた方法
(特開平5−140033号公報参照)などである。し
かし、いずれも収率がせいぜい70%台であり、しかも
生成したNDCAが2,6−NDCA以外の不純物を含
むため、生成物をエステル化して蒸留したり、塩を形成
させた上で酸析させるなどの精製を必要とする。さら
に、2,6−ジメチルナフタレンを酸化する方法に比べ
て多量の金属を触媒として必要とし、しかも触媒の成分
として必要なコバルトは高価であるためリサイクル使用
させる必要があり、高い回収率を要求されるので、触媒
の処理がわずらわしくなる。また、2,6−ジメチルナ
フタレンを原料に用いた製法と同様に、腐食性の高い臭
素を使用するため、高価な材質の反応装置を必要とする
製法上の問題点も有している。On the other hand, there have been reported many methods for producing 2,6-NDCA by liquid phase oxidation using 2,6-diisopropylnaphthalene, which is easier to synthesize than 2,6-dimethylnaphthalene, as a raw material. For example, a method using cobalt-manganese-bromine as a catalyst (JP-A-4-334).
344), a method using cobalt-manganese-bromine-amine as a catalyst (see JP-A-5-9152), and a method using cobalt-cerium-bromine as a catalyst (see JP-B-5-30818). ), Cobalt-
A method using manganese-rare earth metal-bromine as a catalyst (see JP-A-5-140033) and the like. However, in all cases, the yield is in the order of 70% at most, and the produced NDCA contains impurities other than 2,6-NDCA. Therefore, the product is esterified and distilled, or salt is formed before acid precipitation. Purification is required. Further, compared with the method of oxidizing 2,6-dimethylnaphthalene, a large amount of metal is required as a catalyst, and cobalt required as a component of the catalyst is expensive, so it must be recycled and a high recovery rate is required. Therefore, the treatment of the catalyst becomes troublesome. Further, similarly to the manufacturing method using 2,6-dimethylnaphthalene as a raw material, since bromine having high corrosiveness is used, there is a problem in the manufacturing method that requires a reaction device made of an expensive material.
【0005】の方法に関しては、特公昭49−828
号公報に記載されている方法がある。その方法では、メ
チルナフタレン異性体混合物を原料に用いて、コバルト
−マンガン−臭素を触媒として液相酸化した後、得られ
た粗ナフトエ酸をアルカリ金属塩とする。次に、カドニ
ウム、亜鉛、鉛又は水銀化合物を触媒に用い、炭酸ガス
の存在下で熱不均化と熱転位反応のいずれか又は両方を
行なわせることにより、2,6−NDCAジカリウム塩
を得る。そして、このカリウム塩から2,6−NDCA
を得る。しかし、この反応は工程が長く、しかも高温、
高圧のスラリー反応であるため生産性が低い。また毒性
の強い触媒を用いており、工業上問題点が多い。Regarding the method (1), Japanese Patent Publication No. 49-828
There is a method described in the publication. In this method, a mixture of methylnaphthalene isomers is used as a raw material, liquid-phase oxidation is carried out using cobalt-manganese-bromine as a catalyst, and then the obtained crude naphthoic acid is used as an alkali metal salt. Next, a cadmium, zinc, lead or mercury compound is used as a catalyst, and either or both of thermal disproportionation and thermal rearrangement reaction are carried out in the presence of carbon dioxide gas to obtain a 2,6-NDCA dipotassium salt. . And from this potassium salt, 2,6-NDCA
Get. However, this reaction has a long process and high temperature,
Productivity is low because it is a high-pressure slurry reaction. In addition, since it uses a highly toxic catalyst, there are many industrial problems.
【0006】の方法としては、芳香族ニトリルを30
0℃で加水分解して芳香族カルボン酸を製造する方法が
報告されている(特開昭48−81828号公報参
照)。しかし、芳香族ニトリルが2,6−ナフタレンジ
ニトリルの場合は収率が50%前後と非常に低い上に、
アミドが大量に副生し、2,6−NDCAを高収率かつ
高純度で得ることはできない。[0006] As a method of,
A method for producing an aromatic carboxylic acid by hydrolysis at 0 ° C. has been reported (see JP-A-48-81828). However, when the aromatic nitrile is 2,6-naphthalenedinitrile, the yield is very low at around 50%, and
A large amount of amide is by-produced, and 2,6-NDCA cannot be obtained in high yield and high purity.
【0007】一方、ニトリル類とカルボン酸類を反応さ
せると、シアノ基とカルボキシル基が交換するいわゆる
官能基交換反応が起こることがあることは知られている
が、その反応をナフタレンジカルボン酸類の製造に用い
た例はないし、用いることができるかどうかも知られて
いない。On the other hand, it is known that when a nitrile is reacted with a carboxylic acid, a so-called functional group exchange reaction in which a cyano group and a carboxyl group are exchanged may occur. There is no example used, and it is not known whether it can be used.
【0008】[0008]
【発明が解決しようとする課題】従来のNDCA類の製
造方法においては、高収率かつ高純度でNDCAを得る
ことは困難であり、工業上大いに問題を有している。本
発明は、従来の方法の欠点を解消するためになされたも
のであり、NDCA類を高収率かつ高純度で、さらにベ
ンゾニトリル類も同時に高収率かつ高純度で工業的に製
造できる方法を提供することを目的とするものである。In the conventional method for producing NDCAs, it is difficult to obtain NDCA with high yield and high purity, and there is a great industrial problem. The present invention has been made to solve the drawbacks of the conventional methods, and is a method for industrially producing NDCAs in high yield and high purity, and benzonitriles in high yield and high purity at the same time. It is intended to provide.
【0009】[0009]
【課題を解決するための手段】本発明者らはナフタレン
ジニトリル類と安息香酸類を原料にして官能基交換反応
を行なわせたところ、安息香酸類を過剰に使用すればナ
フタレンジニトリル類の濃度が低いながらも、触媒など
原料以外の物質を用いることなくNDCAが高収率で生
成することを見出した。この官能基交換反応は以下の式
(1)に示されるように平衡反応である。Means for Solving the Problems The present inventors conducted a functional group exchange reaction using naphthalenedinitriles and benzoic acids as raw materials. When benzoic acids were used in excess, the concentration of naphthalenedinitriles increased. It has been found that NDCA is produced in high yield without using a substance other than a raw material such as a catalyst although the amount is low. This functional group exchange reaction is an equilibrium reaction as shown in the following formula (1).
【化1】 RがHの場合は安息香酸類が安息香酸であり、RがCH
3の場合は安息香酸類がトルイル酸である。Embedded image When R is H, the benzoic acid is benzoic acid and R is CH.
In the case of 3 , the benzoic acid is toluic acid.
【0010】さらに検討した結果、反応中に生成するN
DCA類が析出することにより、式(1)で平衡が右側
に偏り、さらに反応中に生成するベンゾニトリル類を留
出させながらその反応を行なわせることにより平衡はさ
らに大きく右側に偏り、高収率を維持したまま原料のナ
フタレンジニトリル類の濃度を高めうることが分かっ
た。その結果、NDCA類とベンゾニトリル類を製造す
るのにナフタレンジニトリル類と安息香酸類を反応物質
とする官能基交換反応を適用することができること、及
び反応温度や原料の混合割合などの反応条件を検討する
ことにより、NDCA類とベンゾニトリル類を高収率か
つ高純度で、同時に製造できることを見出し、本発明を
なすに至ったものである。As a result of further investigation, N formed during the reaction
Due to the precipitation of DCA, the equilibrium is biased to the right side in the formula (1), and further the equilibrium is biased to the right side by performing the reaction while distilling the benzonitriles formed during the reaction, resulting in a high yield. It was found that the concentration of the raw material naphthalene dinitriles can be increased while maintaining the rate. As a result, it is possible to apply a functional group exchange reaction using naphthalenedinitriles and benzoic acids as reactants to produce NDCAs and benzonitriles, and to adjust reaction conditions such as reaction temperature and mixing ratio of raw materials. By studying, it was found that NDCAs and benzonitriles can be simultaneously produced in high yield and high purity, and the present invention has been completed.
【0011】すなわち、本発明はナフタレンジニトリル
類と安息香酸類をモル比でナフタレンジニトリル類1に
対し安息香酸類を3以上の割合で混合し、生成物の1つ
であるベンゾニトリル類の沸点以上で原料の1つである
安息香酸類の沸点までの温度で加熱することにより、シ
アノ基とカルボキシル基を交換する官能基交換反応を行
なわせてNDCA類とベンゾニトリル類を同時に製造す
る方法である。官能基交換反応中に生成するベンゾニト
リル類を留出させながらこの反応を行なわせるのが好ま
しい。That is, according to the present invention, naphthalenedinitriles and benzoic acids are mixed at a molar ratio of 1 to 1 of naphthalenedinitriles and 3 or more of benzoic acids to obtain a product having a boiling point not lower than that of benzonitriles. Is a method of simultaneously producing NDCAs and benzonitriles by heating at a temperature up to the boiling point of benzoic acids, which is one of the starting materials, to carry out a functional group exchange reaction for exchanging cyano groups and carboxyl groups. It is preferable to carry out this reaction while distilling out the benzonitriles formed during the functional group exchange reaction.
【0012】一方の原料であるナフタレンジニトリル類
としては、具体的には1,5−ナフタレンジニトリル、
2,6−ナフタレンジニトリル、2,7−ナフタレンジ
ニトリル、2,3−ナフタレンジニトリルなどが挙げら
れる。このうち2,6−ナフタレンジニトリルが工業的
に最も有用である。これらのナフタレンジニトリル類
は、対応するジメチルナフタレン類からバナジウム系触
媒の存在下でアンモ酸化することによって合成すること
ができる。他方の原料である安息香酸類としては、具体
的には安息香酸、トルイル酸などが挙げられる。As the naphthalenedinitriles which are one of the raw materials, specifically, 1,5-naphthalenedinitrile,
2,6-naphthalenedinitrile, 2,7-naphthalenedinitrile, 2,3-naphthalenedinitrile and the like can be mentioned. Of these, 2,6-naphthalenedinitrile is industrially most useful. These naphthalenedinitriles can be synthesized from the corresponding dimethylnaphthalenes by ammoxidation in the presence of a vanadium catalyst. Specific examples of the other raw material, benzoic acids, include benzoic acid and toluic acid.
【0013】ナフタレンジニトリル類に対する安息香酸
類の混合モル比は、ナフタレンジニトリル類:安息香酸
類=3以上、好ましくは1:3〜1:30、さらに好ま
しくは1:5〜1:15である。安息香酸類のモル比が
30よりも多くなると、反応に関しては何ら不都合が生
じるものではないが、ナフタレンジニトリル類の濃度が
低くなるため生産性が悪くなる。逆に、モル比が1:3
より小さく、すなわちナフタレンジニトリル類の濃度が
それよりも高くなると、反応時間を長くすれば反応は可
能であるが、生成するNDCAのスラリー濃度が高いた
め、反応液が粘稠になり、反応を継続させることは実質
的に困難になる。The mixing molar ratio of benzoic acids to naphthalenedinitriles is 3 or more of naphthalenedinitriles: benzoic acids, preferably 1: 3 to 1:30, more preferably 1: 5 to 1:15. When the molar ratio of benzoic acids is more than 30, no inconvenience occurs in the reaction, but the concentration of naphthalenedinitriles becomes low, resulting in poor productivity. Conversely, the molar ratio is 1: 3
When the concentration is smaller, that is, when the concentration of naphthalene dinitriles is higher than that, the reaction can be performed by prolonging the reaction time, but since the slurry concentration of NDCA produced is high, the reaction liquid becomes viscous and the reaction It will be practically difficult to continue.
【0014】反応温度は原料に用いる安息香酸類により
規定される。反応温度の下限は対応する生成ニトリル類
の沸点以上であり、上限は原料の安息香酸類の沸点付近
である。反応温度は高い方が反応速度が大きくなり、反
応時間を短縮できるため好ましい。具体的な反応温度と
しては、安息香酸類が安息香酸のときは安息香酸の沸点
が250℃、生成するベンゾニトリルの沸点が190℃
であるので、190〜250℃の範囲が好ましい。これ
より温度が低いと反応速度が極端に小さくなるばかりで
なく、生成するニトリルが留出しないため平衡を大きく
右側に偏らせることが難しくなり不利である。原料の安
息香酸類がトルイル酸のとき、同様の理由により反応温
度は218〜275℃が好ましい。The reaction temperature is defined by the benzoic acid used as the raw material. The lower limit of the reaction temperature is equal to or higher than the boiling point of the corresponding nitriles formed, and the upper limit is near the boiling point of the benzoic acid as a raw material. The higher the reaction temperature, the higher the reaction rate and the shorter the reaction time, which is preferable. As the specific reaction temperature, when the benzoic acid is benzoic acid, the boiling point of benzoic acid is 250 ° C, and the boiling point of benzonitrile produced is 190 ° C.
Therefore, the range of 190 to 250 ° C. is preferable. If the temperature is lower than this, not only the reaction rate becomes extremely small, but also because the nitrile produced does not distill, it is difficult to largely bias the equilibrium to the right, which is disadvantageous. When the raw material benzoic acid is toluic acid, the reaction temperature is preferably 218 to 275 ° C. for the same reason.
【0015】[0015]
【実施例】以下に実施例について反応方法及び反応結果
を具体的に述べるが、本発明はこれらの実施例に限定さ
れるものではない。まず、実験室での実験に用いた反応
装置を図1に示す。反応容器としては50mlの3つ口
フラスコ2を用い、マントルヒータ4により予定の反応
温度に加熱する。3つ口フラスコ2の中央の口2−1に
は留出塔6を垂直方向に立て、留出塔6にはバンドヒー
タ8を巻いて留出塔8の温度調節を行なう。留出塔6の
温度は生成するベンゾニトリル類が気相を保つ温度、す
なわち沸点以上に調節する。留出塔6の上端部には留出
管10が分岐して設けられており、留出管10には冷却
器12が設けられて、その冷却器12に冷却水が流され
て留出管10が冷却される。留出管10の先端には凝縮
したベンゾニトリル類を受ける受器14が接続されてい
る。EXAMPLES The reaction methods and reaction results of the examples will be specifically described below, but the present invention is not limited to these examples. First, FIG. 1 shows the reactor used for the experiment in the laboratory. A 50 ml three-necked flask 2 is used as a reaction container, and is heated to a predetermined reaction temperature by a mantle heater 4. A distillation tower 6 is vertically set up at the center opening 2-1 of the three-necked flask 2, and a band heater 8 is wound around the distillation tower 6 to control the temperature of the distillation tower 8. The temperature of the distillation column 6 is adjusted to a temperature at which the produced benzonitriles maintain a gas phase, that is, a boiling point or higher. A distilling pipe 10 is branched and provided at an upper end portion of the distilling tower 6, and a cooling device 12 is provided in the distilling pipe 10 and cooling water is caused to flow through the cooling device 12 to distill the distilling pipe 10. 10 is cooled. A receiver 14 for receiving condensed benzonitriles is connected to the tip of the distillation pipe 10.
【0016】フラスコ2の他の1つの口2−2は閉じら
れて温度計16が挿入されており、その温度計16によ
り反応液18の温度を検出し、その検出温度が所定の反
応温度になるようにマントルヒータ4への通電が調節さ
れる。フラスコ2のさらに他の1つの口2−3は原料を
供給するためのものであり、反応中は閉じられる。フラ
スコ2内には沸騰石20を入れておき、反応液18が突
沸するのを防ぐ。留出塔6の上端部には留出塔6内の温
度を検出する温度計22が設けられている。The other mouth 2-2 of the flask 2 is closed and a thermometer 16 is inserted. The temperature of the reaction solution 18 is detected by the thermometer 16 and the detected temperature reaches a predetermined reaction temperature. The energization of the mantle heater 4 is adjusted so that Still another one port 2-3 of the flask 2 is for feeding raw materials and is closed during the reaction. A boiling stone 20 is placed in the flask 2 to prevent the reaction solution 18 from bumping. A thermometer 22 for detecting the temperature in the distillation column 6 is provided at the upper end of the distillation column 6.
【0017】(実施例1)フラスコ2に原料の2,6−
ナフタレンジニトリル2.00gと安息香酸18.00g
(モル比1:13.1)を入れ、沸騰石20を入れて、
反応温度を250℃、留出塔温度を200℃に設定し、
大気圧下で4時間反応を行なわせた。反応中にNDCA
が析出し、ベンゾニトリルが留出した。原料の安息香酸
も蒸発はするが、留出塔6が安息香酸の沸点より低く設
定されているため、留出塔6で凝縮して再びフラスコ2
に戻る。(Example 1) The flask 2 was charged with 2,6-
Naphthalene dinitrile 2.00 g and benzoic acid 18.00 g
(Mole ratio 1: 13.1), add boiling stones 20,
Set the reaction temperature to 250 ° C and the distillation column temperature to 200 ° C,
The reaction was allowed to proceed for 4 hours under atmospheric pressure. NDCA during the reaction
Was precipitated and benzonitrile was distilled. The raw material benzoic acid also evaporates, but since the distillation column 6 is set at a temperature lower than the boiling point of benzoic acid, it is condensed in the distillation column 6 and the flask 2 is reconstituted.
Return to
【0018】反応終了後、反応液を140℃で加熱吸引
濾過した。濾過ケーキ(濾過物)を室温に冷却した後、
10gのアセトンで洗浄し、室温で一晩乾燥させた。乾
燥した濾過ケーキを液体クロマトグラフィーで分析した
結果、純度99.9%の2,6−NDCAであり、収量
は2.38g(収率98.2%)であった。ベンゾニトリ
ルの留出量は2.28g(収率98.5%)であった。N
DCAの収率は原料のナフタレンジニトリルに対する生
成NDCAのモル%として計算し、ベンゾニトリルの収
率は、原料のナフタレンジニトリル1モルに対しベンゾ
ニトリルが2モル生成するところから、原料のナフタレ
ンジニトリルのモル数×2に対するモル%として計算し
たものである。After completion of the reaction, the reaction solution was heated at 140 ° C. and filtered by suction. After cooling the filter cake (filtrate) to room temperature,
It was washed with 10 g of acetone and dried overnight at room temperature. As a result of analyzing the dried filter cake by liquid chromatography, it was 2,6-NDCA with a purity of 99.9%, and the yield was 2.38 g (yield 98.2%). The amount of benzonitrile distilled was 2.28 g (yield 98.5%). N
The yield of DCA is calculated as the mol% of NDCA produced relative to the raw material naphthalene dinitrile, and the yield of benzonitrile is 2 moles of benzonitrile produced per mole of raw material naphthalene dinitrile. It is calculated as mol% based on the number of moles of nitrile × 2.
【0019】(実施例2)2,6−ナフタレンジニトリ
ル4.00g、安息香酸16.00g(モル比1:5.
8)、反応時間6時間とした以外は実施例1と同様に反
応を行なった。反応液を実施例1と同様に処理した結
果、純度99.7%の2,6−NDCAを4.70g(収
率96.8%)を得た。またベンゾニトリルの留出量は
4.43g(収率95.7%)であった。Example 2 4.00 g of 2,6-naphthalenedinitrile and 16.00 g of benzoic acid (molar ratio 1: 5.
8) The reaction was performed in the same manner as in Example 1 except that the reaction time was 6 hours. As a result of treating the reaction solution in the same manner as in Example 1, 4.70 g (yield 96.8%) of 2,6-NDCA having a purity of 99.7% was obtained. The amount of benzonitrile distilled was 4.43 g (yield 95.7%).
【0020】(実施例3)2,6−ナフタレンジニトリ
ル3.00g、p−トルイル酸17.00g(モル比1:
7.4)、反応温度275℃、留出塔温度220℃、反
応時間5時間とした以外は実施例と同様に反応を行なっ
た。反応液を185℃で加熱吸引濾過し、実施例1と同
様にして乾燥した濾過ケーキ3.56g(収率97.7
%)を得た。分析の結果、純度99.8%の2,6−N
DCAであった。p−トルニトリル(p−メチルベンゾ
ニトリル)の留出量は3.81g(収率99.6%)であ
った。(Example 3) 2.00 g of 2,6-naphthalenedinitrile and 17.00 g of p-toluic acid (molar ratio 1:
7.4), the reaction temperature was 275 ° C., the distillation column temperature was 220 ° C., and the reaction time was 5 hours. The reaction solution was filtered by suction with heating at 185 ° C. and dried in the same manner as in Example 1 to give 3.56 g of a filter cake (yield 97.7).
%) Was obtained. As a result of the analysis, 2,6-N with a purity of 99.8%
It was DCA. The amount of p-tolunitrile (p-methylbenzonitrile) distilled out was 3.81 g (yield 99.6%).
【0021】(実施例4)2,7−ナフタレンジニトリ
ル3.50g、安息香酸16.50g(モル比1:6.
9)、反応時間6時間とした以外は実施例1と同様に反
応を行なった。反応液を実施例1と同様に処理した結
果、純度99.8%の2,7−NDCAを4.12g(収
率97.1%)を得た。ベンゾニトリル留出量は3.90
g(収率96.3%)であった。Example 4 3.50 g of 2,7-naphthalenedinitrile and 16.50 g of benzoic acid (molar ratio 1: 6.
9), the reaction was performed in the same manner as in Example 1 except that the reaction time was 6 hours. As a result of treating the reaction solution in the same manner as in Example 1, 4.12 g (yield 97.1%) of 2,7-NDCA having a purity of 99.8% was obtained. Benzonitrile distillate amount is 3.90
It was g (yield 96.3%).
【0022】(実施例5)2,6−ナフタレンジニトリ
ル0.30g、安息香酸18.00g(モル比1:87.
3)、留出塔6を保温せず、生成ベンゾニトリルを殆ど
留出させないようにした以外は実施例1と同様に反応を
行なった。反応液を実施例1と同様に処理した結果、純
度99.9%の2,6−NDCAを0.36g(収率9
8.9%)を得た。この反応では生成するベンゾニトリ
ルは留出させていないが、原料中に安息香酸を大過剰に
存在させることにより、NDCAを高収率で高純度に得
ることができた。Example 5 0.30 g of 2,6-naphthalenedinitrile and 18.00 g of benzoic acid (molar ratio 1:87.
3) The reaction was carried out in the same manner as in Example 1 except that the distillation column 6 was not kept warm and the produced benzonitrile was hardly distilled. As a result of treating the reaction solution in the same manner as in Example 1, 0.36 g of 2,6-NDCA having a purity of 99.9% (yield 9
8.9%). Although benzonitrile produced in this reaction was not distilled, NDCA could be obtained in high yield and high purity by allowing benzoic acid to exist in a large excess in the raw material.
【0023】(比較例1)反応温度を180℃とした以
外は実施例1と同様に反応を行なった。反応液を実施例
1と同様に処理した結果、2,6−NDCAは殆ど得ら
れなかった。また、ベンゾニトリルの留出も確認されな
かった。Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 180 ° C. As a result of treating the reaction solution in the same manner as in Example 1, almost no 2,6-NDCA was obtained. In addition, the distillation of benzonitrile was not confirmed.
【0024】(比較例2)2,6−ナフタレンジニトリ
ル7.50g、安息香酸12.5g(モル比1:2.9)
とした以外は実施例1と同様に反応を行なった。反応液
が極めて粘稠であり、実施例1と同様な濾過ができなか
ったため、反応液を多量のジメチルスルホキシドに溶解
することにより分析した。その結果2,6−ナフタレン
ジニトリルの転化率は100%、NDCA収率は59.
0%であった。このときの副生物は反応中間体である6
−シアノ−2−ナフタレンカルボン酸であった。(Comparative Example 2) 7.50 g of 2,6-naphthalenedinitrile and 12.5 g of benzoic acid (molar ratio 1: 2.9)
The reaction was performed in the same manner as in Example 1 except that Since the reaction solution was extremely viscous and could not be filtered as in Example 1, the reaction solution was analyzed by dissolving it in a large amount of dimethyl sulfoxide. As a result, the conversion of 2,6-naphthalenedinitrile was 100% and the NDCA yield was 59.
It was 0%. The by-product at this time is a reaction intermediate 6
-Cyano-2-naphthalenecarboxylic acid.
【0025】(比較例3)留出塔6を保温せずに生成ベ
ンゾニトリルの留出を殆どさせなかった以外は実施例1
と同様に反応を行なった。反応液を実施例1と同様に処
理した結果、純度80.2%の2,6−NDCA2.15
g(収率71.2%)を得た。副生物は比較例2と同様
に、6−シアノ−2−ナフタレンカルボン酸であった。
以上の実施例と比較例をまとめて次の表1に示す。(Comparative Example 3) Example 1 except that the distillation column 6 was not kept warm and the produced benzonitrile was hardly distilled.
The reaction was performed in the same manner as in. The reaction mixture was treated in the same manner as in Example 1 and as a result, 2,6-NDCA having a purity of 80.2% was 2.15.
g (yield 71.2%) was obtained. The by-product was 6-cyano-2-naphthalenecarboxylic acid as in Comparative Example 2.
The above examples and comparative examples are summarized in Table 1 below.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【発明の効果】本発明によりナフタレンジニトリル類と
安息香酸類を原料とし、そのモル比を調節し、温度を調
節してシアノ基とカルボキシル基を交換させる官能基交
換反応を行なわせることにより、ナフタレンジカルボン
酸類とベンゾニトリル類を同時に高収率でかつ高純度に
製造できることとなった。INDUSTRIAL APPLICABILITY According to the present invention, naphthalene is obtained by using naphthalene dinitriles and benzoic acids as raw materials, and adjusting the molar ratio thereof to control the temperature to carry out a functional group exchange reaction for exchanging a cyano group and a carboxyl group. It has become possible to simultaneously produce dicarboxylic acids and benzonitriles with high yield and high purity.
【図面の簡単な説明】[Brief description of drawings]
【図1】実施例で用いた反応装置を示す概略垂直断面図
である。FIG. 1 is a schematic vertical sectional view showing a reaction device used in an example.
2 3つ口フラスコ 4 マントルヒータ 6 留出塔 10 留出管 18 反応液 2 3-neck flask 4 Mantle heater 6 Distillation tower 10 Distillation tube 18 Reaction liquid
フロントページの続き (72)発明者 前田 勇 大阪府吹田市西御旅町5番8号 株式会社 日本触媒内Front page continuation (72) Inventor Isamu Maeda 5-8 Nishiomitabicho Suita City Osaka Prefecture Nippon Shokubai Co., Ltd.
Claims (4)
モル比でナフタレンジニトリル類1に対し安息香酸類を
3以上の割合で混合し、生成物の1つであるベンゾニト
リル類の沸点以上の温度で、かつ原料の1つである安息
香酸類の沸点までの温度で加熱することにより、シアノ
基とカルボキシル基を交換する官能基交換反応を行なわ
せることを特徴とするナフタレンジカルボン酸類とベン
ゾニトリル類の製造方法。1. Naphthalenedinitriles and benzoic acids are mixed at a molar ratio of 1 or more naphthalenedinitriles with 3 or more benzoic acids at a temperature not lower than the boiling point of one of the products, benzonitriles. , And production of naphthalenedicarboxylic acids and benzonitriles, which is characterized by carrying out a functional group exchange reaction for exchanging a cyano group and a carboxyl group by heating at a temperature up to the boiling point of benzoic acids, which is one of the raw materials. Method.
ニトリル類を留出させながらこの反応を行なわせる請求
項1に記載のナフタレンジカルボン酸類とベンゾニトリ
ル類の製造方法。2. The method for producing naphthalenedicarboxylic acids and benzonitriles according to claim 1, wherein the reaction is carried out while distilling benzonitriles formed during the functional group exchange reaction.
類が2,6−ナフタレンジニトリルであり、一方の生成
物であるナフタレンジカルボン酸類が2,6−ナフタレ
ンジカルボン酸である請求項1又は2に記載のナフタレ
ンジカルボン酸類とベンゾニトリル類の製造方法。3. The method according to claim 1 or 2, wherein the naphthalenedinitrile as one raw material is 2,6-naphthalenedinitrile and the naphthalenedicarboxylic acid as one product is 2,6-naphthalenedicarboxylic acid. A method for producing the described naphthalenedicarboxylic acids and benzonitriles.
であり、他方の生成物であるベンゾニトリル類がベンゾ
ニトリルであり、反応温度が190〜250℃である請
求項1〜3に記載のナフタレンジカルボン酸類とベンゾ
ニトリル類の製造方法。4. The benzoic acid as the other raw material is benzoic acid, the benzonitriles as the other product is benzonitrile, and the reaction temperature is 190 to 250 ° C. A method for producing naphthalenedicarboxylic acids and benzonitriles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6164696A JPH083106A (en) | 1994-06-22 | 1994-06-22 | Production of naphthalenedicarboxylic acid and benzonitrile compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6164696A JPH083106A (en) | 1994-06-22 | 1994-06-22 | Production of naphthalenedicarboxylic acid and benzonitrile compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH083106A true JPH083106A (en) | 1996-01-09 |
Family
ID=15798138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6164696A Pending JPH083106A (en) | 1994-06-22 | 1994-06-22 | Production of naphthalenedicarboxylic acid and benzonitrile compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH083106A (en) |
-
1994
- 1994-06-22 JP JP6164696A patent/JPH083106A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3009223B2 (en) | Method for producing high-purity benzenedicarboxylic acid isomer | |
US7732559B2 (en) | Method of making halophthalic acids and halophthalic anhydrides | |
US20010007039A1 (en) | Process for producing nitrile compounds | |
CN108047089B (en) | Preparation method of 4-tert-butyl phthalonitrile | |
JP4418364B2 (en) | Ammoxidation of carboxylic acids to mixtures of nitriles. | |
US3393220A (en) | Process for the preparation of high purity phthalonitriles | |
JPH083106A (en) | Production of naphthalenedicarboxylic acid and benzonitrile compound | |
JP2002097168A (en) | Method for producing aromatic tetracarboxylic acid | |
JPS5844670B2 (en) | Method for producing phthalic anhydride | |
JPH0415777B2 (en) | ||
JP2003073372A (en) | Method for producing phenylethynyl phthalic anhydride derivative | |
US5003085A (en) | Acid anhydrides and dianhydrides of disubstituted maleic anhydrides | |
JP2652563B2 (en) | Method for producing aromatic nitriles | |
JP4383604B2 (en) | Method for producing aromatic cyanobenzoic acid compound | |
JPS6032758A (en) | Production of benzonitrile compound | |
JPH11322701A (en) | Production of nitrile | |
JPH05112522A (en) | Process for preparing alkanesulfonylbenzoic acid | |
JP4380844B2 (en) | Method for producing aromatic dicarboxylic acid diamide | |
JPS63290843A (en) | Production of aromatic nitrile and carboxylic acid | |
US5098991A (en) | Process of preparing polyamide-imide and polyimide polymers from acid anhydrides and dianhydrides of disubstituted maleic anhydrides | |
SU1084275A1 (en) | Process for preparing 4-bromonaphthalic anhydride | |
JP4275243B2 (en) | Method for producing cyano group-containing benzoic acid compound | |
JP2003321453A (en) | Method for producing amide compound | |
JPH07330700A (en) | Production of aromatic dicarboxylic acid diamide | |
JP3637924B2 (en) | Process for producing N-chloroaromatic carboxylic acid amide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20080531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100531 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20100531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20120531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120531 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120531 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130531 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |