JPH08310489A - Propulsion unit of bidirectional sailing ship - Google Patents

Propulsion unit of bidirectional sailing ship

Info

Publication number
JPH08310489A
JPH08310489A JP7156641A JP15664195A JPH08310489A JP H08310489 A JPH08310489 A JP H08310489A JP 7156641 A JP7156641 A JP 7156641A JP 15664195 A JP15664195 A JP 15664195A JP H08310489 A JPH08310489 A JP H08310489A
Authority
JP
Japan
Prior art keywords
ship
rudder
speed
propulsion device
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7156641A
Other languages
Japanese (ja)
Other versions
JP3500590B2 (en
Inventor
Yukio Ota
幸雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15664195A priority Critical patent/JP3500590B2/en
Publication of JPH08310489A publication Critical patent/JPH08310489A/en
Application granted granted Critical
Publication of JP3500590B2 publication Critical patent/JP3500590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Toys (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE: To enable it to a high-speed sailing even in either direction of the stem and the stern by setting up a propeller and a rubber in both sides symmetrically on the hull center, decelerating propeller at the fore head side to a little speedier value than a racing speed at a sailing water flow velocity, and driving it in reverse. CONSTITUTION: Each side floating body 2 formed into a stream line shape being symmetrical on a hull center together with both of the stem and the stern is set up at the right and left of a center floating body 1, while two jet ports 6a and 6b are installed in the stem-stern part of a ship bottom 5 of the center floating body 1. Each of two-compression blowers 8a and 8b is set up in the stem-stern part of the side floating body 2, whereby compressed air produced in guided to the jet ports 6a and 6b via two feed pipes 9a and 9b, then an air layer or an air bubble layer 10 is formed extending over the full length of the ship bottom 5 with this compressed air blown out herefrom. Subsequently two propellers 11a, 11b and two rubbers 13a, 13b are set up in both submerged parts of the stem-stern of each side floating body 2 symmetrically on the hull center, and at the time of navigation, the propeller at the fore head side is decelerated to a little speedier value than a racing speed at sailing water flow velocity, through which reverse driving is carried out.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、船首尾いずれの方向に
も首尾反転なく高速航走できる、双方向航走船の推進装
置に関するものであり、主として既出願(特願平7−4
1226「双胴平底船の船体」)の船体方式を応用した
双方向航走船の推進装置に関するものであり、なお、従
来の双胴船及び単胴船の船体方式によるものにも提供可
能である。 【0002】 【従来の技術】一般に船(艦艇・船舶)は、船尾に推進
器及び舵を配して後押しで前進航走即ち船首方向に航走
しており、推進器の翼正面及び舵の舵尾は常に船尾方向
(舵頭は船首方向)に向いているので、前進時の推進効
率及び舵の効きと安定性は良いが、後進は、推進器を逆
回転(固定ピッチ型推進器)又は逆ピッチ(可変ピッチ
型推進器)にして推進器の翼背面で前引き推力を得るの
で推進器効率が低い上に、船速を大きく上回る推進器の
高速水流が船体に接し抵抗が増大するため推進効率が低
下し、舵は推進器の吸い込み水流を舵尾から受けるので
舵の効きや安定性が良くないので、緊急時の制動や出入
港、離着岸及び首尾反転の際の減速、停止及び微速後進
に限られ、船尾方向の航走には使われていない。 【0003】そのような単方向航走の船は、船首着岸又
は船尾着岸に伴い出入港のいずれかの際、微速で首尾反
転が必要であり、特に短距離航路での連続折り返し運航
では、その首尾反転に費やす時間は運用効率上無視でき
ず、また、大きな反転半径で交通密度の高い狭い港内で
の安全操船に問題を伴う。 【0004】船首尾いずれか一方にランプゲートを配し
たカーフェリーでは、図8(a)に示す如く、積載車両
は発港岩壁で反転し後進で乗船、着港岸壁に前進で下船
するため、航海毎に出入港のいずれかで首尾反転の必要
は勿論、積載車両の転向と後進に伴う余分な岸壁エリ
ヤ、乗船時間及び誘導員を要し、操車安全上も好ましく
ないので、車両甲板全通且つ船首尾双方にランプゲート
を有するカーフェリが出現し、積載車両は前進のみで乗
下船できるようになったが、航走は前進のみのいわゆる
単方向航走船では、図8(b)に示す如く、往航又は帰
航のいづれかで出入港とも首尾反転は不可避である。 【0005】連続折り返し運航の短距離航路で、船首尾
ともランプゲート、推進器及び舵を船中央について対称
に配し、翼正面及び舵尾がそれぞれ反船体中央側に向く
よう配した、単胴船型の小形・低速の双頭型(双方向航
走型)カーフェリが就航し、図8(c)に示す如く、出
入港時の首尾反転なく運航されているが、前頭側前引き
のものは上述 【0002】のとうり推進効率を害し舵の安定性も良く
ないので、高速・大形のものには不適当であり、また、
一対の主積載港以外に寄航・延航する場合はその港で首
尾反転が必要である。 【0006】最近、海上交通の高速化の必要から、船体
が軽金属製や双胴浮体型等の高速カーフェリが建造され
て就航し、あるいは空気圧浮上型や水中翼船等特殊形式
のものが出現する趨勢にあるが、それらの船形及び推進
機構は上述 【0002】の如き単方向航走式であり、その上船体構
造上ランプゲートが船尾側のみのものもあり、高速化と
それによる運航時間の著しい短縮に伴い、上述の出入港
時の首尾反転に費やす時間や港内の操船安全上の問題及
び車両積載に費やす時間や操車安全上の問題が無視でき
ない中・短距離航路が少なからず見られるに至る筈であ
る。 【0007】 【発明が解決しようとする課題】本発明は、上述の問題
に鑑み、船体の航走抵抗を低減するとともに、船速を大
きく上回る推進器の高速水流による船体の抵抗を避けて
推進効率を向上し、高速航走時にも逆水流による舵の不
安定が無く、必要に応じて狭隘な港内水路でも速やかな
首尾反転が可能な高速のカーフェリ等の双方向航走船を
提供し、連続折り返し運航の中・短距離航路においても
総合的に運用効率を向上し、また、それを中・大形のも
のにも実施可能とするを目的とする。 【0008】 【課題を解決するための手段】上記目的を達成するため
に、本発明の双方向航走船においては、前記( 【0001】)の双胴平底船の船体の方式を応用して船
首尾対称の船体とし、左右側浮体の船首尾双方に推進器
及び舵を、中央浮体の船首尾双方に船底噴気口を配し、
各々推進器軸にクラッチと減速歯車又は電動機を挿入
し、各々舵は舵頭尾反転可能の機構を持ち、航走方向に
合わせクラッチ操作で後尾側推進器に動力を集中し、舵
頭尾転向操作で双方の舵頭を航走方向に向けるよう、な
お、前頭側噴気口から噴気して船底に空気層又は気泡層
を創成するよう構成し、また、港湾状況や運航上の必要
に応じ、双方の推進器を後押し推力相殺方向に駆動して
双方の舵の転舵を加え、横動や転向の操船も可能とす
る。 【0009】上記の双胴平底船の船体は、平底の中央浮
体とその左右に水中に突出した側浮体とで逆凹形断面の
船体を形成し、中央浮体の船底の船首部に噴気口と船底
全長に亘り整流ひれを配し、船底に空気を介在させて航
走抵抗を低減したものであり、本発明においては、船首
尾いずれの方向にも航走抵抗を低減するため、その噴気
口を船首尾双方に配し、前頭側のものから噴気して船底
全長に亘り凹部全面に空気層又は気泡層を創成するよう
航走方向に合わせ選択開閉する機構とし、且つ船底に突
出物が無いように設ける等、後尾側のものが高速航走に
おいて抵抗にならないよう構成したものであり、中央浮
体を持たない従来の双胴船及び単胴船の船体方式への応
用においては、船底噴気口を除く他は本発明と同様な構
成である。 【0010】上記のように船首尾対称の船体と推進機構
を持つので船首尾の別は無いが、本明細書における用語
は、説明の便宜上、船自体の部位及び方向については
「船首」・「船尾」を、航走方向によるものでは「前
頭」・「後尾」を、推進器の推力方向に関しては「前引
き」・「後押し」(制動では「前押し」)を使用する。 【0011】推進器は、プロペラ式(以下特記の他これ
で説明する)では、固定ピッチ型のものを使用し、その
翼正面を反船体中央側に向け、その軸の正転方向(主推
力を発生)は船首・尾とも同方向、左右浮体間は互いに
逆方向とする。 【0012】推進器にジェットポンプ式のものを採用す
る場合は、上記と同様に、船首尾双方ともノズルは反船
体中央側(吸込口は船体中央側)に向ける。 【0013】減速歯車は、後尾側の推進器が正転の全速
回転数nfの全力後押しで、船底噴気を伴って定常全速
航走するとき、前頭側の推進器が船速の航走水流速Vs
での逆転の空転回転数ns(理論値)よりやや速めの回
転数nrで微力前引きになるような、減速比i=nr/
nfを持つ。 【0014】クラッチは、「正転」と「逆転」とを切り
替え且つ「中立」を有し電磁力、油圧等で操作する摩擦
連結の機構で以て、推進器軸を「正転」にて主軸に直結
して正転の全速回転数nfで、「逆転」にて減速歯車に
連結して逆転の減速回転数nrで駆動し、「中立」にて
空転自在となり航走水流速Vsを受ける推進器により回
転数nsに空転する。 【0015】主機関により直接又は主減速機を介して駆
動される主軸に、上記のクラッチ及び減速歯車を介して
各推進器軸を連結し、補助機関により直接又は発電機を
介して駆動される圧縮送風機から船首尾双方に配した船
底噴気口に給気する。 【0016】舵は、頭尾反転(180度転向)可能の機
構を持ち、例えば360度転舵可能の舵取機を持つ釣合
形吊り舵とする。 【0017】操船は、船首尾側双方あるいは中央の船橋
に配した航走方向側の操船卓で行ない、各々操船卓上に
キーレバー(入・切)、航走操作レバー(前進2段・中
立・後進1段)及び離着岸・転向操作レバー(前後動、
横動及び転向)を配する。 【0018】なお、上述( 【0014】、 【0013】)のクラッチ及び減速歯車の代わりに、主
軸と各推進器軸との間にクラッチ及び各推進器軸に電動
機を配し、航走においては、後尾側のクラッチ「接」で
推進器を正転全速回転数nfに主機関で駆動し、前頭側
のクラッチ「脱」で推進器を上述( 【0013】)の逆転減速回転数nrに制御した電動機
で駆動又は空転自在にするよう構成してもよい。 【0019】 【作用】上記のように構成された双方向航走船の推進装
置は、下記の作用を呈する。 【0020】前頭側の操作卓で、キーレバーを「入」に
して各舵の舵頭を航走方向(操作卓で見て前側)に向け
且つ各種信号灯・旗を航走方向に合わせ点灯・掲揚の
上、航走操作レバーで前進低速(船底噴気無し)、前進
高速(船底噴気併用)、惰航減速及び逆転制動又は後進
低速(船底噴気無し)並びに操舵を行なう。 【0021】定常高速航走中(操作レバー「前進2」で
船底噴気併用)は、前頭側(操作卓で見て前側)の推進
器はその空転回転数ns(理論値)よりやや速めの逆転
減速回転数nrで微力前引きに駆動されるので、その推
進器の水流速Vrは船速の航走水流速Vsを殆ど上回ら
ないため船体の抵抗増加は殆ど無く、正転全速回転数n
fで駆動され高速水流Vfで後押し推力Pf(航走推
力)を発生の後尾側(操作卓で見て後側)の推進器効率
を低下させない。 【0022】推進器がウォータジェット式の場合、定常
高速航走中に前頭側の推進器は微力前引き駆動で吸込口
から逆転水流が船底に噴出するが、その水流速は航走速
度Vsよりやや速めの値Vrにノズルと吸込口との断面
積比An/Asを乗じたかなり小さい値で且つ前頭側か
らの航走水流に混ざって側浮体に沿流するに従いその内
外側面にも拡散するので、船体に接する水流速の増大や
流況の乱れによる船体の抵抗増加及び後尾側の推進器効
率の低下は極めて軽微である。 【0023】推進器の翼は、根元と先端とでは翼面の迎
え角を変えて、各半径でピッチ長が同一に形成されてい
るので、翼正面からの航走水流(流速Vs)で流況を乱
さずに効率良く空転し、上述( 【0021】)の回転数nrでの微力前引き駆動により
推進器自体が航走抵抗になるのを避け、船体水切り部の
流線を乱さず、その駆動動力は、前引き動力にその推進
器軸の軸受や歯車等の機械損失が加えた極めて軽微な値
である。 【0024】いずれの航走方向においても、船首尾双方
の舵の舵頭が前頭側に向き舵頭から水流を受けるため、
舵に沿う流況が良いので舵の安定性が良く抵抗も小さ
い、また、後尾側の舵は推進器の高速水流(流速Vf)
を受けるため舵の効きが良く、前頭側の舵は航走水流
(流速Vs)を受けるため高速航走ではかなり効くの
で、回頭を助け船の旋回性も良くする。 【0025】出港時等の加速では、前頭側推進器も翼背
面で推力を発生して船の加速を助け、低速航走中は、船
底噴気無く中央浮体の抵抗が加わるため、後尾側の推進
器回転数と船速との比nf/Vsが船底噴気を伴う高速
航走時より大きいので、前頭側の推進器もその空転速度
nsより幾らか速く回転して推力Prを発生するが、そ
の駆動馬力はいずれも小さく、また、その推進器の流速
Vrは航走水流速Vsよりあまり大きくないので船体の
抵抗増加は小さく、全速回転して後押し推力Pfを発生
している後尾側の推進器効率の低下も軽微であり、ま
た、低速航走は出入港及び狭隘水路通過の短時間(数
分)のため燃料消費への影響は極めて小さい。 【0026】着岸前等の通常の逆転制動では、操作レバ
ーを「前進1」に戻して船底噴気閉止で緩制動、「中
立」に戻して推進器空転で惰航減速の上、操作レバーを
「後進」に切り替えると、前頭側のクラッチが正転側に
入り推進器は正転全速nfで駆動され効率よく全推力P
fで前押し、後尾側のクラッチは中立のままで推進器は
航走水流Vsを翼背面から受けて空転し、船を強制的に
制動する。 【0027】なお、操作レバーを「前進1」や「中立」
に戻したとき、船首尾とも両側浮体の舵を左右対称に転
舵(操作レバー端のボタン操作等)して横方向分力を相
殺し、船芯方向分力で上述の緩制動や惰航減速を助けて
もよい。 【0028】航走中に危険回避等の緊急の逆転制動で
は、操作レバーを「前進」から「後進」に急操作し、上
記 【0026】と同様の逆進作動で以て、前頭側の推進器
に主機関出力を集中して強力な前押し推力で船の急制動
を行なうことができ、制動の初期には航走水流(流速V
s)で後尾側(空転推進器が流況を乱さない)の舵がか
なり効き、制動の中・後期には前頭側の舵が推進器の高
速水流Vfを受けて良く効き(但し転舵は航走時とは逆
方向)、左右浮体の主機関回転数の調整も加えることも
でき、急制動中でも針路保持及び回頭操作が有効であ
る。 【0029】逆転制動でも、舵は、双方とも上述 【0020】の航走中の状態を保ち、舵頭尾転向作動し
ないので、前頭側のものは推進器の高速水流Vfを舵尾
から受けるが、短時間(通常は数秒、緊急制動で数分)
且つ通常制動では推進器が低速回転のため、流況不良に
よる振動や不安定等の問題は極めて軽微であり、また、
引き続く低速前進あるいは高速航走もあり、航走の過度
状態で時間(十数秒以上)かかる舵頭尾反転は操船上し
ない方がよい。 【0030】操作レバー「中立」にて、離着岸及び転向
操作レバーで双方のクラッチを「正転」側に入れ、前頭
・後尾双方ともに推進器を正転して後押し推力を相殺
し、主機関回転数の調整と、舵頭異方向又は同方向ある
いは両者組み合わせの転舵で、円滑且つ速やかな横動
(左動・右動)又は転向(左転・右転)あるいは両者の
組み合わせの操船ができ、また、いずれかのクラッチの
正転側の接・脱操作を加えて前後動もでき、離着岸時の
微動操船及び出入港時の急速転向が可能である。 【0031】離着岸及び転向操作において、双方の推進
器の翼正面で高速水流を発生して舵に当てるため推進器
効率及び舵の効きが良いので、強力且つ調整可能(ゼロ
〜全力)の横推力PLを持つサイドスラスタとして作動
し、船体の両端に位置するため横動の平行性や転向モー
メントが大きいので、円滑且つ速やかな操船が可能であ
る。 【0032】横動及び転向との組み合わせによる微動操
船は片側の浮体の推進器と舵でも可能であり、転向操船
は、対角の推進器(転向方向の浮体の前頭側と他方の浮
体の後尾側のもの)にそれぞれ主機関出力を集中し正転
全速駆動(後押し推力)して転舵すれば、推進器推力P
fと側浮体芯幅Sによる回頭モーメントM=Pf×Sが
加わり、より速やかに行なうことができる。 【0033】船首尾方向いずれの航走においても逆転制
動や横動・転向操船を含み、主機関の回転方向は常に同
じであり、運航中の主機関停止・逆転始動の必要は皆無
である。 【0034】 【実施例】実施例として双方向航走(両頭船型)カーフ
ェリーを挙げ、図面を参照して説明する。 【0035】図1及び図2において、中央浮体1の左右
に側浮体2を配して、各浮体の船首尾とも船体中央につ
いて対称な同様の流線型とし、中央浮体1の上面を全通
の載貨甲板(車両甲板)3とし、その船首尾端にそれぞ
れランプゲート4a、4bを配し、車両の自走積載(乗
・下船)に供する。 【0036】中央浮体1の船底5の船首尾部にそれぞれ
噴気口6a、6bを、全長に亘り整流ひれ7を配し、側
浮体2の船首尾部にそれぞれ圧縮送風機8a、8bを配
し、それぞれ給気管9a、9bで以て噴気口6a、6b
に導く。 【0037】噴気孔6a、6bの噴気方向は船体中央方
向に向け、前頭側のもの(例えば船首側に航走のときは
噴気孔6a)から噴気させて船底5の全長に亘り空気層
又は気泡層10を創成し、後尾側のもの(例えば船首側
に航走のときは噴気孔6b)は閉鎖し、航走抵抗になら
ないよう例えば船底に突起しない等の形状とする。 【0038】各側浮体2の船首・尾部の没水部に推進器
11a、11b及び舵13a、13bを船体中央につい
て対称に配し、プロペラ式の場合は図5及び図6に示す
ように、それぞれ推進器11a、11bの翼正面12f
を反船体中央側に向け(翼背面12rは船体中央側を向
く)、ジェットポンプ式の場合は図1(b)に示すよう
にしれぞれ推進器11a、11bのノズル12nを反船
体中央側に向け(吸込口12sは船体中央側を向く)、
それぞれの舵13a、13bの舵頭14f(断面は丸み
を持つ)及び舵尾14r(断面は刃型)の向きを180
度反転できる舵取機15を配する。 【0039】各側浮体2の内部においては、推進器軸1
6a、16bは、それぞれクラッチ付き減速機17a、
17bで、主減速機19を介して主機関20で回転数n
fに駆動される主軸18に連結、クラッチ付き減速機1
7a、17bは、図3に示すように、それぞれクラッチ
21及び減速歯車22(駆動歯車22a、中間歯車22
b、22c、22d、従動側歯車22eより成り)を内
蔵し、クラッチ21は正転F側に作動して歯車22aと
一体の対板21fに押着し主軸18に直結で全速回転数
nfで正転、逆転R側に作動して歯車22eと一体の対
板21rに押着し減速歯車22を介して減速回転数nr
で逆転となるよう切り替え、且つ双方の対板21f、2
1rから離れて推進器軸16a、16bを空転させる中
立Nを有する機構を持ち、減速歯車22は減速比i=n
r/nf(上記 【0013】参照)及び従動歯車22eが駆動歯車22
aとは逆回転の歯車列を持つ。 【0040】圧縮送風機8a、8bの動力を含む船内電
源として発電機23及び補助機関24を、主機関始動用
として空気圧縮機25を配し、空気槽(図示省略)圧力
で自動的に接・脱するクラッチ26で補助機関24に連
結する。 【0041】発電機23は、定常高速航走中に主機関2
0に切り替えて駆動し又は主機関20に補助機関24を
加勢し、出入港および停船中はを主減速機18から切り
離し補助機関24で駆動するよう、それぞれクラッチ2
7、28で連結するのがよく、なお、発電機23は、両
側浮体間の電路(図示省略)で接続して並列運転可能と
し、主機関にもクラッチ29を設け、万一いずれかの側
浮体の主機関が故障の際、その故障の主機関を切り離
し、他方の側浮体の発電機から電力を受け、電動機とし
て補助機関24に加勢した予備航走動力として推進器負
荷に見合う回転数で運転し、片軸推進に伴う回頭モーメ
ントを避けるのが良い。 【0042】主機関20及び補助機関24の始動・停止
は別の操作盤(図示省略)で行ない、発電機23を駆動
して船内電源を得、空気圧縮機24を駆動して空気槽
(図示省略)に蓄圧し、各種の補機を運転し、主機関2
0を始動して運航待ちとする。 【0043】上述のクラッチ付き減速機17a、17b
において、図4に示すように、切り替えクラッチ21に
代えて単式クラッチ(接・脱)30を、減速歯車22の
代わりに各々推進器軸に電動機31を配し、後尾側のク
ラッチ30「接」にて推進器(例えば11b)を全速n
fで駆動し電動機31を空転、前頭側のクラッチ30
「脱」にて電動機31を推進器(例えば11a)の空転
速度nsよりやや速めの回転数nrの微力駆動に制御す
るような機構にしてもよく、その方が航走速度や加速等
の操船状態による前頭側と後尾側の推進器の間の所要の
速比(i=nr/nf)の変化あっても最適状態に電気
的に調整でき、推進器効率が良い後尾側の推進器に主機
関出力をより集中できるので好都合である。 【0044】図1(a)において、船首・尾双方の船橋
32a、32bの室内にそれぞれ船首・尾方向に向かっ
て操作卓33a、33bを配し、図6(a)に示す如く
船首側に航走のときは操作卓33aで、図6(c)に示
す如く船尾側に航走のときは操作卓33bで操船を行な
う。 【0045】図5において、操作卓33a、33bの面
にキーレバー軸34(入・切)、航走操作レバー36
(前進2・前進1・中立・後進)、離着岸操作レバー3
7及び転向操作レバー38を配し、キーレバー35は、
船長が乗・下船時及び航走方向転換時に携行しキーレバ
ー軸34に挿着して図6及び図7に示すような操船を開
始する。 【0046】航走操作レバー36は、押して「前進1」
「前進2」、引いて「後進」、「中立」を含む全ノッチ
で横に傾けて転舵(取舵・面舵)でき、図6(a)、
(c)の如く正・逆進航走及び図6(b)の如く逆転制
動を行ない、航走操作レバー36が「中立」において、
離着岸操作レバー37を前後に操作して図7(a)の如
くクラッチ作動で微速前後動、同レバー37を左右に操
作あるいは転向操作レバー38を左右に回転操作し、図
7(b)(c)の如きクラッチ作動で推進器11a、1
1bを双方とも正転し、舵13a、13bの舵頭14f
を図7(b)の如く異方向に転舵して船の微速横動、図
7(c)の如く同方向に転舵して船の転向を行ない、そ
れぞれレバー37、38の操作角度で主機関回転数及び
舵角を併せて増減して横推力を調整し、また、両方のレ
バーを同時に操作し両舵の転舵方向を合成して横動と転
向との組み合わせ操船ができる。 【0047】小形船等、船の規模に応じて、主軸18は
両軸型主機関20の軸とし、あるいはクラッチ付き減速
機17a、17bを主減速機19に組み込み、圧縮送風
機8a、8bは1台に纒めて発電機23とともに補助機
関24で直接駆動し、給気管9a、9bで以て船首尾の
噴気口6a、6bに導く如き、簡単な構成にしてもよい
(図示省略)。 【0048】小形船等、船の規模に応じて、船中央に船
橋32を配する場合は、操作卓33はターンテーブルに
装着し航走方向に応じ首尾反転して舵を頭尾反転する機
構とし、あるいは、操作卓33を左右に分割しその間に
配した回転椅子で船長が180度反転して航走方向に向
き、3点式キーレバー(正進・切・逆進)35を航走方
向側に入れ、正逆進対称の航走操作レバー36で以て上
述と同様な操作を行なうよう構成することができる(図
示省略)。 【発明の効果】本発明は、以上説明したようにように構
成されているので、以下に記載のような効果を有する。 【0049】船体没水部形状及び推進器・舵ともに船首
・尾対称に配しているので、いずれの側にも全く同様に
航走でき、航走方向に応じ、推進器は後尾側が全推力で
後押し前頭側が減推力で前引きとし、主機関出力を推進
効率が良い後尾側のものに集中し、舵は後尾側・前頭側
双方とも舵頭が航走方向に反転するので、船体や舵の抵
抗増加なく推進効率は良好に保たれ、主機関等の設備効
率及びエネルギー効率が良く、双方とも舵に係る流況は
良好で舵の安定性が良く、後尾側は舵の効きが良く前頭
側も高速航走中は舵がかなり効く。 【0050】中央浮体の船首尾双方に配した船底噴気口
は、航走方向に応じて前頭側のものを開き噴気するの
で、いずれの側への航走においても同様に船底に空気層
または気泡を創成して航走抵抗を著しく低減するので、
船首尾いずれの方向にも主機関容量の著しい増大なく高
速航走が可能である。 【0051】双方向航走船の運航は、恰も鉄道の電車の
ように、船長が船上で船橋間を移動の上操作卓でのキー
レバー操作で航走方向を切り替え、直ちに逆進航走に移
ることができるので、特に、船首尾に全通の載貨甲板と
ランプゲートを持ち、車両が前進だけで速やかに乗下船
できるカーフェリーにおいて、運航上極めて好都合であ
る。 【0052】一般的には、航走抵抗を著しく低減して主
機関容量を節減している高速船では、惰力/航走抵抗比
即ち惰力/推力比が大きく緊急逆転制動の距離・時間が
長くなるが、本発明の推進装置では、前述( 【0026】、 【0028】)のように逆転制動で前頭側の推進器が効
率よく強力な前押し推力で制動し、前頭・後尾双方の舵
が効き急制動中でも進路保持及び回頭操作が有効なの
で、衝突防止等海上交通安全上まことに有利である。 【0053】主積載の2港間の運航では、出入港時に船
首尾転向を要しないため、着岸前の減速距離は短縮且つ
離岸後直ちに加速できるので平均航走速力/定常高速航
走速力の比が大きく、特に連続折り返し運航では運用効
率が良く、狭い港内での安全操船にも極めて有利であ
る。 【0054】上述の双方向航走の基本的な特徴に加え、
前頭・後尾双方の推進器とも正転と双方の舵の転舵を併
用して強力且つ調整可能な横推力でもって船体の横移動
や大きな転向モーメントで回転移動がでるので、舷側桟
橋にも離着岸は容易であり、停止状態でも速やかに転向
でき、航路途中や延長航路等の寄航で避けられない首尾
転向あっても運用効率低下は極めて小さく、港内の安全
操船にもたいへん好都合である。 【0055】クラッチ付き減速機は、後押し推力発生の
推進器に係る正転・全速側のクラッチ対板21fが全負
荷動力伝達のトルク容量が必要の他、逆転・減速側のク
ラッチ対板21r及び減速歯車22は、上述( 【0025】)の加速時の前頭側推進器の前引きに伴う
負荷が過度的に掛かる他は空転負荷に近い微力駆動のた
め、強度・寿命の両面で小容量のものでよく、また、減
速歯車22の代わりに推進器軸に配した電動機31は、
前引きの負荷を電気的制御で回避可能のため、なお小容
量のもので済むので、いずれも機構簡潔で小形・安価に
製作でき機関室のスペースや船価について好都合であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention
Propulsion equipment for two-way cruise ships that can sail at high speed without turning over
The above-mentioned application (Japanese Patent Application No. 7-4
1226 "Hull of a catamaran flat bottom ship")
It is related to the propulsion device for bidirectional vessels, and
Can also be provided by the conventional hull method of catamaran and monohull
Noh. 2. Description of the Related Art Generally, ships (ships / ships) are propelled to the stern.
Arrange a vessel and rudder to push forward and run forward, i.e., in the bow direction
The wing front of the propulsion unit and the rudder of the rudder are always in the stern direction.
(The rudder is in the bow direction)
The rate and rudder effectiveness and stability are good, but the reverse drive
Rotation (fixed pitch propeller) or reverse pitch (variable pitch)
Type thruster) to obtain the forward thrust on the back of the wing of the thruster.
In addition to low thruster efficiency,
Propulsion efficiency is low because high-speed water flow contacts the hull and increases resistance
And the rudder receives the water flow from the thruster from the rudder
The rudder's effectiveness and stability are not good, so braking in and out of an emergency
Deceleration, stop and slight reverse when harbor, takeoff and landing, and reversal
It is not used for sailing in the stern direction. Such a unidirectional ship has a bow berth or
At the time of either departure or entry due to the arrival of the stern
Turnover is required, especially continuous return operation on short-distance routes
Then, the time spent for reversing it can be ignored for operational efficiency.
And in a narrow port with a large reversal radius and high traffic density
There are problems with the safe handling of ships. A lamp gate is arranged on either the bow or the bow.
In the car ferry, as shown in FIG.
Reversing at the departure rock wall and boarding in reverse, getting off at the arrival dock
Therefore, it is necessary to turn over at each of the departure and arrival ports for each voyage.
Of course, the extra quay walls caused by the turning and reverse of the loaded vehicle
YA, boarding time and a guide are required, and it is preferable in terms of vehicle safety.
There is no ramp gate on all sides of the vehicle
A car ferri with a
It became possible to disembark, but the so-called traveling only so-called
For unidirectional vessels, as shown in Figure 8 (b),
It is inevitable that the ship will be turned in and out depending on the voyage. On a short-distance route with continuous return flight,
Both lamp gate, propulsion device and rudder are symmetrical about the center of the ship
The wing front and rudder face toward the center of the hull.
Small, low-speed, double-headed type (bidirectional navigation)
(Running type) car ferri goes into service and exits as shown in Fig. 8 (c).
It is operated without reversing when entering the port, but frontal front pulling
The ones described above have a poor steering efficiency and good steering stability.
It is not suitable for high-speed and large-sized ones because it does not exist.
If you call or extend a port other than a pair of main loading ports, start at that port.
Tail inversion required. Recently, due to the need for speeding up marine traffic,
Was built with high-speed car ferri such as light metal and catamaran type
Or a special type such as a pneumatic levitation type or hydrofoil
Are in the trend of appearing, but their shape and propulsion
The mechanism is a unidirectional navigation type as described above, and the upper hull structure
Some of the built-in ramp gates are only on the stern side,
Due to the drastic reduction of operating time,
Time spent on turning over and problems related to ship handling safety in the port
And the time spent on loading the vehicle
There should be a considerable number of medium and short-distance routes.
It SUMMARY OF THE INVENTION The present invention has the above-mentioned problems.
In view of this, we will reduce the running resistance of the hull and increase the ship speed.
Avoid the resistance of the hull due to the high-speed water flow of the thruster
Improving propulsion efficiency, rudder failure due to reverse water flow during high-speed cruising
It is not stable, and if necessary, swiftly
A two-way cruise ship such as a high-speed car ferri that can turn over
Provided, even in medium- and short-distance routes for continuous return flight
We will improve the operational efficiency comprehensively, and
It is also intended to be feasible. In order to achieve the above-mentioned object
In addition, in the bidirectional traveling ship of the present invention, the method of the hull of the catamaran flat bottom ship of the above ([0001]) is applied to the ship.
The ship is symmetrical and the propellers are attached to both the left and right floating bodies.
And the rudder, with the bottom bottom fumaroles on both the bow and tail of the center floating body,
Insert a clutch and reduction gear or electric motor into each propeller shaft
However, each rudder has a mechanism that allows the rudder tail to be reversed,
The combined clutch operation concentrates the power on the rear thruster and
Do not turn both heads in the sailing direction by head-to-tail turning operation.
The air layer or bubble layer is formed on the bottom of the ship by injecting air from the frontal fumarole.
It is configured to create
Drive both thrusters in the direction of thrust
In addition to steering both rudders, it is also possible to steer laterally and turning.
It The hull of the above-mentioned catamaran flat-bottomed ship has a flat-bottomed center float.
The body and the side floats protruding to the left and right of the body have an inverted concave cross section.
Forming the hull, the fumarole and the bottom of the center floating body at the bow of the bottom
A straightening fin is arranged over the entire length, and air is inserted at the bottom of the ship.
In the present invention, the running resistance is reduced.
In order to reduce the running resistance in either direction of the tail, the fumarole
The mouth is placed on both the bow and the tail, and the one from the frontal side blows out and the bottom of the ship
Create an air layer or bubble layer over the entire length of the recess
It has a mechanism that selectively opens and closes according to the sailing direction, and it also projects at the bottom of the ship.
The one on the rear side is for high-speed cruising, such as being installed so that there are no artifacts
It is configured so that it does not become a resistance at
Adapting to the hull system of conventional bodyless and catamaran
In use, the structure is the same as that of the present invention except that the bottom fumarole is excluded.
It is a success. As described above, the hull and propulsion mechanism are symmetrical with each other.
Since there is no distinction between ship and stem, the term in this specification
For convenience of explanation, regarding the parts and direction of the ship itself,
"Fore" and "stern" are changed to "front" depending on the direction of travel.
For the thrust direction of the thruster, use the "head" and "rear"
・ "Back push"("Frontpush" for braking) is used. The propeller is a propeller type
In (), the fixed pitch type is used.
With the front of the wing facing the center of the hull,
Force is generated in the same direction on the bow and tail, and the left and right floats are
The opposite direction. A jet pump type propeller is adopted.
In the case of
Turn toward the center of the body (suction port toward the center of the hull). The reduction gear is a full speed at which the rear thruster is in the forward rotation.
Steady full speed with bottom-bottom fumes by full-power boosting of the rotation speed nf
When navigating, the propulsion device on the frontal side is the running water velocity Vs at the ship speed.
Slightly faster than idling rotation speed ns (theoretical value) for reverse rotation at
Reduction ratio i = nr /
have nf. The clutch disconnects "forward" and "reverse".
Replaceable and "neutral" friction operated by electromagnetic force, hydraulic pressure, etc.
With the connection mechanism, the propeller shaft is directly connected to the main shaft by "forward rotation".
Then, at full speed nf for forward rotation, the reverse gear is used for the reduction gear.
Connected and driven at reverse deceleration speed nr, in "neutral"
Rotated by a propeller that can rotate freely and receives the running water velocity Vs
Spins to ns. Driven by the main engine directly or via the main reducer
To the driven main shaft through the above clutch and reduction gear
Connect each propulsion unit shaft and directly or with a generator by an auxiliary engine
Vessels arranged both on the fore and aft from a compression blower driven via
Supply the bottom fumarole. The rudder is a machine capable of turning head to tail (turning 180 degrees).
A balance with a structure, for example, a steering gear that can steer 360 degrees
It will be a suspension rudder. Ship maneuvering is carried out on both the fore and aft side or in the center of the bridge.
On the side of the boats on the side of the sailing direction
Key lever (on / off), cruise control lever (forward 2 steps / middle)
Standing / reverse 1 step) and berthing / turning operation lever (forward / backward movement,
Lateral movement and turning). It should be noted that instead of the clutch and the reduction gear described above ([0014], [0013]), the main
A clutch between the shaft and each propeller shaft and each propeller shaft are electrically driven
With the aircraft in place, when sailing, use the clutch "contact" on the rear side.
The propulsion device is driven by the main engine at the forward full speed nf, and the frontal side
The electric motor in which the propulsion device is controlled to the reverse rotation deceleration rotation speed nr as described above ((1)) by the clutch "disengaged"
It may be configured to be driven or idle freely. OPERATION The propulsion device of the bidirectional cruise ship constructed as described above.
The device has the following effects. On the front console, turn the key lever to "ON"
And turn the rudder of each rudder in the direction of travel (front side when viewed from the console)
Moreover, various signal lights and flags are lit and displayed according to the traveling direction.
Forward and forward with the navigation lever, low speed (no bottom bottom fumes), forward
High speed (combined with bottom fumes), coasting deceleration and reverse braking or reverse
Operate at low speed (no bottom bottom fumes) and steering. During normal high-speed cruising (when operating lever "Forward 2")
Propulsion on the frontal side (front side when viewed from the operator's console) for ship bottom fumes
Reversing device is slightly faster than its idling speed ns (theoretical value)
It is driven by a slight force forward at the deceleration speed nr.
The water velocity Vr of the thruster is almost higher than the running water velocity Vs of the ship speed.
Since there is no hull resistance increase, there is almost no increase in forward rotation speed n
driven by high-speed water flow Vf
Force) on the rear side (rear side when viewed from the console) of the thruster efficiency
Does not lower. When the thruster is a water jet type, steady state
During high-speed running, the frontal thruster is driven by a slight force front pulling drive.
A reverse flow of water is jetted from the bottom to the bottom of the ship, but the water velocity is
Cross section between nozzle and suction port at a value Vr that is slightly faster than the degree Vs
It is a fairly small value multiplied by the product ratio An / As, and is it frontal
As they mix with the running water flow along the side floating body
Since it also diffuses to the outer surface, the flow velocity of water in contact with the hull increases and
Increased resistance of hull due to turbulence of flow regime and thruster effect on rear side
The decrease in the rate is extremely slight. The wing of the propulsion device has a wing surface that meets the root and the tip.
The pitch angle is changed so that the pitch length is the same for each radius.
Therefore, the flow condition is disturbed by the running water flow (velocity Vs) from the front of the wing.
Instead, it spins efficiently and is driven by the slight force forward pulling at the above-mentioned rotation speed nr.
Avoiding the propulsion device itself from becoming a resistance to sailing,
Without disturbing the streamline, its driving power is the forward pulling power
Extremely small value including mechanical loss of bearings and gears of the shaft
Is. In both directions, both bow and stern
Since the rudder of the rudder of the
Since the flow condition along the rudder is good, the rudder stability is good and the resistance is small.
In addition, the rudder on the rear side is the high-speed water flow (velocity Vf) of the thruster.
The rudder on the frontal side has a good running effect because
(Velocity Vs), so it is quite effective in high-speed cruising.
And, it assists in turning and improves the turning performance of the ship. When accelerating when leaving a port, the frontal propulsion device is also wing-back.
Surface to generate thrust to help accelerate the ship,
Propulsion on the rear side because the resistance of the central floating body is added without bottom fumes
The ratio nf / Vs of the vessel rotation speed to the ship speed is high with the bottom fumes.
Since it is larger than when traveling, the frontal thruster also has its idling speed.
Rotate somewhat faster than ns to generate thrust Pr,
The driving horsepower of the
Since Vr is not much higher than the running water velocity Vs,
The resistance increase is small, and it generates full-thrust thrust Pf by rotating at full speed.
The decrease in the efficiency of the thruster on the rear side is also slight.
In addition, the low-speed running is a short time (number of times) of entering and leaving the port and passing through narrow waterways.
Therefore, the impact on fuel consumption is extremely small. In normal reverse braking before berthing, etc., the operating lever is
Back to "forward 1" and slow braking by closing the bottom bottom fumes.
"Stand", decelerate the coaster by idling the propulsion device, decelerate, and then operate the operating lever.
When switching to "reverse", the clutch on the frontal side moves to the forward rotation side.
The thruster is driven at full speed nf in forward rotation and the total thrust P is efficient.
Push forward with f, the clutch on the rear side remains neutral, and the thruster
Forced the ship by receiving the running water flow Vs from the back of the wing and spinning it
Brake. The operating lever is set to "forward 1" or "neutral".
Back to the left, the rudder on both sides of the bow and
Use the rudder (button operation at the end of the operating lever, etc.)
Kill and help the above-mentioned slow braking and coasting deceleration with the force component in the vessel core direction
Good. Emergency reverse braking such as danger avoidance during running
Suddenly operate the operation lever from "forward" to "reverse",
With the reverse operation similar to that described in [0026], the frontal thruster
Sudden braking of the ship by concentrating the main engine output on the
And the running water flow (velocity V
In s), the rear side (the idle thruster does not disturb the flow regime)
The rudder on the frontal side raises the thrust of the propulsion device during the middle and latter half of braking.
It works well in response to the fast water flow Vf (however, steering is the opposite of that during sailing)
Direction) and adjustment of the main engine speed of the left and right floating bodies
It is possible to maintain the course and turn even during sudden braking.
It Even in reverse braking, the rudder remains in the traveling state described in the above item [0020], and the rudder and tail turns are operated.
Since there is no such thing, the one on the frontal side steers the high-speed water flow Vf of the thruster.
Received for a short time (usually a few seconds, a few minutes with emergency braking)
Moreover, in normal braking, the propulsion device rotates at low speed, resulting in poor flow conditions.
The problems such as vibration and instability due to
Excessive sailing due to continued low speed forward or high speed sailing
If the rudder head-to-tail reversal that takes time (more than ten seconds or more) in the state is
It is better not to. At the operation lever "neutral", take off and landing and turn
Use the control lever to put both clutches in the "forward" side,
・ For both tails, the thruster is rotated in the forward direction to offset the thrust.
However, if the main engine speed is adjusted and the rudder is in the different direction or in the same direction,
Or, it is possible to move smoothly and swiftly by turning the steering wheel in combination with both.
(Left / Right) or Turn (Left / Right) or Both
A combination of vessels can be operated, and one of the clutches
Forward / backward movement is possible by adding and removing operations on the forward rotation side.
It is possible to make a quick turn at the time of fine movement maneuvering and port entry / exit. Propulsion of both sides during takeoff and landing and turning operations
Propulsion device for generating high-speed water flow in front of the wing of the vessel and applying it to the rudder
Powerful and adjustable (zero) due to good efficiency and steering
Acts as a side thruster with lateral thrust PL of
However, since it is located at both ends of the hull, the parallelism of lateral motion and turning mode
Because the size of the ship is large, it is possible to operate the ship smoothly and quickly.
It Fine movements in combination with lateral movement and turning
The ship can also be operated with a floating propeller and rudder on one side.
Is a diagonal thruster (front of the floating body in the turning direction and the other
The main engine output is concentrated on each of the rear side of the body)
Propulsion thrust P is obtained by steering at full speed (backward thrust).
The turning moment M = Pf × S due to f and the side float core width S is
You can join and do it more quickly. Reverse rotation control in any cruising direction
The direction of rotation of the main engine is always the same, including dynamic, lateral, and steering.
There is no need to stop the main engine or start reverse rotation during operation.
Is. EXAMPLE A bi-directional (two-headed boat) calf as an example
Jerry will be described with reference to the drawings. 1 and 2, the left and right sides of the central floating body 1
The side floating body 2 is arranged on each side, and the bow and tail of each floating body are located in the center of the hull.
And the same streamlined shape that is symmetrical, and the entire upper surface of the central floating body 1
The cargo deck (vehicle deck) 3 of the
The ramp gates 4a and 4b are arranged so that the vehicle can be loaded on its own.
・ Get off. At the tail of the bottom 5 of the central floating body 1,
The rectifying fins 7 are arranged over the entire length of the fumaroles 6a and 6b,
Compressed air blowers 8a and 8b are installed on the bow and tail of the floating body 2, respectively.
And the air supply pipes 9a and 9b, respectively, for the fumaroles 6a and 6b.
Lead to. The fumes of the fumaroles 6a and 6b are in the center of the hull.
Facing toward the frontal side (for example, when sailing to the bow side
An air layer is formed over the entire length of the ship bottom 5 by injecting fumes from the fumaroles 6a).
Or, the bubble layer 10 is created and the tail side (for example, the bow side)
In case of sailing, the fumarole 6b) is closed,
For example, the shape should be such that it does not project on the bottom of the ship so that it does not protrude. Propellers are attached to the submerged parts of the bow and tail of the floating body 2 on each side.
11a, 11b and rudder 13a, 13b in the center of the hull
5 and 6 for the propeller type.
So that the wing front faces 12f of the propulsion devices 11a and 11b, respectively.
To the center side of the hull (the wing rear surface 12r faces the center side of the hull)
In case of jet pump type, as shown in Fig. 1 (b)
Nozzle 12n of each thruster 11a, 11b
Toward the center of the body (the inlet 12s faces the center of the hull),
The rudder head 14f of each rudder 13a, 13b (round section is rounded)
Direction) and rudder 14r (cross section is blade type) 180
A steering gear 15 that can be inverted once is arranged. Inside each side floating body 2, the propeller shaft 1
6a and 16b are reduction gears with clutch 17a,
17b, the main engine 20 through the main speed reducer 19 and the rotation speed n
Speed reducer 1 with a clutch connected to the main shaft 18 driven by f
As shown in FIG. 3, 7a and 17b are clutches, respectively.
21 and reduction gear 22 (driving gear 22a, intermediate gear 22
b, 22c, 22d, driven side gear 22e)
The clutch 21 operates in the forward rotation F side and the gear 22a
It is pressed against the integrated counter plate 21f and directly connected to the main shaft 18 to rotate at full speed.
nf operates in the forward rotation and the reverse rotation R side to form a pair with the gear 22e.
The plate is pressed against the plate 21r and the deceleration speed nr is passed through the reduction gear 22.
Switch to reverse, and both facing plates 21f, 2
While idling the propeller shafts 16a, 16b away from 1r
The reduction gear 22 has a mechanism having a vertical N, and the reduction gear 22 has a reduction ratio i = n.
r / nf (see [0013] above) and driven gear 22e are drive gears 22.
It has a gear train that rotates in the opposite direction to a. Onboard electricity including the power of the compression blowers 8a, 8b
A generator 23 and an auxiliary engine 24 are used as a source for starting the main engine.
As an air compressor 25, the pressure of the air tank (not shown)
With the clutch 26 that automatically engages / disengages with the
Tie. The generator 23 keeps the main engine 2 running during steady high speed running.
0 to drive or auxiliary engine 24 to the main engine 20
Energize and disconnect from the main reducer 18 while in and out of port and when the ship is stopped.
Each clutch 2 is driven by the auxiliary engine 24.
It is better to connect with 7 and 28.
It is possible to operate in parallel by connecting an electric circuit (not shown) between the side floats.
However, the main engine is also equipped with a clutch 29, and should either side
When the main engine of the floating body fails, disconnect the main engine of the failure
The electric power from the generator of the other side floating body,
As a preliminary cruising power that assists the auxiliary engine 24
It operates at the number of rotations that suits the load, and the turning motion is
It is better to avoid Start / stop of the main engine 20 and the auxiliary engine 24
Drive a generator 23 by using another operation panel (not shown)
To obtain the onboard power supply and drive the air compressor 24 to
Accumulation of pressure (not shown), operation of various accessories, main engine 2
Start 0 and wait for flight. The above-described clutched reduction gears 17a, 17b
At the switching clutch 21, as shown in FIG.
Instead, the single clutch (contact / disengagement) 30 is attached to the reduction gear 22.
Instead, place the electric motor 31 on each thruster shaft, and
Latch 30 "contact" to move the propeller (eg 11b) to full speed n
Driven by f to idle the electric motor 31, the frontal clutch 30
When "detached", the electric motor 31 is idled by the propulsion device (for example, 11a).
It is controlled to a fine force drive with a rotational speed nr which is slightly faster than the speed ns.
It may be a mechanism that will
Required between the front and rear thrusters depending on the ship maneuvering condition
Even if the speed ratio (i = nr / nf) changes, electricity will be optimal.
The main engine for the rear thruster
This is convenient because the output can be more concentrated. In FIG. 1 (a), both the bow and the tail of the bridge
32a and 32b are facing the bow and tail respectively.
The operation consoles 33a and 33b, and as shown in FIG.
When sailing to the bow side, use the console 33a, as shown in Fig. 6 (c).
As described above, when sailing to the stern side, operate the ship on the console 33b.
U. In FIG. 5, the surfaces of the consoles 33a and 33b
Key lever shaft 34 (on / off), cruise control lever 36
(Forward 2, Forward 1, Neutral, Reverse), Lever Operation Lever 3
7 and the turning operation lever 38 are arranged, and the key lever 35 is
Carry the key lever with the captain when he / she gets on / off the boat and changes the traveling direction.
-Attach to the shaft 34 to open the boat maneuvering as shown in Figs.
Start. The cruise control lever 36 is pushed to "forward 1".
All notches including "forward 2", pull "reverse" and "neutral"
Can be steered (steering / face rudder) by tilting sideways with
Forward / backward traveling as shown in (c) and reverse rotation as shown in Fig. 6 (b).
And the cruise control lever 36 is in the neutral position,
As shown in Fig. 7 (a), operate the berthing and landing operation lever 37 back and forth.
Operate the lever 37 left and right by operating the clutch at a slow speed.
Operation or turning lever 38 to the left and right
Propellers 11a, 1 by the clutch operation such as 7 (b) (c)
Both 1b are normally rotated, and rudder heads 14f of rudders 13a and 13b
Fig. 7 (b) shows that the ship is steered in different directions to move the ship at a slow speed.
As shown in 7 (c), steer in the same direction and turn the ship.
The main engine speed and the operating angle of the levers 37 and 38 respectively
Adjust the lateral thrust by increasing / decreasing the rudder angle as well.
Operate the bar simultaneously to combine the steering directions of both rudders and
Can be operated in combination with Muko. Depending on the size of the ship, such as a small ship, the main shaft 18
Deceleration with clutch or double shaft main engine 20
The machines 17a and 17b are installed in the main speed reducer 19, and compressed air is blown.
Machines 8a and 8b are integrated into one unit, together with the generator 23, an auxiliary machine.
It is directly driven by the seki 24, and the air supply pipes 9a and 9b are used to
A simple structure may be adopted such that it is guided to the fumaroles 6a and 6b.
(Not shown). Depending on the size of the ship, such as small ships, the ship may be placed in the center of the ship.
When arranging the bridge 32, the operator console 33 is a turntable.
A machine that is installed and turns the rudder head-to-tail according to the sailing direction
Or the operator console 33 is divided into left and right
With the swivel chairs arranged, the captain turned 180 degrees and turned to the running direction.
3 way key lever (forward / off / reverse) 35
Put it in the opposite direction, and use the forward and reverse symmetry
It can be configured to perform the same operation as described above (Fig.
(Not shown). The present invention is constructed as described above.
Since it is formed, it has the following effects. The submersible shape of the hull and the propulsion unit and rudder
・ Since it is arranged symmetrically on the tail, it is exactly the same on either side.
It is able to sail, and the thrust of the propulsion unit is the full thrust, depending on the direction of travel.
Boost frontal force by pushing forward to reduce main thrust and drive main engine output
Concentrate on the rear side with good efficiency, and the rudder is on the rear side or frontal side
In both cases, the rudder turns in the direction of flight, so the resistance of the hull and rudder
Propulsion efficiency is kept good without any increase in resistance
The rate and energy efficiency are good, and the flow conditions related to rudder are both
Good, good stability of the rudder, good steering effect on the rear tail
On the side, the rudder is quite effective during high speed sailing. Vessel bottom fumaroles arranged on both sides of the center floating body
Open the frontal one according to the direction of flight
So, when sailing to either side, the air layer
Or because it creates bubbles to significantly reduce the running resistance,
In both directions, the main engine capacity is high without significant increase.
Speeding is possible. The operation of the two-way boat
As the captain moves between bridges on the ship
Operate the lever to change the direction of travel and immediately move to reverse.
In particular, it is possible to carry all the cargo decks on the bow and tail.
It has a ramp gate and the vehicle gets on and off promptly just by moving forward.
With a car ferry that can be operated, it is extremely convenient for operation
It Generally, it is possible to reduce the running resistance significantly
For high-speed ships that have reduced engine capacity, the inertia / running resistance ratio
That is, the inertia / thrust ratio is large, and the distance / time of emergency reverse braking is large.
Although it becomes longer, in the propulsion device of the present invention, the propulsion device on the frontal side is effective by reverse braking as described above ([], [0028]).
Efficiently braking with a strong front thrust, rudder both front and rear tail
It is effective for maintaining the course and turning even during sudden braking.
Therefore, it is advantageous in terms of traffic safety such as collision prevention. When operating between two ports with main loading, the ship is
Since no turning is required, the deceleration distance before berthing is shortened and
Average cruising speed / steady high-speed cruising as it can be accelerated immediately after leaving the shore
The running speed ratio is large, and it is especially effective in continuous return operation.
The rate is high, and it is extremely advantageous for safe ship operation in a narrow port.
It In addition to the basic characteristics of bidirectional sailing described above,
Both the front and rear propulsion units are both forward and rudder steered.
Lateral movement of the hull with powerful and adjustable lateral thrust
And a large turning moment allows rotational movement.
It is easy to take off and landing on a bridge, and it quickly turns even when it is stopped.
It is possible, and is an unavoidable success on the way or on an extended route.
Even if there is a change in the operating efficiency, the decrease in operational efficiency is extremely small, and the safety inside the port
Very convenient for maneuvering. The speed reducer with a clutch generates a back thrust.
The forward / full speed side clutch pair plate 21f related to the propulsion device is fully negative.
In addition to the torque capacity for load power transmission,
The latch pair plate 21r and the reduction gear 22 are associated with the front pulling of the frontal thruster during acceleration as described above ([2]).
Except that the load is excessively applied, it is driven by a slight force that is close to the idling load.
Therefore, a small capacity is sufficient for both strength and life, and
The electric motor 31 arranged on the propeller shaft instead of the speed gear 22 is
Since the load of the front pull can be avoided by electric control, the volume is still small.
Since only a small amount is required, the mechanism is simple and compact and inexpensive.
It is convenient for the space of the engine room and the ship price.
It

【図面の簡単な説明】 【図1】実施例における船の縦裁断面図であり、図の右
側を船首方向とし、(a)は推進器がプロペラ式の場合
で以て全体の構成を示し、(b)は推進器をジェットポ
ンプ式に代えた箇所を主に示す。 【図2】実施例における船の横裁断面図である。 【図3】実施例におけるクラッチ及び減速歯車より成る
クラッチ付き減速機の機構を示す図である。 【図4】実施例におけるクラッチ及び電動機より成るク
ラッチ付き減速機の機構を示す図である。 【図5】実施例における操船用の操作卓を示す図であ
る。 【図6】実施例におけるクラッチ、推進器及び舵の作動
状態を、(a)は正進航走、(b)は逆転制動、(c)
は逆進航走の場合について示す。 【図7】実施例におけるクラッチ、推進器及び舵の作動
状態を、(a)は前後動、(b)は横動、(c)は転向
の場合について示す。 【図8】カーフェリーにおける双方向航走船と従来の単
方向航走船との運航比較を示す図である。 【符号の説明】 1 中央浮体、2 側浮体、3 載貨甲板 4a、4b ランプゲート 5 中央浮体の底面、7 整流ひれ 6a、6b 噴気口 8a、8b 圧縮送風機、9a、9b 送気管 10 空気層又は気泡層 11a、11b 推進器 12f 翼正面、12r 翼背面 12n ノズル、12s 吸込口 13a、13b 舵 14f 舵頭、14r 舵尾、15 舵取機 16a、16b 推進器軸 17a、17b クラッチ付き減速機 18 主軸、19 主減速機、20 主機関 21 クラッチ(F 「正転」、N 「中立」、R
「逆転」) 21f、21r クラッチ対板 22 減速歯車(22a 駆動側歯車、22b、22
c、22d 中間軸歯車、22e 従動側歯車) 23 発電機、24補助機関、25 空気圧縮機 26、27、28、29 クラッチ 30 クラッチ(「接」、「脱」) 31 電動機 32a、32b 船橋 33a、33b 操作卓 34 キーレバー軸、35 キーレバー 36 航走操作レバー 37 離着岸操作レバー、38 転向操作レバー WL 吃水線 An ノズル断面積、As 吸込口断面積 F 正転、R 逆転、N 中立 ns 推進器回転数(空転) nf 推進器回転数(正転)、nr 推進器回転数(逆
転) Vs 航走水流速 Vf 推進器水流速(正転)、Vr 推進器水流速(逆
転) Pf 推進器推力(正転)、 Pr 推進器推力(逆
転) PL 舵の横方向分力 S 側浮体芯幅
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical cross-sectional view of a ship in an embodiment, in which the right side of the drawing is the bow direction, and (a) shows the entire structure even when a propeller is a propeller type. , (B) mainly shows the place where the propeller is replaced with a jet pump type. FIG. 2 is a cross sectional view of a ship according to an embodiment. FIG. 3 is a diagram showing a mechanism of a reduction gear with a clutch including a clutch and a reduction gear according to an embodiment. FIG. 4 is a diagram showing a mechanism of a reduction gear unit with a clutch including a clutch and an electric motor in the embodiment. FIG. 5 is a diagram showing an operator console for marine vessel manipulating in the embodiment. FIG. 6 shows the operating states of the clutch, the propulsion device and the rudder in the embodiment, (a) is forward traveling, (b) is reverse braking, (c).
Shows the case of reverse traveling. FIG. 7 shows operating states of a clutch, a propulsion device and a rudder in the embodiment, (a) is a front-back movement, (b) is a lateral movement, and (c) is a turning case. FIG. 8 is a diagram showing an operation comparison between a bidirectional traveling ship and a conventional unidirectional traveling ship in a car ferry. [Explanation of Codes] 1 central floating body, 2 side floating body, 3 loading decks 4a, 4b ramp gate 5 bottom surface of central floating body, 7 rectifying fins 6a, 6b fumaroles 8a, 8b compression blower, 9a, 9b air supply pipe 10 air layer or Bubble layer 11a, 11b Propulsion device 12f Blade front surface, 12r Blade rear surface 12n Nozzle, 12s Suction port 13a, 13b Rudder 14f Rudder head, 14r Steering wheel, 15 Steering gear 16a, 16b Propulsor shaft 17a, 17b Reduction gear with clutch 18 Main shaft, 19 main reducer, 20 main engine, 21 clutch (F "normal rotation", N "neutral", R
"Reverse rotation" 21f, 21r Clutch pair plate 22 Reduction gear (22a Drive side gear, 22b, 22
c, 22d Intermediate shaft gear, 22e Driven side gear 23 Generator, 24 Auxiliary engine, 25 Air compressor 26, 27, 28, 29 Clutch 30 Clutch ("contact", "disengagement") 31 Electric motor 32a, 32b Bridge 33a , 33b Operation console 34 Key lever shaft, 35 Key lever 36 Traveling operation lever 37 Landing and berthing operation lever, 38 Turning operation lever WL Waterway line An Nozzle cross-sectional area, As Suction port cross-sectional area F Forward rotation, R Reverse rotation, N Neutral ns Propulsion device Rotation speed (idling) nf Propulsion machine rotation speed (normal rotation), nr Propulsion machine rotation speed (reverse rotation) Vs Running water flow velocity Vf Propulsion water flow velocity (normal rotation), Vr Propulsion water flow velocity (reverse rotation) Pf Propulsion thrust (Forward rotation), Pr Propulsion thrust (reverse rotation) PL Rudder lateral component S side floating body core width

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B63H 11/04 B63H 11/04 21/17 21/17 25/00 25/00 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B63H 11/04 B63H 11/04 21/17 21/17 25/00 25/00 Z

Claims (1)

【特許請求の範囲】 【請求項1】船首尾双方に推進器及び舵を船体中央につ
いて対称に且つ双方の推進器の翼正面を反船体中央側に
向けて配し、後尾側の推進器を全速で正転に駆動して後
押し方向の航走推力を発生し、前頭側の推進器を航走水
流速での空転回転数よりやや速目の値に減速して逆転に
駆動するよう構成した、双方向航走船の推進装置。 【請求項2】 【請求項1】に記載のように配した舵を舵頭尾反転可能
な機構とし、いずれの航走方向においても双方の舵の舵
頭を前頭側に向けるよう構成した、双方向航走船の推進
装置。 【請求項3】 【請求項1】に記載のように配した推進器及び舵で、双
方とも正転で後押し推力相殺方向の駆動と双方の転舵と
を以て横推力を発生し、船体の横動及び転向も可能にし
た、双方向航走船の推進装置。 【請求項4】 【請求項1】及び 【請求項3】に記載のように推進器を駆動するため、ク
ラッチと減速歯車を船首尾双方の推進器軸と主機関に駆
動される主軸との間にそれぞれ配し、正転・全速と逆転
・減速とに切り替えて駆動し且つ中立にて推進器を空転
自在とするよう構成、あるいは、クラッチを双方の推進
器軸と主軸との間に、電動機を双方の推進器軸にそれぞ
れ配し、クラッチ接にて主機関で正転・全速に駆動し、
クラッチ脱にて電動機で逆転・減速に駆動又は空転自在
とするよう構成した、双方向航走船の推進装置。 【請求項5】逆凹形断面且つ船首尾対称の船体の船首尾
双方に噴気口を配し、いずれの航走方向においても、前
頭側の噴気口から噴気して船の全長に亘り船底の凹部に
空気層又は気泡層を創成するよう構成した、双方向航走
船の推進装置。
Claims: 1. Propellers and rudders are arranged symmetrically with respect to the center of the hull on both sides of the bow, and the wing fronts of both propellers are oriented toward the anti-center side of the hull. It was configured to drive in forward rotation at full speed to generate thrust in the backward direction, and to reduce the frontal thruster to a value slightly faster than the idling rotation speed at the running water flow velocity to drive in reverse. , Propulsion device for two-way cruise ship. 2. The rudder arranged as described in claim 1 is a mechanism capable of reversing the rudder head, and the rudder heads of both rudders are directed toward the frontal side in any traveling direction, Propulsion device for bidirectional vessels. 3. A propulsion device and a rudder arranged as described in claim 1, both of which are forward rotation to generate a lateral thrust force by driving in a thrust thrust canceling direction and both steering, and a lateral side of the hull. A propulsion device for a two-way cruise ship that is also capable of moving and turning. 4. In order to drive the propulsion device as set forth in claims 1 and 3, a clutch and a reduction gear are provided between the propulsion device shafts at both the fore and aft and the main shaft driven by the main engine. Each of them is arranged between them, and is configured to drive by switching between forward rotation / full speed and reverse rotation / deceleration and to make the thruster idle freely at neutral, or a clutch is provided between both thruster shafts and the main shaft. The electric motors are arranged on both propulsion shafts, and the clutch is engaged to drive the main engine in forward rotation at full speed.
A propulsion device for a two-way cruise ship that is configured so that it can be driven to reverse / decelerate or idle by an electric motor when the clutch is disengaged. 5. The fumaroles are arranged on both the fore and aft of a hull having an inverted concave cross section and a symmetry of the fore and aft, and in any of the traveling directions, fumes are ejected from the frontal fumaroles to cover the bottom of the ship over the entire length of the ship. A propulsion device for a two-way cruise ship, configured to create an air layer or a bubble layer in a recess.
JP15664195A 1995-05-18 1995-05-18 Propulsion device for two-way sailing ship Expired - Fee Related JP3500590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15664195A JP3500590B2 (en) 1995-05-18 1995-05-18 Propulsion device for two-way sailing ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15664195A JP3500590B2 (en) 1995-05-18 1995-05-18 Propulsion device for two-way sailing ship

Publications (2)

Publication Number Publication Date
JPH08310489A true JPH08310489A (en) 1996-11-26
JP3500590B2 JP3500590B2 (en) 2004-02-23

Family

ID=15632112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15664195A Expired - Fee Related JP3500590B2 (en) 1995-05-18 1995-05-18 Propulsion device for two-way sailing ship

Country Status (1)

Country Link
JP (1) JP3500590B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354180C (en) * 2003-04-06 2007-12-12 周锦宇 High-speed boat with submerged float propeller device
CN102442405A (en) * 2011-12-22 2012-05-09 陈国亮 Straight body waveless ship
CN102556317A (en) * 2010-12-27 2012-07-11 渤海船舶重工有限责任公司 Hydrojet propelled ship without water ballast space
CN102849197A (en) * 2011-03-03 2013-01-02 刘滨军 Pump injecting propeller and ship comprising same
CN103523159A (en) * 2011-04-29 2014-01-22 车培彩 Low-water-resistance boat sucked from the front and pushed from the back
CN103523165A (en) * 2011-04-29 2014-01-22 车培彩 Low-water-resistance ship with speed-increasing cabin water inlet provided with variable-height sealing body
CN108482613A (en) * 2018-04-18 2018-09-04 苏州东珠龙旺消防器材有限公司 A kind of lifefloat that can remotely send rescue
CN110775206A (en) * 2019-11-27 2020-02-11 苏州大学 Back-push front-pull type shipping ship
CN114906290A (en) * 2022-06-18 2022-08-16 广东中威复合材料有限公司 Ferry with energy-saving ship body line structure and collision risk evaluation system thereof
CN115617052A (en) * 2022-12-16 2023-01-17 陕西欧卡电子智能科技有限公司 Unmanned ship warehousing method and device under flow velocity, computer equipment and storage medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354180C (en) * 2003-04-06 2007-12-12 周锦宇 High-speed boat with submerged float propeller device
CN102556317A (en) * 2010-12-27 2012-07-11 渤海船舶重工有限责任公司 Hydrojet propelled ship without water ballast space
CN102849197A (en) * 2011-03-03 2013-01-02 刘滨军 Pump injecting propeller and ship comprising same
CN103523165A (en) * 2011-04-29 2014-01-22 车培彩 Low-water-resistance ship with speed-increasing cabin water inlet provided with variable-height sealing body
CN103523159A (en) * 2011-04-29 2014-01-22 车培彩 Low-water-resistance boat sucked from the front and pushed from the back
CN103523162A (en) * 2011-04-29 2014-01-22 车培彩 Low-water-resistance ship with diameter-changing speed-up cabin
CN102442405A (en) * 2011-12-22 2012-05-09 陈国亮 Straight body waveless ship
CN108482613A (en) * 2018-04-18 2018-09-04 苏州东珠龙旺消防器材有限公司 A kind of lifefloat that can remotely send rescue
CN108482613B (en) * 2018-04-18 2023-08-29 苏州东珠龙旺消防器材有限公司 Life buoy capable of remotely dispatching rescue
CN110775206A (en) * 2019-11-27 2020-02-11 苏州大学 Back-push front-pull type shipping ship
CN114906290A (en) * 2022-06-18 2022-08-16 广东中威复合材料有限公司 Ferry with energy-saving ship body line structure and collision risk evaluation system thereof
CN114906290B (en) * 2022-06-18 2023-06-02 广东中威复合材料有限公司 Ferry with energy-saving hull molded line structure and collision risk assessment system thereof
CN115617052A (en) * 2022-12-16 2023-01-17 陕西欧卡电子智能科技有限公司 Unmanned ship warehousing method and device under flow velocity, computer equipment and storage medium
CN115617052B (en) * 2022-12-16 2023-03-21 陕西欧卡电子智能科技有限公司 Unmanned ship warehousing method and device under flow velocity, computer equipment and storage medium

Also Published As

Publication number Publication date
JP3500590B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
JP2793364B2 (en) Ship and ship operation method
WO2015105180A1 (en) Vessel equipped with main propeller and additional propeller and hybrid navigation method therefor
US2483663A (en) Marine propulsion
US5634419A (en) Front-drive boat
US5231946A (en) Monohull fast sealift or semi-planing monohull ship
JP3500590B2 (en) Propulsion device for two-way sailing ship
US5832856A (en) Monohull fast ship with improved loading mechanism
CN114435565A (en) Non-pressure load type water surface underwater manned vehicle
CN85104618B (en) Hydraulic ship propelling device with suction inlet
JP2003252294A (en) Propulsion device for hybrid type ship
US5605480A (en) Easily maneuverable vessel propelled by eight jets and sails
JP4288512B2 (en) Double-headed ship and its maneuvering method
US7316194B1 (en) Rudders for high-speed ships
US6872105B2 (en) Watercraft having a jet propulsion system with improved efficiency
WO1992017366A1 (en) Monohull fast ship
JP6198232B1 (en) Hull shape and propulsion device
KR20180043862A (en) The Ship has Air-Jet Propulsion System And The Composition Method
RU209556U1 (en) ULTRA-LIGHT HEAVY Cushion
JP2566998Y2 (en) Double ender ship
JPS6121893A (en) Emergency course turning equipment for ship
US3211120A (en) Marine vehicle with hydrofoil exhaust
JPH09142385A (en) Propelling device for ship
JPH0958580A (en) Double end type ship
AU753993B2 (en) Hydroplane
JP3094479U (en) High speed boat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees