JPH08310214A - Suspension control device for vehicle - Google Patents

Suspension control device for vehicle

Info

Publication number
JPH08310214A
JPH08310214A JP7117362A JP11736295A JPH08310214A JP H08310214 A JPH08310214 A JP H08310214A JP 7117362 A JP7117362 A JP 7117362A JP 11736295 A JP11736295 A JP 11736295A JP H08310214 A JPH08310214 A JP H08310214A
Authority
JP
Japan
Prior art keywords
unsprung
damping coefficient
acceleration
vehicle
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7117362A
Other languages
Japanese (ja)
Inventor
Hideo Tohata
秀夫 戸畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7117362A priority Critical patent/JPH08310214A/en
Priority to KR1019960015171A priority patent/KR100207167B1/en
Publication of JPH08310214A publication Critical patent/JPH08310214A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01933Velocity, e.g. relative velocity-displacement sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/22Spring constant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/17Proportional control, i.e. gain control

Abstract

PURPOSE: To satisfy both improvement of wheel grounding performance and improvement of comfortableness. CONSTITUTION: A suspension control device is provided with a shock absorber 3 provided with a damping coefficient changing means 50, a means 51 to detect vertical acceleration of a spring-weight car body, a means 52 to detect unspring- weight acceleration, a control means 53 to drive the damping coefficient changing means 50, a road surface-unspring weight relative speed estimation means 54 to esmitate a road surface-unspring weight relative speed HV0 based on the spring-weight acceleration and the unspring-weight acceleration, and a target doping coefficient computing means 55 which calculate a target damping coefficient Cu corresponding to force in proportion to the road surface-unspring weight relative speed HV0 . The device is driven to control that the damping coefficient of the damping coefficient changing means 50 coincides with the target damping coefficient Cu.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用ショックアブソ
ーバの減衰係数を変更可能なサスペンション制御装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspension control device capable of changing a damping coefficient of a vehicle shock absorber.

【0002】[0002]

【従来の技術】従来から減衰係数を調整可能なショック
アブソーバを備えた車両においては、車輪の接地性や乗
心地を向上させるためにコントローラからの指令によっ
てアクチュエータを駆動し、ショックアブソーバの減衰
係数を可変制御するものが知られており、例えば、特開
平5−155222号公報に開示されるような装置があ
る。
2. Description of the Related Art Conventionally, in a vehicle equipped with a shock absorber whose damping coefficient can be adjusted, an actuator is driven by a command from a controller to improve the ground contact property of the wheels and the riding comfort, and the damping coefficient of the shock absorber is adjusted. Variable control is known, and for example, there is a device disclosed in Japanese Patent Laid-Open No. 5-155222.

【0003】これは、車輪の接地性を高めるために、シ
ョックアブソーバに発生させる減衰力が、バネ下の絶対
速度に比例した力となるように減衰係数を制御して、バ
ネ下の共振周波数におけるバネ下の自由振動を抑制して
車輪の接地性を向上させる。
In order to improve the grounding property of the wheel, the damping coefficient is controlled so that the damping force generated in the shock absorber becomes a force proportional to the unsprung absolute velocity, and at the unsprung resonance frequency. Suppresses unsprung free vibration to improve the wheel's ground contact.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のサスペンション制御装置にあっては、ショックアブ
ソーバに発生させる減衰力をバネ下の絶対速度に比例し
た力とするため、バネ下の自由振動の抑制はタイヤの変
形を伴い、路面凹凸通過時にはタイヤの変形量が増大し
て接地性が悪化するという問題があり、また、通常の減
衰係数を固定したショックアブソーバの場合と同様に、
バネ下振動の抑制とバネ上共振周波数からバネ下共振周
波数の周波数域におけるバネ上振動の低減は相反する。
すなわち、図21に示すように、路面凹凸を通過する際
には図中破線のように、バネ下を制御することでてバネ
下の変位X1は減衰係数を固定した場合(図中実線)に
比して低減されるが、路面変位X0とバネ下変位X1の相
対変位(X0−X1)は、減衰係数を固定したものより増
大するため、タイヤの変形量も増大して、車輪の接地性
が低下してしまう。
However, in the above-mentioned conventional suspension control device, since the damping force generated in the shock absorber is a force proportional to the unsprung absolute speed, the suppression of unsprung free vibration. Is accompanied by deformation of the tire, and there is a problem that the amount of deformation of the tire increases when passing over uneven road surface and the ground contact property deteriorates.As with the shock absorber with a fixed damping coefficient,
The suppression of unsprung vibration and the reduction of unsprung vibration in the frequency range from the unsprung resonance frequency to the unsprung resonance frequency are contrary to each other.
That is, as shown in FIG. 21, when the unsprung displacement X 1 is fixed by controlling the unsprung as shown by the broken line in the figure when passing through uneven road surface (solid line in the figure). However, since the relative displacement (X 0 −X 1 ) of the road surface displacement X 0 and the unsprung displacement X 1 is larger than that with a fixed damping coefficient, the deformation amount of the tire also increases. , The ground contact of the wheels will be reduced.

【0005】さらに、図22に示すように、バネ下振動
を減衰係数固定のショックアブソーバと同程度に抑制す
ると、バネ上共振周波数からバネ下共振周波数の周波数
域におけるバネ上振動(図中X2/X0)は、減衰係数を
固定したものと同等になって乗心地の向上が得られない
という問題がある。
Further, as shown in FIG. 22, when unsprung vibration is suppressed to the same level as that of a shock absorber having a fixed damping coefficient, sprung vibration (X 2 in the figure) in a frequency range from the sprung resonance frequency to the unsprung resonance frequency is suppressed. / X 0 ) is equivalent to that with a fixed damping coefficient, and there is a problem that improvement in riding comfort cannot be obtained.

【0006】そこで本発明は、上記問題点に鑑みてなさ
れたもので、車輪の接地性を向上させながらも乗心地の
向上を達成可能な車両のサスペンション制御装置を提供
することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a suspension control device for a vehicle that can improve the riding comfort while improving the ground contact of the wheels.

【0007】[0007]

【課題を解決するための手段】第1の発明は、図23に
示すように、各車輪のバネ上とバネ下との間に介装され
て減衰係数を変更する減衰係数変更手段50を備えたシ
ョックアブソーバ3と、各車輪のバネ上の車体上下方向
の加速度を検出するバネ上加速度検出手段51と、各車
輪のバネ下の車体上下方向の加速度を検出するバネ下加
速度検出手段52と、これらバネ上及びバネ下加速度検
出手段の検出値に基づいて前記ショックアブソーバ3の
目標減衰係数を演算するとともに、この目標減衰係数に
ショックアブソーバ3の減衰係数が一致するよう前記減
衰係数変更手段50を駆動する制御手段53とを有する
車両のサスペンション制御装置において、前記制御手段
53は、前記バネ上加速度とバネ下加速度から路面とバ
ネ下の相対速度HV0を推定する路面−バネ下相対速度
推定手段54と、この路面とバネ下の相対速度に比例し
た力に対応する目標減衰係数Cuiを演算する目標減衰
係数演算手段55とを備える。
The first invention, as shown in FIG. 23, comprises damping coefficient changing means 50 which is interposed between the sprung and unsprung portions of each wheel to change the damping coefficient. A shock absorber 3, a sprung acceleration detecting means 51 for detecting acceleration of each wheel in the vertical direction of the vehicle body on the spring, and an unsprung acceleration detecting means 52 for detecting acceleration of each wheel in the vertical direction of the vehicle body, The target damping coefficient of the shock absorber 3 is calculated on the basis of the detection values of the sprung and unsprung acceleration detecting means, and the damping coefficient changing means 50 is operated so that the damping coefficient of the shock absorber 3 matches the target damping coefficient. In a vehicle suspension control device having a control means 53 for driving, the control means 53 uses the sprung mass acceleration and the unsprung mass acceleration to determine a relative speed H between a road surface and an unsprung mass. Road surface estimating the 0 - comprises the unsprung relative speed estimating unit 54, a target damping coefficient calculation means 55 for calculating a target damping coefficient Cu i corresponding to the force proportional to the road surface and the relative velocity of the unsprung.

【0008】また、第2の発明は、図23に示すよう
に、各車輪のバネ上とバネ下との間に介装されて減衰係
数を変更する減衰係数変更手段50を備えたショックア
ブソーバと3、各車輪のバネ上の車体上下方向の加速度
を検出するバネ上加速度検出手段51と、各車輪のバネ
下の車体上下方向の加速度を検出するバネ下加速度検出
手段52と、これらバネ上及びバネ下加速度検出手段の
検出値に基づいて前記ショックアブソーバ3の目標減衰
係数を演算するとともに、この目標減衰係数にショック
アブソーバの減衰係数が一致するよう前記減衰係数変更
手段50を駆動する制御手段53とを有する車両のサス
ペンション制御装置において、車両の走行状態を検出す
る走行状態検出手段60と、前記制御手段53は、前記
バネ上加速度とバネ下加速度から路面とバネ下の相対速
度HV0を推定する路面−バネ下相対速度推定手段54
と、この路面とバネ下の相対速度に比例した力に対応す
る目標減衰係数Cuiを、前記検出した車両の走行状態
に応じた制御ゲインに基づいて演算する目標減衰係数演
算手段55とを備える。
The second invention, as shown in FIG. 23, is a shock absorber provided with damping coefficient changing means 50 which is interposed between the sprung and unsprung portions of each wheel to change the damping coefficient. 3, sprung acceleration detection means 51 for detecting acceleration of each wheel in the vertical direction of the vehicle body, unsprung acceleration detection means 52 for detecting acceleration of each wheel in the vertical direction of the vehicle body, and these sprung and The control means 53 calculates the target damping coefficient of the shock absorber 3 based on the detection value of the unsprung acceleration detecting means, and drives the damping coefficient changing means 50 so that the damping coefficient of the shock absorber matches the target damping coefficient. In a suspension control device for a vehicle having: a traveling state detection means 60 for detecting a traveling state of the vehicle; and the control means 53, the sprung acceleration and the spring. Road surface estimating the relative velocity HV 0 under the road surface and the spring from the acceleration - unsprung relative speed estimating unit 54
And a target damping coefficient calculating means 55 for calculating a target damping coefficient Cu i corresponding to a force proportional to the relative speed between the road surface and the unsprung portion, based on the detected control gain according to the traveling state of the vehicle. .

【0009】また、第3の発明は、前記第2の発明にお
いて、図23に示すように、前記走行状態検出手段60
が、車速を検出する車速検出手段61で構成され、前記
目標減衰係数演算手段55は、車速に応じて前記制御ゲ
インCuを変化させる。
The third aspect of the present invention is the traveling state detecting means 60 according to the second aspect of the invention, as shown in FIG.
Is constituted by a vehicle speed detecting means 61 for detecting a vehicle speed, and the target damping coefficient calculating means 55 changes the control gain Cu according to the vehicle speed.

【0010】また、第4の発明は、前記第2の発明にお
いて、図23に示すように、前記走行状態検出手段60
が、車両の旋回状態を検出する旋回検出手段62で構成
され、前記目標減衰係数演算手段55は、この旋回状態
に応じて前記制御ゲインCuを変化させる。
A fourth aspect of the present invention is the traveling state detecting means 60 according to the second aspect of the invention, as shown in FIG.
However, the target damping coefficient calculation means 55 changes the control gain Cu according to the turning state of the vehicle.

【0011】また、第5の発明は、前記第2の発明にお
いて、図23に示すように、前記走行状態検出手段60
が、路面の状態を検出する路面状態検出手段63で構成
され、前記目標減衰係数演算手段55は、この路面状態
に応じて前記制御ゲインCuを変化させる。
A fifth aspect of the present invention is the traveling state detecting means 60 according to the second aspect of the invention, as shown in FIG.
Is composed of a road surface condition detecting means 63 for detecting the condition of the road surface, and the target damping coefficient calculating means 55 changes the control gain Cu according to the road surface condition.

【0012】また、第6の発明は、前記第5の発明にお
いて、図23に示すように、前記路面状態検出手段63
が、バネ下の車体上下方向の加速度を検出する手段52
で構成され、前記目標減衰係数演算手段55は、このバ
ネ下の加速度に応じて前記制御ゲインCuを変化させ
る。
A sixth aspect of the invention is the road surface condition detecting means 63 in the fifth aspect of the invention, as shown in FIG.
Is a means 52 for detecting the acceleration of the unsprung body in the vertical direction.
The target damping coefficient calculation means 55 changes the control gain Cu according to the unsprung acceleration.

【0013】また、第7の発明は、前記第5の発明にお
いて、図23に示すように、前記路面状態検出手段63
が、ショックアブソーバのストロークを検出する手段6
5で構成され、前記目標減衰係数演算手段55は、この
ストロークに応じて前記制御ゲインCuを変化させる。
A seventh aspect of the present invention is the road surface condition detecting means 63 according to the fifth aspect of the invention, as shown in FIG.
However, means 6 for detecting the stroke of the shock absorber
5, the target damping coefficient calculation means 55 changes the control gain Cu according to this stroke.

【0014】また、第8の発明は、前記第1ないし第7
の発明のいずれかひとつにおいて、図23に示すよう
に、前記路面−バネ下相対速度推定手段54は、前記バ
ネ上加速度とバネ下加速度から路面とバネ下の相対変位
0を演算する相対変位演算手段56と、この相対変位
0を微分する微分手段57とを備える。
The eighth invention is the first to seventh inventions.
23. As shown in FIG. 23, the road surface-unsprung relative velocity estimating means 54 calculates a relative displacement H 0 between the road surface and the unsprung portion from the sprung acceleration and the unsprung acceleration, as shown in FIG. 23. The calculating means 56 and the differentiating means 57 for differentiating the relative displacement H 0 are provided.

【0015】また、第9の発明は、前記第1ないし第8
の発明のいずれかひとつにおいて、図23に示すよう
に、前記目標減衰係数演算手段55は、前記バネ上加速
度に基づいてバネ上の車体上下方向の速度ZVを演算す
るバネ上速度演算手段58を備えて、路面とバネ下の相
対速度HV0に比例した力と、前記バネ上速度ZVに比
例した力の合力に対応した目標減衰係数Cuiを演算す
る。
A ninth aspect of the present invention is the first to eighth aspects of the invention.
23, the target damping coefficient calculation means 55 includes a sprung speed calculation means 58 for calculating the speed ZV of the sprung body in the vertical direction based on the sprung acceleration. The target damping coefficient Cu i corresponding to the resultant force of the force proportional to the relative velocity HV 0 between the road surface and the unsprung portion and the force proportional to the sprung velocity ZV is calculated.

【0016】[0016]

【作用】したがって、第1の発明は、各車輪のバネ上加
速度とバネ下加速度に基づいて推定された路面とバネ下
の相対速度HV0に比例した力=減衰力に対応する目標
減衰係数Cuiが演算され、この目標減衰係数Cuiにシ
ョックアブソーバの減衰係数が一致するよう減衰係数変
更手段が駆動され、路面とバネ下の相対変位の過大な変
動を抑制することで、車輪の接地性を向上させながらも
バネ上共振周波数からバネ下共振周波数におけるバネ上
の振動を抑制することができる。
Therefore, according to the first aspect of the present invention, the force proportional to the relative velocity HV 0 between the road surface and the unsprung portion estimated based on the sprung mass acceleration and the unsprung mass acceleration of each wheel = the target damping coefficient Cu corresponding to the damping force. i is calculated, the damping coefficient changing means is driven so that the damping coefficient of the shock absorber matches the target damping coefficient Cu i , and excessive fluctuation of the relative displacement between the road surface and the unsprung portion is suppressed, so that the wheel groundability is improved. It is possible to suppress the vibration on the spring from the sprung resonance frequency to the unsprung resonance frequency while improving the above.

【0017】また、第2の発明は、各車輪のバネ上加速
度とバネ下加速度に基づいて推定された路面とバネ下の
相対速度HV0に比例した力=減衰力に対応する目標減
衰係数Cuiを、検出した走行状態に応じた制御ゲイン
Cuに基づいて演算し、走行状態に応じた減衰力を発生
させながら車輪の接地性を向上することができる。
The second aspect of the invention is a target damping coefficient Cu corresponding to a force proportional to the road surface-unsprung relative velocity HV 0 estimated based on the sprung mass acceleration and the unsprung mass acceleration of each wheel = damping force. i can be calculated based on the detected control gain Cu corresponding to the traveling state, and the grounding property of the wheel can be improved while generating the damping force according to the traveling state.

【0018】また、第3の発明は、前記制御ゲインCu
を検出した車速に応じて変化させ、低速時では減衰係数
を小さく、高速時には減衰係数を増大して低速時の乗心
地の確保と高速時の車輪の接地性の向上を両立すること
ができる。
A third aspect of the present invention is the control gain Cu.
Can be changed according to the detected vehicle speed to reduce the damping coefficient at low speeds and increase the damping coefficient at high speeds, thereby ensuring both ride comfort at low speeds and improved grounding of wheels at high speeds.

【0019】また、第4の発明は、制御ゲインCuを検
出した旋回状態に応じて変化させ、直進時では減衰係数
を小さく、旋回中には減衰係数を増大して直進時の乗心
地の確保と旋回中の車輪の接地性の向上を両立すること
ができる。
In a fourth aspect of the present invention, the control gain Cu is changed in accordance with the detected turning state, the damping coefficient is small when going straight, and the damping coefficient is increased when turning to ensure riding comfort when going straight. It is possible to both improve the grounding property of the wheel during turning.

【0020】また、第5の発明は、制御ゲインCuを検
出した路面状態に応じて変化させ、路面状態の良否に応
じて減衰係数を変更して乗心地の確保と車輪の接地性の
向上を両立することができる。
In the fifth aspect of the invention, the control gain Cu is changed according to the detected road surface condition, and the damping coefficient is changed according to whether the road surface condition is good or not, so that ride comfort and wheel grounding are improved. Can be compatible.

【0021】また、第6の発明は、制御ゲインCuを検
出したバネ下加速度に応じて変化させ、バネ下加速度が
小さく路面からの入力が小さいときには不要な減衰力の
発生を抑制する一方、バネ下加速度が大きく路面からの
入力が大きいときにはバネ下の制振を行って乗心地の確
保と車輪の接地性の向上を両立することができる。
According to the sixth aspect of the invention, the control gain Cu is changed in accordance with the detected unsprung acceleration to suppress the generation of unnecessary damping force when the unsprung acceleration is small and the input from the road surface is small. When the downward acceleration is large and the input from the road surface is large, unsprung vibration is controlled to ensure both riding comfort and improved grounding of the wheels.

【0022】また、第7の発明は、制御ゲインCuを検
出したショックアブソーバのストロークに応じて変化さ
せ、ストロークが小さく路面からの入力が小さいときに
は不要な減衰力の発生を抑制する一方、ストロークが大
きく路面からの入力が大きいときにはバネ下の制振を行
って乗心地の確保と車輪の接地性の向上を両立すること
ができる。
According to the seventh aspect of the present invention, the control gain Cu is changed according to the detected stroke of the shock absorber to suppress the generation of unnecessary damping force when the stroke is small and the input from the road surface is small, while the stroke is reduced. When the input from the road surface is large, unsprung vibration is controlled to ensure both riding comfort and improved grounding of the wheels.

【0023】また、第8の発明は、バネ上加速度とバネ
下加速度から得た路面とバネ下の相対変位H0を微分す
ることで路面とバネ下の相対速度HV0を得ることがで
きる。
In the eighth invention, the relative velocity HV 0 between the road surface and the unsprung portion can be obtained by differentiating the relative displacement H 0 between the road surface and the unsprung portion obtained from the sprung mass acceleration and the unsprung mass acceleration.

【0024】また、第9の発明は、目標減衰係数Cui
を、路面とバネ下の相対速度HV0に比例した力と、バ
ネ上速度ZVに比例した力の合力に対応するよう演算す
るため、車輪の接地性を向上させるのに加えて、バネ上
共振周波数におけるバネ上振動と、バネ下共振周波数に
おけるバネ下振動を共に抑制して、乗心地の向上をはか
ることができる。
The ninth aspect of the present invention is the target damping coefficient Cu i
Is calculated so as to correspond to the resultant force of the force proportional to the relative velocity HV 0 between the road surface and the unsprung portion and the force proportional to the sprung portion velocity ZV. Both the sprung vibration at the frequency and the unsprung vibration at the unsprung resonance frequency can be suppressed to improve the riding comfort.

【0025】[0025]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0026】図1〜図2に示すように、各車輪2FL〜
2RLと車体1との間にはショックアブソーバ3FR〜
3RLとバネ4がそれぞれ介装され、車体1がばね上
を、車輪2FR〜2RLがばね下を構成する。なお、F
Rは右前輪、FLは左前輪、RRは右後輪、RLは左後
輪をそれぞれ示し、以下同様である。
As shown in FIGS. 1 and 2, each wheel 2FL ...
Shock absorber 3FR between 2RL and vehicle body 1
3RL and a spring 4 are respectively interposed, and the vehicle body 1 constitutes a sprung portion and the wheels 2FR to 2RL constitute an unsprung portion. In addition, F
R indicates the right front wheel, FL the left front wheel, RR the right rear wheel, RL the left rear wheel, and so on.

【0027】このショックアブソーバ3FR〜3RL
は、減衰係数を変更する手段として後述するようにアク
チュエータ7FR〜7RLによって駆動される減衰力調
整機構を備え、マイクロコンピュータ100を主体にし
て構成されたコントローラ10の指令に応じて駆動され
るアクチュエータ7FR〜7RLによって各ショックア
ブソーバ3FR〜3RLは目標の減衰係数に設定され
る。
This shock absorber 3FR to 3RL
The actuator 7FR is provided with a damping force adjusting mechanism driven by actuators 7FR to 7RL as a means for changing the damping coefficient as will be described later, and is driven in response to a command from the controller 10 mainly composed of the microcomputer 100. .About.7RL sets the shock absorbers 3FR to 3RL to target damping coefficients.

【0028】コントローラ10は、車体1の上下方向の
加速度、すなわち、バネ上の加速度を検出する加速度セ
ンサ6FR〜6Rと、車体1と各車輪2FR〜2RLと
の相対変位を検出する車高センサ5FR〜5RLと、ハ
ンドルの操舵角θを検出する操舵角センサ8と、車両の
速度Vを検出する速度センサ9と、ブレーキペダルのオ
ン/オフを検出するブレーキセンサ11からの検出値よ
り、スカイフックダンパ制御に基づいて各ショックアブ
ソーバ3FR〜RLの減衰係数の目標値をそれぞれ演算
するとともに、アクチュエータ7FR〜7RLに制御信
号を出力してショックアブソーバ3FR〜3RLの減衰
係数をそれぞれ変更するものである。
The controller 10 detects the vertical acceleration of the vehicle body 1, that is, the acceleration sensors 6FR to 6R for detecting the acceleration on the spring, and the vehicle height sensor 5FR for detecting the relative displacement between the vehicle body 1 and the wheels 2FR to 2RL. .About.5RL, the steering angle sensor 8 for detecting the steering angle .theta. Of the steering wheel, the speed sensor 9 for detecting the speed V of the vehicle, and the brake sensor 11 for detecting the ON / OFF of the brake pedal. The target values of the damping coefficients of the shock absorbers 3FR to RL are calculated based on the damper control, and the control signals are output to the actuators 7FR to 7RL to change the damping coefficients of the shock absorbers 3FR to 3RL.

【0029】図2に示すように、車高センサ5FR〜5
RL、加速度センサ6FR〜6R、舵角センサ8、車速
センサ9、ブレーキセンサ11からの操舵角θ、車速V
などの信号は入力インターフェース回路111、A/D
コンバータ112を介してデジタル信号に変換された後
にマイクロコンピュータ100へ入力される。
As shown in FIG. 2, vehicle height sensors 5FR to 5FR.
RL, acceleration sensors 6FR to 6R, steering angle sensor 8, vehicle speed sensor 9, steering angle θ from brake sensor 11, vehicle speed V
Signals such as are input interface circuit 111, A / D
It is input to the microcomputer 100 after being converted into a digital signal via the converter 112.

【0030】マイクロコンピュータ100では後述する
ように、スカイフックダンパ制御に基づいて各ショック
アブソーバ3FR〜RLの目標減衰係数を演算し、この
目標減衰係数から算出した各車輪の減衰係数を、D/A
コンバータ113、ドライバ回路114を介してアナロ
グ信号に変換、増幅した後にショックアブソーバ3FR
〜3RLのアクチュエータ7FR〜7RLへ制御信号と
して出力される。
As will be described later, the microcomputer 100 calculates the target damping coefficient of each shock absorber 3FR to RL based on the skyhook damper control, and the damping coefficient of each wheel calculated from this target damping coefficient is calculated as D / A.
The shock absorber 3FR is converted into an analog signal through the converter 113 and the driver circuit 114 and then amplified.
It is output as a control signal to the actuators 7FR to 7RL of 3RL to 3RL.

【0031】以下、コントローラ10へ入力される各信
号の検出手段について詳述した後、ショックアブソーバ
3FR〜3RLの減衰力調整機構及び制御動作の順で説
明する。
The detection means of each signal input to the controller 10 will be described in detail below, and then the damping force adjusting mechanism and control operation of the shock absorbers 3FR to 3RL will be described in this order.

【0032】[加速度センサ]バネ上の車体上下方向の
加速度を検出する加速度センサ6FR〜6Rは、図3、
図4に示すように、基端を車体1側に固設するとともに
ほぼ水平方向に配設された半導体ピエゾ素子60の自由
端にマス61を設けて構成され、マス61に加わる加速
度の大きさに応じて半導体ピエゾ素子60が歪むことか
ら、車体1の上下方向に加わる加速度の大きさを電圧に
変換するものである。
[Acceleration Sensor] The acceleration sensors 6FR to 6R for detecting the acceleration on the spring in the vertical direction of the vehicle body are as shown in FIG.
As shown in FIG. 4, the base end is fixed to the vehicle body 1 side, and a mass 61 is provided at the free end of the semiconductor piezo element 60 arranged in a substantially horizontal direction. Since the semiconductor piezo element 60 is distorted in accordance with the above, the magnitude of the acceleration applied in the vertical direction of the vehicle body 1 is converted into a voltage.

【0033】図4に示すように、0Gでは2.5Vを出
力し、図3において、図中上方への加速度が1Gの大き
さでは4.0V、同様に下方への加速度が−1Gでは
1.0Vを出力するものである。
As shown in FIG. 4, 2.5 V is output at 0 G, and in FIG. 3, when the upward acceleration in the figure is 1 G, it is 4.0 V, and similarly, when the downward acceleration is -1 G, it is 1 V. It outputs 0.0V.

【0034】ここで、加速度センサ6FR〜6Rは、図
5に示すように、車体1の所定の3カ所に配設されるも
ので、右前輪2FRの近傍に加速度センサ6FRが、左
前輪2FLの近傍に加速度センサ6FLが、右後輪RR
の近傍に加速度センサ6Rが配設され、かつ、加速度セ
ンサ6FR、6FLは前車軸とほぼ平行に設けられ、こ
れら加速度センサ6FR〜6Rの検出する加速度をそれ
ぞれZG1、ZG2、ZG3とする。
Here, as shown in FIG. 5, the acceleration sensors 6FR to 6R are arranged at predetermined three positions of the vehicle body 1, and the acceleration sensor 6FR and the left front wheel 2FL are located near the right front wheel 2FR. The acceleration sensor 6FL is located near the rear right wheel RR.
It is disposed an acceleration sensor 6R is in the vicinity of, and the acceleration sensor 6FR, 6FL is provided substantially parallel to the front axle, to the detection to acceleration of the acceleration sensor 6FR~6R and ZG 1, ZG 2, ZG 3 respectively .

【0035】バネ上の加速度は、各車輪2FR〜2RL
に対応して求める必要があるが、3つの加速度センサ6
FR〜6Rの配設位置は既知であることから、車体1上
に発生した3つの加速度ZG1〜ZG3より、コントロー
ラ10は次式によって各車輪2FR〜2RLのバネ上に
発生する加速度ZGFR〜ZGRLを演算する。
The acceleration on the spring is determined by the wheels 2FR to 2RL.
The three acceleration sensors 6
Since the positions of the FRs to 6Rs are known, the controller 10 calculates the accelerations ZG FR generated on the springs of the wheels 2FR to 2RL according to the following equation from the three accelerations ZG 1 to ZG 3 generated on the vehicle body 1. Calculate ZG RL .

【0036】 ZGFR=(a1×ZG1+b1×ZG2+c1×ZG3)/d …(1) ZGFL=(a2×ZG1+b2×ZG2+c2×ZG3)/d …(2) ZGRR=(a3×ZG1+b3×ZG2+c3×ZG3)/d …(3) ZGRL=(a4×ZG1+b4×ZG2+c4×ZG3)/d …(4) ただし、 a1=−L24−(L1+L3)L6−L121=L24+L361=L162=L25−(L1+L3)L6−L122=−L25+L362=L163=−L24+(L1+L3)L7−L123=L24−L373=−L174=L25+(L1+L3)L7−L124=−L25−L374=−L17 d=−L121;加速度センサ6FRと6FLの車幅方向の距離 L2;加速度センサ6FRと6Rの車体全長方向の距離 L3;加速度センサ6FRと6Rの車幅方向の距離 L4;右前後輪2FR、2RRを通過する軸線から加速
度センサ6FRまでの車幅方向の距離 L5;左前後輪2FL、2RLを通過する軸線から加速
度センサ6FRまでの車幅方向の距離 L6;前車軸から加速度センサ6FRまでの車体全長方
向の距離 L7;後車軸から加速度センサ6FRまでの車体全長方
向の距離 上記(1)〜(4)式によって、3つの加速度ZG1
ZG2、ZG3と加速度センサ6FR〜6Rの配設位置か
ら各車輪2FR〜2RLに対応したバネ上の加速度ZG
FR、ZGFL、ZGRR、ZGRLを求めることができるので
ある。
ZG FR = (a 1 × ZG 1 + b 1 × ZG 2 + c 1 × ZG 3 ) / d (1) ZG FL = (a 2 × ZG 1 + b 2 × ZG 2 + c 2 × ZG 3 ) / d ... (2) ZG RR = (a 3 × ZG 1 + b 3 × ZG 2 + c 3 × ZG 3) / d ... (3) ZG RL = (a 4 × ZG 1 + b 4 × ZG 2 + c 4 × ZG 3 ) / d ... (4) However, a 1 = -L 2 L 4 - (L 1 + L 3) L 6 -L 1 L 2 b 1 = L 2 L 4 + L 3 L 6 c 1 = L 1 L 6 a 2 = L 2 L 5- (L 1 + L 3 ) L 6 -L 1 L 2 b 2 = -L 2 L 5 + L 3 L 6 c 2 = L 1 L 6 a 3 = -L 2 L 4 + (L 1 + L 3) L 7 -L 1 L 2 b 3 = L 2 L 4 -L 3 L 7 c 3 = -L 1 L 7 a 4 = L 2 L 5 + (L 1 + L 3) L 7 -L 1 L 2 b 4 = -L 2 L 5 -L 3 L 7 c 4 = -L 1 L 7 d = -L 1 L 2 L 1; acceleration sensor 6FR and 6FL The width direction of the distance L 2; acceleration sensor 6FR and distance full length body direction 6R L 3; acceleration sensor 6FR and the distance in the vehicle width direction of the 6R L 4; right front and rear wheels 2FR, from the axis passing through 2RR to acceleration sensors 6FR In the vehicle width direction L 5 ; Distance in the vehicle width direction from the axis passing through the left and right front wheels 2FL, 2RL to the acceleration sensor 6FR L 6 ; Distance in the entire vehicle body direction from the front axle to the acceleration sensor 6FR L 7 ; Rear Distance from the axle to the acceleration sensor 6FR in the overall vehicle body length direction From the above equations (1) to (4), three accelerations ZG 1 ,
Acceleration ZG on the spring corresponding to each wheel 2FR to 2RL from the arrangement positions of ZG 2 and ZG 3 and acceleration sensors 6FR to 6R.
FR , ZG FL , ZG RR , ZG RL can be obtained.

【0037】[車高センサ]バネ上とバネ下の相対変
位、すなわち、車体1と車輪2FR〜2RLの相対変位
を検出する車高センサ5FR〜5RLは各車輪2FR〜
2RLに対応してそれぞれ車体1の所定の位置に配設さ
れ、これらセンサの信号はマイクロコンピュータを主体
とするコントローラ10へ入力される。
[Vehicle Height Sensor] The vehicle height sensors 5FR to 5RL for detecting relative displacement between the sprung portion and the unsprung portion, that is, the relative displacement between the vehicle body 1 and the wheels 2FR to 2RL are each wheel 2FR to.
Corresponding to 2RL, they are respectively arranged at predetermined positions of the vehicle body 1, and the signals of these sensors are input to a controller 10 mainly composed of a microcomputer.

【0038】これら車高センサ5FR〜5RLは、例え
ば、ポテンショメータ等で構成され、図6に示すように
車高センサ5FR〜5RLの軸にコネクティングロッド
22Bの基端が結合され、各車輪2FR〜2RLを揺動
自由に支持するアーム21の途中とコネクティングロッ
ド22Bの自由端をコネクティングロッド22Aを介し
て連結し、図7に示すように車輪2FR〜2RLと車体
1の上下方向の相対変位をアーム21の角度変化に応じ
た電圧変化として捕捉するものである。
These vehicle height sensors 5FR to 5RL are composed of, for example, potentiometers, etc., and the base ends of the connecting rods 22B are connected to the shafts of the vehicle height sensors 5FR to 5RL as shown in FIG. The free end of the connecting rod 22B is connected via the connecting rod 22A to the middle of the arm 21 for freely swinging and supporting the wheels 2FR to 2RL and the vehicle body 1 in the vertical relative displacement as shown in FIG. Is captured as a voltage change according to the angle change.

【0039】[減衰力調整機構]図8〜図11にショッ
クアブソーバ3FR〜3RLの減衰力調整機構を示し、
ショックアブソーバ3FR〜3RLの車体1側に設けら
れたアクチュエータ7FR〜7RLが、コントロールロ
ッド30を回動させることによって減衰係数が次に述べ
るように変更されるもので、アクチュエータ7FR〜7
RLは、例えば、ステップモータなどで構成される。
[Damping Force Adjusting Mechanism] FIGS. 8 to 11 show the damping force adjusting mechanisms of the shock absorbers 3FR to 3RL.
The actuators 7FR to 7RL provided on the vehicle body 1 side of the shock absorbers 3FR to 3RL have their damping coefficients changed as described below by rotating the control rod 30.
The RL is composed of, for example, a step motor or the like.

【0040】ショックアブソーバ3FR〜3RLを構成
するピストン32は車輪側に結合されたシリンダ31の
内周に収装され、このピストン32の内周には筒状のス
タッド33と、さらにスタッド33の内周に円筒状のス
プール34が同軸的に収装され、スプール34はコント
ロールロッド30と結合してアクチュエータ7FR〜7
RLによって回動可能に支持される一方、スタッド33
がピストン32の内周に一体となって固設されて、コン
トロールロッド30と結合したスプール34は、ピスト
ン32及びスタッド33と相対的に回動可能となる。
The piston 32 constituting the shock absorbers 3FR to 3RL is housed in the inner circumference of the cylinder 31 connected to the wheel side, and the inner circumference of the piston 32 has a cylindrical stud 33 and further the stud 33. A cylindrical spool 34 is coaxially accommodated on the circumference, and the spool 34 is connected to the control rod 30 to connect the actuators 7FR to 7FR.
While being rotatably supported by the RL, the stud 33
Is integrally fixed to the inner circumference of the piston 32, and the spool 34 coupled to the control rod 30 is rotatable relative to the piston 32 and the stud 33.

【0041】ピストン32及びスタッド33にはショッ
クアブソーバの圧側ストローク時(バネ4の収縮方向)
に作動油が通過する圧側油路35、36と、ショックア
ブソーバの伸び側ストローク時(バネ4の伸長方向)に
作動油が通過する伸び側油路37、38が形成され、こ
れら油路には減衰力を発生するための圧側バルブ35
A、35Bと伸び側バルブ37A、37Bが配設され
る。さらに、スタッド33にはピストン32の上面とス
タッド33の内周を連通する通孔33Aと、ピストン3
2の下面とスタッド33の内周を連通する通孔33B、
伸び側油路38とスタッド33の内周とを連通する通孔
33Cが形成される。
When the compression side stroke of the shock absorber is applied to the piston 32 and the stud 33 (the contracting direction of the spring 4)
Is formed with pressure side oil passages 35 and 36 through which hydraulic oil passes, and extension side oil passages 37 and 38 through which hydraulic oil passes during the extension side stroke of the shock absorber (the extension direction of the spring 4). Pressure side valve 35 for generating damping force
A and 35B and extension side valves 37A and 37B are arranged. Further, the stud 33 has a through hole 33A for communicating the upper surface of the piston 32 with the inner circumference of the stud 33, and the piston 3
A through hole 33B for communicating the lower surface of 2 with the inner circumference of the stud 33,
A through hole 33C is formed to connect the extension side oil passage 38 and the inner circumference of the stud 33.

【0042】ここで、スプール34は、外周の所定の位
置に凹部として形成された円形油路34Aと楕円形油路
34Bを備え、円形油路34Aは圧側油路36と対峙可
能に配設されるとともに、通孔34Dを介してスプール
34の内周34C及び油室31Aと連通する。一方、楕
円形油路34Bはスタッド33の通孔33A〜33Cと
対峙可能な位置に配設され、これら通孔33A〜33C
を相互に連通可能に構成される。
Here, the spool 34 is provided with a circular oil passage 34A and an elliptical oil passage 34B formed as recesses at predetermined positions on the outer circumference, and the circular oil passage 34A is arranged so as to face the pressure side oil passage 36. At the same time, it communicates with the inner circumference 34C of the spool 34 and the oil chamber 31A via the through hole 34D. On the other hand, the elliptical oil passage 34B is arranged at a position where it can face the through holes 33A to 33C of the stud 33, and these through holes 33A to 33C.
Are configured to be able to communicate with each other.

【0043】ここで、ショックアブソーバ3FR〜3R
Lの減衰係数は、図10(A)、(B)に示すように、
コントロールロッド30を介してアクチュエータ7FR
〜7RLに駆動されたスプール34の回動位置に応じて
決定され、圧側油路36の場合では、図10(B)のよ
うにスプール34を図中矢印方向へ回動させると、円形
油路34Aが34A′まで回動して圧側油路36と円形
油路34Aが重なることで連通する連通部300の面積
は拡大され、減衰係数は小さいほうに変更される。この
連通部300の面積変化に応じて減衰係数を任意の値に
変更することができ、この減衰係数の設定は、ほぼ無段
階でかつ高い応答性を備えて変更を行うことができ詳述
はしないが、楕円形油路34Bについても同様である。
Here, the shock absorbers 3FR to 3R
The damping coefficient of L is, as shown in FIGS.
Actuator 7FR via control rod 30
Determined according to the rotational position of the spool 34 driven by 7 RL, and in the case of the pressure side oil passage 36, when the spool 34 is rotated in the direction of the arrow in the figure as shown in FIG. By rotating 34A to 34A 'and overlapping the pressure side oil passage 36 and the circular oil passage 34A, the area of the communicating portion 300 communicating with each other is enlarged, and the damping coefficient is changed to the smaller one. The damping coefficient can be changed to an arbitrary value according to the area change of the communication portion 300, and the setting of the damping coefficient can be changed with almost no step and with high responsiveness. However, the same applies to the elliptical oil passage 34B.

【0044】このようなショックアブソーバ3FR〜3
RLの減衰係数は、図11(A)〜(C)に示すよう
に、圧側、伸び側についてそれぞれ設定可能であり、す
なわち、ショックアブソーバ3FR〜3RLの運動方向
に応じて作動油の流路が次のように切り換えられるとと
もに、減衰係数もそれぞれ設定される。
Such shock absorbers 3FR to 3
As shown in FIGS. 11 (A) to 11 (C), the damping coefficient of RL can be set for each of the compression side and the extension side, that is, the flow path of the hydraulic oil varies depending on the movement direction of the shock absorbers 3FR to 3RL. The switching is performed as follows and the damping coefficient is also set.

【0045】伸び側の減衰係数が大(ハード)の場合;
図11(A)のようにスプール34の回動によって楕円
形油路34Bがスタッド33の通孔33A〜33Cと対
峙しない位置へ変位させ、油室31Bから31Aへ流入
する作動油は、ピストン32と圧側バルブ35Aの間の
流入部37C、伸び側油路37、伸び側バルブ37Aを
順次通過することで小さな流路断面積によって大きな減
衰力を発生する。
When the extension side damping coefficient is large (hard);
As shown in FIG. 11 (A), the rotation of the spool 34 displaces the elliptical oil passage 34B to a position where it does not face the through holes 33A to 33C of the stud 33, and the hydraulic oil flowing from the oil chamber 31B to 31A is the piston 32. By passing through the inflow portion 37C between the pressure side valve 35A and the pressure side valve 35A, the extension side oil passage 37, and the extension side valve 37A sequentially, a large damping force is generated by a small flow passage cross-sectional area.

【0046】伸び側の減衰係数が小(ソフト)の場合;
図11(B)のように楕円形油路34Bがスタッド33
の通孔33A〜33Cと対峙する位置へスプール34を
回動させ、油室31Bから31Aへ流入する作動油は、
上記減衰係数が大の場合に加えて、ピストン32上面の
流入部37C、通孔33A、楕円形油路34B、伸び側
油路38、伸び側バルブ37Bを順次通過することで、
流路断面積を増大させて小さな減衰力を発生する。
When the extension side damping coefficient is small (soft);
As shown in FIG. 11B, the elliptical oil passage 34B has the stud 33.
The hydraulic oil flowing from the oil chamber 31B into the oil chamber 31A is rotated by rotating the spool 34 to a position facing the through holes 33A to 33C.
In addition to the case where the damping coefficient is large, by sequentially passing through the inflow portion 37C on the upper surface of the piston 32, the through hole 33A, the elliptical oil passage 34B, the extension side oil passage 38, and the extension side valve 37B,
A small damping force is generated by increasing the flow passage cross-sectional area.

【0047】伸び側減衰係数は油路37に加えて油路3
8を選択的に連通させ、さらに通孔33A〜33Cと楕
円形油路34Bの重なり合う面積をアクチュエータ7F
R〜RLで調整することで、任意の減衰係数に設定する
ことができる。
In addition to the oil passage 37, the extension side damping coefficient is determined by the oil passage 3
8 are selectively communicated with each other, and the overlapping area of the through holes 33A to 33C and the elliptical oil passage 34B is set to the actuator 7F.
By adjusting R to RL, it is possible to set an arbitrary damping coefficient.

【0048】圧側の減衰係数が大(ハード)の場合;図
11(C)のように、円形油路34Aがスタッド33の
油路36と対峙しない位置へスプール34を回動させ、
油室31Aから31Bへ流入する作動油は、ピストン3
2の圧側油路35、圧側側バルブ35Aを順次通過する
ことで小さな流路断面積によって大きな減衰力を発生す
る。
When the damping coefficient on the compression side is large (hard): As shown in FIG. 11C, the spool 34 is rotated to a position where the circular oil passage 34A does not face the oil passage 36 of the stud 33.
The hydraulic oil flowing from the oil chambers 31A to 31B is supplied to the piston 3
By successively passing through the second pressure side oil passage 35 and the pressure side valve 35A, a large damping force is generated with a small flow passage cross-sectional area.

【0049】圧側の減衰係数が小(ソフト)の場合;図
11(A)のように円形油路34Aがスタッド33の油
路35と対峙する位置へスプール34を回動させ、油室
31Aから31Bへ流入する作動油は、上記減衰係数が
大の場合に加えて、スプール34の内周34C、通孔3
4D、円形油路34A、圧側油路36、圧側バルブ35
Bを順次通過することで、流路断面積を増大させて小さ
な減衰力を発生する。
When the damping coefficient on the compression side is small (soft); the spool 34 is rotated to a position where the circular oil passage 34A faces the oil passage 35 of the stud 33 as shown in FIG. In addition to the case where the damping coefficient is large, the hydraulic oil flowing into 31B has an inner circumference 34C of the spool 34, a through hole 3
4D, circular oil passage 34A, pressure side oil passage 36, pressure side valve 35
By successively passing through B, the flow passage cross-sectional area is increased and a small damping force is generated.

【0050】圧側の減衰係数は油路35に加えて油路3
6を選択的に連通させ、さらに油路36と円形油路34
Aの重なり合う面積をアクチュエータ7FR〜RLで調
整することで、任意の減衰係数に設定することができ
る。
In addition to the oil passage 35, the damping coefficient on the compression side has an oil passage 3
6 are selectively communicated, and the oil passage 36 and the circular oil passage 34 are further connected.
By adjusting the overlapping area of A with the actuators 7FR to RL, it is possible to set an arbitrary damping coefficient.

【0051】[制御動作]コントローラ10は、上記各
センサが検出したバネ上及びバネ下の上下方向の加速度
と相対変位に基づいて演算した路面とバネ下の相対速度
に応じて減衰係数の目標値を演算するとともに、目標の
減衰係数に応じてアクチュエータ7FR〜RLに制御信
号を出力してショックアブソーバ3FR〜3RLが所定
の減衰力を発生するように減衰係数を変更するものであ
る。
[Control Operation] The controller 10 controls the target value of the damping coefficient according to the relative velocity between the road surface and the unsprung surface calculated based on the vertical acceleration and relative displacement of the sprung and unsprung parts detected by the above-mentioned sensors. And a control signal is output to the actuators 7FR to RL according to the target damping coefficient to change the damping coefficient so that the shock absorbers 3FR to 3RL generate a predetermined damping force.

【0052】図12、コントローラ10で行われる制御
の一例を示すフローチャートで、タイマー割り込みなど
によって所定時間毎に実行されるもので、以下、これら
フローチャートを参照しながら詳述する。
FIG. 12 is a flowchart showing an example of the control performed by the controller 10. This is executed at predetermined time intervals by a timer interrupt or the like, and will be described in detail below with reference to these flowcharts.

【0053】まずステップS1で、加速度センサ6FR
〜6RLが検出した車体1の上下方向の加速度ZG1
ZG3と操舵角センサ8及び車速センサ9が検出した操
舵角θ及び車速Vをそれぞれ読み込み、ステップS2
で、車高センサ5FR〜5RLが検出した車体1と車輪
2FR〜2RLの相対変位、すなわち、ショックアブソ
ーバ3FR〜3RLのストロークをバネ上とバネ下の相
対変位HFR〜HRLとして読み込む。
First, in step S1, the acceleration sensor 6FR
~ 6RL detected vertical acceleration ZG 1 of the vehicle body 1 ~
The steering angle θ and the vehicle speed V detected by ZG 3 , the steering angle sensor 8 and the vehicle speed sensor 9 are read respectively, and step S2
Then, the relative displacement between the vehicle body 1 and the wheels 2FR to 2RL detected by the vehicle height sensors 5FR to 5RL, that is, the strokes of the shock absorbers 3FR to 3RL are read as relative displacements H FR to H RL .

【0054】ステップS3では、上記ステップS1で読
み込んだ加速度ZG1〜ZG3より、上記(1)〜(4)
式に基づいて各車輪2FR〜2RLのバネ上に発生する
加速度ZGFR〜ZGRLを演算し、ステップS4では、こ
れら加速度ZGFR〜ZGRLを積分することでバネ上の絶
対速度ZVFR〜ZVRLをそれぞれ演算する。
[0054] In step S3, from the acceleration ZG 1 ~ZG 3 read in step S1, the above (1) to (4)
The accelerations ZG FR to ZG RL generated on the springs of the wheels 2FR to 2RL are calculated based on the formulas, and in step S4, the absolute speeds ZV FR to ZV on the springs are integrated by integrating these accelerations ZG FR to ZG RL. Calculate RL respectively.

【0055】一方、ステップS5では、上記ステップS
2で読み込んだバネ上とバネ下の相対変位HFR〜HRL
微分することによりバネ上とバネ下の相対速度HVFR
HVRLを演算する。
On the other hand, in step S5, the above step S
Differentiating the relative displacements H FR 〜 H RL between the sprung and unsprung portions read in 2, the relative velocity HV FR 〜 between the sprung and unsprung portions .
Calculate HV RL .

【0056】こうして得られたバネ上絶対速度ZVFR
ZVRLと、バネ上とバネ下の相対速度HVFR〜HVRL
基づいて、ステップS6ではスカイフックダンパ制御に
よる理想的な目標値としての目標減衰係数CSFR〜CSRL
を次式より算出する。
The sprung absolute velocity thus obtained ZV FR ~
Based on ZV RL and the sprung and unsprung relative velocities HV FR to HV RL , in step S6, target damping coefficients C SFR to C SRL as ideal target values by skyhook damper control are obtained.
Is calculated from the following formula.

【0057】CSi=−Cs×ZVi/HVi …(5) ただし、Csはスカイフックダンパ制御の係数、i=F
R、FL、RR、RLを示し、着目する車輪を表す(以
下同様)。
C Si = −Cs × ZV i / HV i (5) where Cs is a coefficient of skyhook damper control, i = F
R, FL, RR, and RL are shown, and the wheels of interest are shown (the same applies hereinafter).

【0058】次にステップS7では、これら目標減衰係
数CSiの大きをショックアブソーバ3FR〜3RLで設
定可能な最大減衰係数Cmax及び最小減衰係数Cminと比
較し、この比較結果に応じてスカイフックダンパ制御減
衰係数C1FR〜C1RLを次の(6)〜(8)式のように設
定する。
Next, in step S7, the magnitudes of these target damping coefficients C Si are compared with the maximum damping coefficient C max and the minimum damping coefficient C min which can be set by the shock absorbers 3FR to 3RL, and the skyhook is determined according to the comparison result. The damper control damping coefficients C 1FR to C 1RL are set as in the following equations (6) to (8).

【0059】 CSi≦Cmin のとき C1i=Cmin …(6) Cmin<CSi<Cmax のとき C1i=CSi …(7) CSi>Cmax のとき C1i=Cmax …(8) 一方、ステップS8は、上記ステップS5で求めた各車
輪2FR〜2RLの相対速度HVFR〜HVRLを微分し
て、各車輪2FR〜2RL位置におけるバネ上とバネ下
の相対加速度HGFR〜HGRLを演算する。
When C Si ≦ C min C 1i = C min (6) When C min <C Si <C max C 1i = C Si (7) When C Si > C max C 1i = C max (8) On the other hand, a step S8 differentiates the relative speeds HV FR to HV RL of the wheels 2FR to 2RL obtained in the step S5, and the relative accelerations HG of the sprung and unsprung positions at the positions of the wheels 2FR to 2RL. Calculate FR to HG RL .

【0060】ステップS9では、この相対加速度HGFR
〜HGRLとバネ上加速度ZGFR〜ZGRLより各車輪2F
R〜2RLにおけるバネ下加速度ZG1FR〜ZG1RLを次
式により演算する。
In step S9, the relative acceleration HG FR
~ HG RL and sprung acceleration ZG FR ~ ZG RL each wheel 2F
The unsprung acceleration ZG 1FR ~ZG 1RL in R~2RL be calculated by the following equation.

【0061】ZG1i=ZGi+HGi …(9) 次に、ステップS10において、各車輪2FR〜2RL
のバネ下加速度ZG1FR〜ZG1RLとバネ上加速度ZGFR
〜ZGRLから路面とバネ下の相対変位H0FR〜H0RLを次
式により演算する。
ZG 1i = ZG i + HG i (9) Next, in step S10, the wheels 2FR to 2RL are each.
Unsprung acceleration ZG 1FR ~ZG 1RL and sprung acceleration ZG FR of
From ZG RL , relative displacements H 0FR to H 0RL between the road surface and the unsprung part are calculated by the following equations.

【0062】 HV0i=(M1i×ZG1i+M2i×ZGi)/K1 …(10) ただし、M1i;各車輪のバネ下質量 M2i;各車輪のバネ上質量 K1;タイヤの縦バネ定数 ここで、上記(10)式に基づく、各車輪2FR〜2R
Lの路面とバネ下の相対変位H0FR〜H0RLを、図20に
示す1/4車両モデルに基づいて説明すると、バネ上及
びバネ下の運動方程式は、それぞれ次式のように表され
る。
HV 0i = (M 1i × ZG 1i + M 2i × Z Gi ) / K 1 (10) where M 1i ; unsprung mass of each wheel M 2i ; unsprung mass of each wheel K 1 ; Vertical Spring Constant Here, each wheel 2FR to 2R based on the above equation (10).
The relative displacements H 0FR to H 0RL between the road surface of L and the unsprung part will be described based on the ¼ vehicle model shown in FIG. 20, and the sprung and unsprung motion equations are expressed as the following equations, respectively. .

【0063】[0063]

【数1】 [Equation 1]

【0064】ただし、X0;路面変位 X1;バネ下変位 X2;バネ上変位 これら(11)、(12)式からHowever, X 0 : road surface displacement X 1 ; unsprung displacement X 2 ; sprung displacement From these equations (11) and (12),

【0065】[0065]

【数2】 [Equation 2]

【0066】となり、この(13)式に基づいて路面と
バネ下の相対変位H0FR〜H0RLが求められるのである。
Therefore, the relative displacements H 0FR to H 0RL between the road surface and the unsprung parts can be obtained based on the equation (13).

【0067】次にステップS11では、上記のように求
めた相対変位H0FR〜H0RLを微分することにより各車輪
2FR〜2RLにおける路面とバネ下の相対速度HV
0FR〜HV0RLを演算してから、ステップS12で各車輪
2FR〜2RLのバネ下減衰制御のための理想的な目標
減衰係数CuFR〜CuRLを、この路面とバネ下の相対速
度HV0iと、バネ下とバネ上の相対速度HViから次式
によって算出する。
Next, at step S11, the relative displacements H 0FR to H 0RL obtained as described above are differentiated to differentiate the relative velocity HV between the road surface and the unsprung wheels 2FR to 2RL.
After calculating the 0FR ~HV 0RL, an ideal target damping coefficient Cu FR to CU RL for unsprung attenuation control of each wheel 2FR~2RL in step S12, and the relative velocity HV 0i under the road surface and the spring , Is calculated from the unsprung and unsprung relative velocities HV i by the following equation.

【0068】 Cui=−Cu×HV0i÷HVi …(14) ただし、Cu;バネ下減衰係数(=制御ゲイン) 次にステップS13では、これら目標減衰係数Cui
大きをショックアブソーバ3FR〜3RLで設定可能な
最大減衰係数Cmax及び最小減衰係数Cminと比較し、こ
の比較結果に応じて各車輪の目標減衰係数C2FR〜C2RL
を次の(15)〜(17)式のように設定する。
Cu i = −Cu × HV 0i ÷ HV i (14) However, Cu; unsprung damping coefficient (= control gain) Next, in step S13, the magnitude of these target damping coefficients Cu i is set to the shock absorber 3FR to. The maximum damping coefficient C max and the minimum damping coefficient C min that can be set in 3RL are compared, and the target damping coefficients C 2FR to C 2RL of the respective wheels are determined according to the comparison result.
Is set as in the following equations (15) to (17).

【0069】 Cui≦Cmin のとき C2i=Cmin …(15) Cmin<Cui<Cmax のとき C2i=Cui …(16) Cui>Cmax のとき C2i=Cmax …(17) ステップS14では、上記ステップS7で求めたスカイ
フックダンパ制御減衰係数C1FR〜C1RLと、上記ステッ
プS13で求めた目標減衰係数C2FR〜C2RLを次式のよ
うにそれぞれ加算して各車輪の減衰係数CFR〜CRLを算
出する。
When Cu i ≦ C min C 2i = C min (15) When C min <Cu i <C max C 2i = Cu i (16) When Cu i > C max C 2i = C max ... (17) in step S14, the skyhook damper control damping coefficients C 1FR -C 1RL obtained above step S7, the target damping coefficient C 2FR -C 2RL obtained in step S13 respectively added as follows Then, the damping coefficients C FR to C RL of each wheel are calculated.

【0070】Ci=C1i+C2i …(18) 次にステップS15では、前回の処理で求めた減衰係数
i(n−1)と今回の処理で得られた減衰係数Ciの差
ΔCiをそれぞれ算出し、ステップS16ではこの減衰
係数の差ΔCiに応じたアクチュエータ7FR〜7RL
の回転角度δiを演算して、ステップS17でこの回転
角度δiに応じた指令信号を各車輪2FR〜2RLのア
クチュエータ7FR〜7RLへ出力する。
[0070] difference between C i = C 1i + C 2i ... (18) Next, at step S15, the damping coefficient C i obtained in the current processing and the attenuation coefficient C i obtained in the previous processing (n-1) ΔC i is calculated respectively, and in steps S16, the actuators 7FR to 7RL corresponding to the difference ΔC i of the damping coefficients are calculated.
Rotation angle [delta] i by calculating the outputs a command signal corresponding to the rotational angle [delta] i in step S17 to the actuator 7FR~7RL of each wheel 2FR~2RL.

【0071】上記ステップS1〜S17を所定時間毎に
繰り返すことにより、路面とバネ下の相対速度HV0i
応じて求めた減衰係数CFR〜CRLにより、車両のバネ上
及びバネ下の制振を同時に行うことができる。
By repeating the above steps S1 to S17 every predetermined time, the damping of the sprung and unsprung portions of the vehicle is performed by the damping coefficients C FR to C RL obtained according to the relative velocity HV 0i of the road surface and the unsprung portion. Can be done at the same time.

【0072】いま、走行中の車両が路面の凹凸を通過す
る場合を考えると、図13に示すように、ショックアブ
ソーバ3FR〜3RLが発生する減衰力Fは、路面とバ
ネ下の相対速度HV0iに応じた減衰係数C2FR〜C2RL
加味したものに設定されるため、路面とバネ下の相対変
位(X0−X1)は図中実線で示した減衰係数を固定した
ものに比して低減され、図21に破線で示した前記従来
例よりも車輪の接地性を向上させることができ、同時に
バネ上の変位も前記従来例に比して低減されるため、車
両の乗心地を向上させることが可能となるのである。
Considering a case where a running vehicle passes through unevenness on the road surface, as shown in FIG. 13, the damping force F generated by the shock absorbers 3FR to 3RL is a relative speed HV 0i between the road surface and the unsprung portion. Since the damping coefficient C 2FR to C 2RL is set in consideration, the relative displacement between the road surface and the unsprung part (X 0 −X 1 ) is greater than that with the fixed damping coefficient shown by the solid line in the figure. The ground contact of the wheel can be improved as compared with the conventional example shown by the broken line in FIG. 21, and the displacement on the spring is also reduced as compared with the conventional example, so that the riding comfort of the vehicle is improved. It is possible to improve.

【0073】なお、図21に破線で示した前記従来例に
おいては、ショックアブソーバの減衰力がバネ下の上下
方向絶対速度に比例した力となるよう制御されるため、
路面の上下方向の変位とは無関係にバネ下の変位が小さ
くなるため接地性が悪化するのに対し、本発明では、路
面とバネ下の相対速度HV0iに応じた減衰係数C2FR
2RLを加味した減衰力Fが設定されるため、接地性を
確保することが可能となるのである。
In the conventional example shown by the broken line in FIG. 21, the damping force of the shock absorber is controlled so as to be a force proportional to the vertical absolute velocity of the unsprung part.
The unsprung displacement becomes small regardless of the vertical displacement of the road surface, which deteriorates the ground contact property. On the other hand, in the present invention, the damping coefficient C 2FR ~ according to the relative velocity HV 0i between the road surface and the unsprung surface is reduced.
Since the damping force F taking C 2 RL into consideration is set, it is possible to secure the grounding property.

【0074】また、図14に示すように、本発明による
サスペンションの周波数応答ではバネ下共振周波数にお
けるバネ下振動が低減されながら、バネ上共振周波数か
らバネ下共振周波数の周波数域(図中約1.5〜10H
z)でのバネ上振動も低減されており、バネ下共振周波
数におけるバネ下振動の抑制と、バネ上共振周波数から
バネ下共振周波数の周波数域におけるバネ上振動の低減
を両立でき、車輪の接地性の向上と乗心地の向上を同時
に達成することが可能となるのである。
As shown in FIG. 14, in the frequency response of the suspension according to the present invention, the unsprung resonance at the unsprung resonance frequency is reduced, while the unsprung resonance frequency to the unsprung resonance frequency range (about 1 in the figure). .5-10H
The unsprung vibration in z) is also reduced, and it is possible to both suppress unsprung vibration at the unsprung resonance frequency and reduce sprung vibration in the frequency range from the unsprung resonance frequency to the unsprung resonance frequency, and to ground the wheel. It is possible to improve the ride quality and the riding comfort at the same time.

【0075】これに対して、前記従来例の周波数応答で
は、図22の破線に示したように、バネ下共振周波数に
おけるバネ下振動は低減されているが、バネ上共振周波
数からバネ下共振周波数の周波数域におけるバネ上振動
は減衰係数を固定したショックアブソーバよりも悪化し
ており、バネ上及びバネ下振動の抑制の両立はできない
のである。
On the other hand, in the frequency response of the conventional example, as shown by the broken line in FIG. 22, unsprung vibration at the unsprung resonance frequency is reduced, but from the sprung resonance frequency to the unsprung resonance frequency. The sprung vibration in the frequency range of is worse than the shock absorber with a fixed damping coefficient, and it is not possible to suppress both sprung and unsprung vibrations at the same time.

【0076】ここで、バネ上共振周波数におけるバネ上
の振動に関しては、上記(5)〜(8)式によるスカイ
フックダンパ制御によって、図15に示すように、減衰
係数を固定したショックアブソーバに比して大幅に低減
することができ、バネ上とバネ下の制振をさらに推進し
て乗心地をさらに向上することができるのである。
Regarding the vibration on the spring at the resonance frequency on the spring, as compared with the shock absorber having the fixed damping coefficient, as shown in FIG. 15, by the skyhook damper control according to the above equations (5) to (8). Therefore, it is possible to significantly reduce the vibration, and to further improve the riding comfort by further promoting the vibration suppression on the sprung part and the unsprung part.

【0077】なお、上記実施例においては、バネ下の上
下加速度をバネ上に配設した上下加速度センサ6FL〜
6Rと車高センサ5FR〜5RLからの出力を2階微分
した値より求めたが、図示はしないが、バネ下に設けた
上下加速度センサの出力を用いることができる。
It should be noted that, in the above embodiment, the vertical acceleration sensor 6FL having the vertical acceleration under the spring arranged on the spring.
6R and the outputs from the vehicle height sensors 5FR to 5RL were obtained from the second-order differentiated value, but although not shown, the output of the vertical acceleration sensor provided under the spring can be used.

【0078】また、バネ上の上下加速度とバネ下の上下
加速度から路面とバネ下の相対変位H0iを求め、この相
対変位H0iを微分することにより路面とバネ下の相対速
度HV0iを求めたが、バネ上の上下加速度の微分値と、
バネ下の上下加速度の微分値とから路面とバネ下の相対
速度HViを求めてもよい。
Further, the relative displacement H 0i between the road surface and the unsprung portion is obtained from the vertical acceleration on the spring and the vertical acceleration under the spring, and the relative velocity HV 0i between the road surface and the unsprung portion is obtained by differentiating this relative displacement H 0i. However, the differential value of the vertical acceleration on the spring,
The relative velocity HV i between the road surface and the unsprung portion may be obtained from the differential value of the unsprung vertical acceleration.

【0079】また、上記実施例においては、バネ上の振
動を抑制するためにスカイフックダンパ制御を組み合わ
せて実施したが、他の減衰力制御と組み合わせてもよ
く、あるいは単独で制御を行ってもよい。
Further, in the above embodiment, the skyhook damper control is combined to suppress the vibration on the spring, but it may be combined with other damping force control or may be controlled independently. Good.

【0080】図16は第2の実施例を示すフローチャー
トで、前記第1実施例の図12に示したステップS12
で行われる(14)式の制御ゲインCuを車速Vに応じ
て可変として、上記ステップS11の後に制御ゲインC
uを演算するステップS20を追加したもので、その他
は前記第1実施例と同一である。
FIG. 16 is a flow chart showing the second embodiment, and step S12 shown in FIG. 12 of the first embodiment.
The control gain Cu of the equation (14) performed in step S14 is made variable according to the vehicle speed V, and the control gain C is set after the step S11.
A step S20 for calculating u is added, and the other points are the same as those in the first embodiment.

【0081】図16において、ステップS20は、車速
センサ9の検出値に応じた車速Vと制御ゲインCuの関
係をマップあるいは関数などとして予め設定し、車速V
に応じた制御ゲインCuを演算する。
In FIG. 16, in step S20, the relationship between the vehicle speed V and the control gain Cu corresponding to the detected value of the vehicle speed sensor 9 is set in advance as a map or a function.
The control gain Cu corresponding to is calculated.

【0082】この制御ゲインCuは例えば、低速走行時
には路面からの入力がさほど大きくなく、バネ下の振動
が問題となりにくいことから、所定の低速域では制御ゲ
インCuを小さい値として不必要な減衰力の発生を抑制
する一方、高速走行時には車両の安定性を確保する必要
があることから、車輪の接地性を向上させるように低速
走行時に比して制御ゲインCuを大きな値に設定するも
のである。
This control gain Cu is, for example, an input from the road surface is not so large at low speed running, and vibration under the spring is unlikely to cause a problem. Therefore, in a predetermined low speed range, the control gain Cu is set to a small value and unnecessary damping force is reduced. While it is necessary to secure the stability of the vehicle during high-speed traveling while suppressing the occurrence of the above, the control gain Cu is set to a large value as compared with during low-speed traveling so as to improve the ground contact of the wheels. .

【0083】図17は第3の実施例を示すフローチャー
トで、前記第2実施例の図16に示したステップS20
で行われる制御ゲインCuの演算を、車両の旋回状態に
応じて制御ゲインCuの演算を行うステップS30に置
き換えたもので、その他は前記第1実施例と同一であ
る。
FIG. 17 is a flowchart showing the third embodiment, and step S20 shown in FIG. 16 of the second embodiment.
The calculation of the control gain Cu performed in step S30 is replaced with step S30 of calculating the control gain Cu according to the turning state of the vehicle, and the other points are the same as those in the first embodiment.

【0084】図17において、ステップS30は、操舵
角センサ8が検出した操舵角θから車両の旋回半径Rを
推定し、旋回半径Rの増大に応じて制御ゲインCuを増
大させる一方、直進時の制御ゲインCuを小さな値に設
定するものである。
In FIG. 17, a step S30 estimates the turning radius R of the vehicle from the steering angle θ detected by the steering angle sensor 8 and increases the control gain Cu in accordance with the increase of the turning radius R, while The control gain Cu is set to a small value.

【0085】したがって、車両の直進時よりも旋回時の
方が接地性を向上するように設定されて旋回中の車両の
安定性を向上させることができ、直進時においては不必
要な減衰力の発生が抑制されて乗心地の向上を図ること
ができる。
Therefore, it is possible to improve the stability of the vehicle during turning by setting so that the grounding property is improved when the vehicle is turning than when the vehicle is straight ahead. Occurrence is suppressed and riding comfort can be improved.

【0086】なお、車両の旋回状態は、ステアリングの
操舵角速度から推定してもよく、さらにステアリングの
操舵角θと車速V、あるいは操舵角速度と車速Vから推
定してもよい。また、図示はしないが、ヨーレートセン
サあるいは横加速度(車幅方向の加速度)を検出するセ
ンサを設けて、ヨーレート、ヨー角加速度あるいは横加
速度、横速度から車両の旋回状態を推定してもよい。
The turning state of the vehicle may be estimated from the steering angular velocity of the steering wheel, or may be estimated from the steering steering angle θ and the vehicle speed V or the steering angular velocity and the vehicle speed V. Although not shown, a yaw rate sensor or a sensor for detecting lateral acceleration (acceleration in the vehicle width direction) may be provided to estimate the turning state of the vehicle from the yaw rate, yaw angular acceleration or lateral acceleration, and lateral speed.

【0087】図18は第4の実施例を示すフローチャー
トで、前記第2実施例の図16に示したステップS20
で行われる制御ゲインCuの演算を、バネ下の上下加速
度に応じて演算するステップS40に置き換えたもの
で、その他は前記第1実施例と同一である。
FIG. 18 is a flow chart showing the fourth embodiment, and step S20 shown in FIG. 16 of the second embodiment.
The calculation of the control gain Cu performed in step S4 is replaced with step S40 in which the control gain Cu is calculated according to the unsprung vertical acceleration, and the others are the same as in the first embodiment.

【0088】図18において、ステップS40は、上記
ステップS9で演算したバネ下加速度ZG1FR〜ZG1RL
の増大に応じて制御ゲインCuを増大させるもので、バ
ネ下加速度ZG1FR〜ZG1RLが小さいときには、路面か
らの入力が小さく、バネ下の振動が問題となりにくいた
め、制御ゲインCuを小さい値に設定して不必要な減衰
力の発生を抑制することで、乗心地の向上をはかる一
方、バネ下加速度ZG1FR〜ZG1RLが大きいときには路
面からの入力が大きいので、バネ下の振動を抑制すべく
制御ゲインCuを大きな値に設定するものである。
[0088] In FIG. 18, step S40 is unsprung calculated at the step S9 acceleration ZG 1FR ~ZG 1RL
One which increase the control gain Cu with an increase, when the unsprung acceleration ZG 1FR ~ZG 1RL is small, a small input from the road surface, since the vibration of the unsprung is less likely a problem, a small value of control gain Cu set to be to suppress the occurrence of unnecessary damping force, while measuring the ride comfort improvements, because when a large unsprung acceleration ZG 1FR ~ZG 1RL large input from the road surface, to suppress the vibration of the unsprung Therefore, the control gain Cu is set to a large value.

【0089】図19は第5の実施例を示すフローチャー
トで、前記第2実施例の図16に示したステップS20
で行われる制御ゲインCuの演算を、ショックアブソー
バ3FR〜3RLのストロークに応じて制御ゲインCu
を演算するステップS50に置き換えたもので、その他
は前記第1実施例と同一である。
FIG. 19 is a flow chart showing the fifth embodiment, and step S20 shown in FIG. 16 of the second embodiment.
The calculation of the control gain Cu that is performed by the control gain Cu is performed according to the stroke of the shock absorbers 3FR to 3RL.
It is replaced with step S50 for calculating, and the other points are the same as in the first embodiment.

【0090】図18において、ステップS50は、上記
ステップS2で読み込んだショックアブソーバ3FR〜
3RLのストローク(=バネ上とバネ下の相対変位HFR
〜HRL)の増大に応じて制御ゲインCuを増大させるも
ので、ショックアブソーバ3FR〜3RLのストローク
が小さいときには、路面からの入力が小さく、バネ下の
振動が問題となりにくいため、制御ゲインCuを小さい
値に設定して不必要な減衰力の発生を抑制することで、
乗心地の向上をはかる一方、ストロークが大きいときに
は路面からの入力が大きいので、バネ下の振動を抑制す
べく制御ゲインCuを大きな値に設定するものである。
In FIG. 18, a step S50 is the shock absorber 3FR-read in the above step S2.
Stroke of 3RL (= relative displacement H FR above and below the spring H FR
.About.H RL ), the control gain Cu is increased. When the stroke of the shock absorbers 3FR to 3RL is small, the input from the road surface is small and vibration under the spring is less likely to cause a problem. By setting a small value to suppress the generation of unnecessary damping force,
While the ride comfort is improved, the input from the road surface is large when the stroke is large, so the control gain Cu is set to a large value in order to suppress unsprung vibration.

【0091】なお、上記実施例において、ショックアブ
ソーバ3FR〜3RLの減衰係数CFRFLの変更を、ア
クチュエータ7FR〜7RLを駆動に応じて油路を変更
することで行ったが、図示はしないが、電気粘性流体な
どによって減衰係数を変更可能なショックアブソーバで
構成してもよく、減衰係数Ciに応じた指令信号に応じ
て所定の減衰係数に設定することができる。
In the above embodiment, the damping coefficients C FR to FL of the shock absorbers 3FR to 3RL were changed by changing the oil passages according to the driving of the actuators 7FR to 7RL, which is not shown. , A shock absorber whose damping coefficient can be changed by an electrorheological fluid, etc., can be set to a predetermined damping coefficient in accordance with a command signal corresponding to the damping coefficient C i .

【0092】[0092]

【発明の効果】以上説明したように、第1の発明は、各
車輪のバネ上加速度とバネ下加速度に基づいて推定され
た路面とバネ下の相対速度HV0に比例した力に対応す
る目標減衰係数Cuiが演算され、路面とバネ下の相対
変位の過大な変動を抑制することで、車輪の接地性を向
上させながらもバネ上共振周波数からバネ下共振周波数
におけるバネ上の振動を抑制することができ、接地性の
向上と乗心地の向上を両立することが可能となる。
As described above, according to the first aspect of the invention, the target corresponding to the force proportional to the relative velocity HV 0 between the road surface and the unsprung surface estimated based on the sprung acceleration and the unsprung acceleration of each wheel. The damping coefficient Cu i is calculated, and by suppressing the excessive fluctuation of the relative displacement between the road surface and the unsprung portion, the vibration on the spring from the sprung resonance frequency to the unsprung resonance frequency is suppressed while improving the grounding property of the wheel. Therefore, it is possible to improve the ground contact property and the riding comfort at the same time.

【0093】また、第2の発明は、各車輪のバネ上加速
度とバネ下加速度に基づいて推定された路面とバネ下の
相対速度HV0に比例した力に対応する目標減衰係数C
iを、検出した走行状態に応じた制御ゲインCuに基
づいて演算し、走行状態に応じた減衰力を発生させなが
ら車輪の接地性を向上するとともに乗心地の向上を図る
ことが可能となる。
Further, the second aspect of the invention is that the target damping coefficient C corresponding to the force proportional to the relative velocity HV 0 between the road surface and the unsprung surface estimated based on the sprung mass acceleration and the unsprung mass acceleration of each wheel.
It is possible to calculate u i based on the detected control gain Cu corresponding to the traveling state and to improve the ground contact property of the wheels and the riding comfort while generating the damping force according to the traveling state. .

【0094】また、第3の発明は、前記制御ゲインCu
を検出した車速に応じて変化させ、低速時では減衰係数
を小さく、高速時には減衰係数を増大して低速時の乗心
地の確保と高速時の車輪の接地性の向上を両立すること
が可能となる。
A third aspect of the present invention is the control gain Cu.
It is possible to make the damping coefficient small at low speeds and increase the damping coefficient at high speeds to secure riding comfort at low speeds and improve the grounding of the wheels at high speeds. Become.

【0095】また、第4の発明は、制御ゲインCuを検
出した旋回状態に応じて変化させ、直進時では減衰係数
を小さく、旋回中には減衰係数を増大して直進時の乗心
地の確保と旋回中の車輪の接地性の向上を両立すること
が可能となる。
In the fourth aspect of the invention, the control gain Cu is changed in accordance with the detected turning state, and the damping coefficient is small when the vehicle is traveling straight, and the damping coefficient is increased when the vehicle is traveling to ensure a comfortable ride when traveling straight. It is possible to achieve both improvement of the grounding property of the wheel during turning.

【0096】また、第5の発明は、制御ゲインCuを検
出した路面状態に応じて変化させ、路面状態の良否に応
じて減衰係数を変更して乗心地の確保と車輪の接地性の
向上を両立することが可能となる。
Further, in the fifth aspect of the invention, the control gain Cu is changed according to the detected road surface condition, and the damping coefficient is changed according to the quality of the road surface condition to secure the riding comfort and improve the grounding property of the wheels. It becomes possible to be compatible.

【0097】また、第6の発明は、制御ゲインCuを検
出したバネ下加速度に応じて変化させ、バネ下加速度が
小さく路面からの入力が小さいときには不要な減衰力の
発生を抑制する一方、バネ下加速度が大きく路面からの
入力が大きいときにはバネ下の制振を行って乗心地の確
保と車輪の接地性の向上を両立することが可能となる。
According to the sixth aspect of the invention, the control gain Cu is changed according to the detected unsprung acceleration to suppress the generation of unnecessary damping force when the unsprung acceleration is small and the input from the road surface is small. When the downward acceleration is large and the input from the road surface is large, the unsprung vibration is suppressed to ensure both the riding comfort and the improved grounding of the wheels.

【0098】また、第7の発明は、制御ゲインCuを検
出したショックアブソーバのストロークに応じて変化さ
せ、ストロークが小さく路面からの入力が小さいときに
は不要な減衰力の発生を抑制する一方、ストロークが大
きく路面からの入力が大きいときにはバネ下の制振を行
って乗心地の確保と車輪の接地性の向上を両立すること
が可能となる。
According to the seventh aspect of the invention, the control gain Cu is changed according to the stroke of the detected shock absorber to suppress the generation of unnecessary damping force when the stroke is small and the input from the road surface is small, while the stroke is reduced. When the input from the road surface is large, the unsprung vibration can be suppressed to ensure both riding comfort and improvement of the ground contact of the wheels.

【0099】また、第8の発明は、バネ上加速度とバネ
下加速度から得た路面とバネ下の相対変位H0を微分す
ることで路面とバネ下の相対速度HV0を得ることがで
きる。
In the eighth aspect of the invention, the relative velocity HV 0 between the road surface and the unsprung portion can be obtained by differentiating the relative displacement H 0 between the road surface and the unsprung portion obtained from the sprung mass acceleration and the unsprung mass acceleration.

【0100】また、第9の発明は、目標減衰係数Cui
を、路面とバネ下の相対速度HV0に比例した力と、バ
ネ上速度ZVに比例した力の合力に対応するよう演算す
るため、車輪の接地性を向上させるのに加えて、バネ上
共振周波数におけるバネ上振動と、バネ下共振周波数に
おけるバネ下振動を共に抑制して、接地性の向上と乗心
地の向上を両立させることが可能となる。
The ninth aspect of the present invention is the target damping coefficient Cu i.
Is calculated so as to correspond to the resultant force of the force proportional to the relative velocity HV 0 between the road surface and the unsprung portion and the force proportional to the sprung portion velocity ZV. It is possible to suppress both the sprung mass vibration at the frequency and the unsprung mass vibration at the unsprung resonance frequency to improve both the grounding property and the riding comfort.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す車両の斜視図。FIG. 1 is a perspective view of a vehicle showing an embodiment of the present invention.

【図2】同じくブロック図。FIG. 2 is a block diagram of the same.

【図3】加速度センサの概略図である。FIG. 3 is a schematic diagram of an acceleration sensor.

【図4】同じく加速度センサの特性図。FIG. 4 is a characteristic diagram of the acceleration sensor.

【図5】加速度センサの配置を示す車体の概略平面図。FIG. 5 is a schematic plan view of a vehicle body showing an arrangement of acceleration sensors.

【図6】車高センサの概略図。FIG. 6 is a schematic view of a vehicle height sensor.

【図7】同じく車高センサの特性図。FIG. 7 is a characteristic diagram of a vehicle height sensor.

【図8】ショックアブソーバの断面図。FIG. 8 is a cross-sectional view of a shock absorber.

【図9】図8のA部拡大図。9 is an enlarged view of part A in FIG.

【図10】スプールの位置と油路の関係を示し、(A)
はスプールの断面図を、(B)は圧側油路と円形油路と
の関係を示す説明図である。
FIG. 10 shows the relationship between the spool position and the oil passage, (A)
FIG. 4B is a sectional view of the spool, and FIG. 6B is an explanatory diagram showing the relationship between the pressure side oil passage and the circular oil passage.

【図11】減衰力の調整の様子を示す説明図で、(A)
は伸び側;ハード、圧側;ソフトの状態を、(B)は伸
び側、圧側共にソフト、(C)は伸び側;ソフト、圧
側;ハードに設定した状態をそれぞれ示す。
FIG. 11 is an explanatory diagram showing how the damping force is adjusted.
Shows the state of expansion side; hard, compression side; soft, (B) shows the state of both expansion side and compression side soft, and (C) shows the state of expansion side; soft, compression side; hard.

【図12】制御の一例を示すフローチャートである。FIG. 12 is a flowchart showing an example of control.

【図13】路面凹凸通過時のサスペンションの状態と時
間の関係を、横軸を時間、縦軸を路面変位X0、バネ上
変位X2、路面とバネ下の相対変位(X0−X1)及び減
衰力Fとして示すグラフで、破線は本実施例を、実線は
減衰係数を固定した場合をそれぞれ示す。
FIG. 13 shows the relationship between the state of the suspension and the time when passing through unevenness of the road surface. The horizontal axis represents time, the vertical axis represents road surface displacement X 0 , sprung displacement X 2 , and road surface and unsprung relative displacement (X 0 −X 1 ) And damping force F, the broken line shows the present embodiment and the solid line shows the case where the damping coefficient is fixed.

【図14】サスペンションの周波数応答を示すグラフ
で、(A)はバネ上変位/路面変位を、(B)はバネ下
/路面変位をそれぞれ示し、破線は本実施例を、実線は
減衰係数を固定した場合をそれぞれ示す。
14A and 14B are graphs showing the frequency response of the suspension, where FIG. 14A shows the sprung displacement / road surface displacement, and FIG. 14B shows the unsprung / road surface displacement. The broken line shows the present embodiment and the solid line shows the damping coefficient. The case where they are fixed is shown.

【図15】スカイフックダンパ制御を加えたサスペンシ
ョンの周波数応答を示すグラフで、(A)はバネ上変位
/路面変位を、(B)はバネ下/路面変位をそれぞれ示
し、破線は本実施例にスカイフックダンパ制御を加えた
場合を、実線は減衰係数を固定した場合をそれぞれ示
す。
FIG. 15 is a graph showing the frequency response of the suspension to which the skyhook damper control is added, (A) shows the sprung displacement / road surface displacement, (B) shows the unsprung / road surface displacement, and the broken line shows the present embodiment. The solid line shows the case where the skyhook damper control is added, and the solid line shows the case where the damping coefficient is fixed.

【図16】第2実施例の制御の一例を示すフローチャー
トである。
FIG. 16 is a flowchart showing an example of control according to the second embodiment.

【図17】第3実施例の制御の一例を示すフローチャー
トである。
FIG. 17 is a flowchart showing an example of control according to the third embodiment.

【図18】第4実施例の制御の一例を示すフローチャー
トである。
FIG. 18 is a flowchart showing an example of control according to the fourth embodiment.

【図19】第5実施例の制御の一例を示すフローチャー
トである。
FIG. 19 is a flowchart showing an example of control according to the fifth embodiment.

【図20】サスペンションの1/4車両モデル。FIG. 20 is a ¼ vehicle model of the suspension.

【図21】従来例による路面凹凸通過時のサスペンショ
ンの状態と時間の関係を、横軸を時間、縦軸を路面変位
0、バネ上変位X2、路面とバネ下の相対変位(X0
1)及び減衰力Fとして示すグラフで、破線は減衰係
数を制御した場合を、実線は減衰係数を固定した場合を
それぞれ示す。
FIG. 21 shows the relationship between the state of the suspension and the time when passing through uneven road surface according to the conventional example, where the horizontal axis represents time, the vertical axis represents road surface displacement X 0 , sprung displacement X 2 , and road surface and unsprung relative displacement (X 0
X 1 ) and the damping force F, the broken line shows the case where the damping coefficient is controlled, and the solid line shows the case where the damping coefficient is fixed.

【図22】従来例によるサスペンションの周波数応答を
示すグラフで、(A)はバネ上変位/路面変位を、
(B)はバネ下/路面変位をそれぞれ示し、破線は減衰
係数を制御した場合を、実線は減衰係数を固定した場合
をそれぞれ示す。
FIG. 22 is a graph showing a frequency response of a suspension according to a conventional example, (A) shows sprung displacement / road displacement,
(B) shows the unsprung / road surface displacement, the broken line shows the case where the damping coefficient is controlled, and the solid line shows the case where the damping coefficient is fixed.

【図23】第1ないし第9の発明のいずれかひとつに対
応するクレーム対応図。
FIG. 23 is a claim correspondence diagram corresponding to any one of the first to ninth inventions.

【符号の説明】[Explanation of symbols]

2FR〜2RL 車輪 3FR〜3RL ショックアブソーバ 5FR〜5RL 車高センサ 6FR〜6R 加速度センサ 7FR〜7FR アクチュエータ 8 操舵角センサ 9 車速センサ 10 コントローラ 30 コントロールロッド 33A、33B、33C 油路 34 スプール 35 圧側油路 36 圧側油路 37 伸側油路 38 伸側油路 50 減衰係数変更手段 51 バネ上加速度検出手段 52 バネ下加速度検出手段 53 制御手段 54 路面−バネ下相対速度推定手段 55 目標減衰係数演算手段 56 相対変位演算手段 57 微分手段 58 バネ上速度演算手段 60 走行状態検出手段 61 車速検出手段 62 旋回検出手段 63 路面状態検出手段 65 ストローク検出手段 2FR to 2RL Wheels 3FR to 3RL Shock absorber 5FR to 5RL Vehicle height sensor 6FR to 6R Acceleration sensor 7FR to 7FR Actuator 8 Steering angle sensor 9 Vehicle speed sensor 10 Controller 30 Control rod 33A, 33B, 33C Oil passage 34 Spool 35 Pressure side oil passage 36 Pressure side oil passage 37 Extension side oil passage 38 Extension side oil passage 50 Damping coefficient changing means 51 Sprung acceleration detection means 52 Unsprung acceleration detection means 53 Control means 54 Road surface-Unsprung relative speed estimation means 55 Target damping coefficient calculation means 56 Relative Displacement calculating means 57 Differentiating means 58 Sprung speed calculating means 60 Running state detecting means 61 Vehicle speed detecting means 62 Turning detecting means 63 Road surface state detecting means 65 Stroke detecting means

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 各車輪のバネ上とバネ下との間に介装さ
れて減衰係数を変更する減衰係数変更手段を備えたショ
ックアブソーバと、各車輪のバネ上の車体上下方向の加
速度を検出するバネ上加速度検出手段と、各車輪のバネ
下の車体上下方向の加速度を検出するバネ下加速度検出
手段と、これらバネ上及びバネ下加速度検出手段の検出
値に基づいて前記ショックアブソーバの目標減衰係数を
演算するとともに、この目標減衰係数にショックアブソ
ーバの減衰係数が一致するよう前記減衰係数変更手段を
駆動する制御手段とを有する車両のサスペンション制御
装置において、前記制御手段は、前記バネ上加速度とバ
ネ下加速度から路面とバネ下の相対速度HV0を推定す
る路面−バネ下相対速度推定手段と、この路面とバネ下
の相対速度に比例した力に対応する目標減衰係数Cui
を演算する目標減衰係数演算手段とを備えたことを特徴
とする車両のサスペンション制御装置。
1. A shock absorber having a damping coefficient changing means for changing a damping coefficient, which is interposed between an unsprung portion and an unsprung portion of each wheel, and a vertical acceleration of a vehicle body on the spring of each wheel is detected. Sprung acceleration detection means, unsprung acceleration detection means for detecting the unsprung acceleration of each wheel in the vertical direction of the vehicle body, and target damping of the shock absorber based on the detection values of these sprung and unsprung acceleration detection means In a suspension control device for a vehicle, which calculates a coefficient and which controls the damping coefficient changing means so that the damping coefficient of the shock absorber matches the target damping coefficient, the control means controls the sprung acceleration and road surface estimating the relative velocity HV 0 under the road surface and the spring from the unsprung acceleration - a lower relative velocity estimating means spring is proportional to the road surface and the relative velocity of the unsprung Target damping coefficient Cu i corresponding to the force
A suspension control device for a vehicle, comprising: a target damping coefficient calculation means for calculating
【請求項2】 各車輪のバネ上とバネ下との間に介装さ
れて減衰係数を変更する減衰係数変更手段を備えたショ
ックアブソーバと、各車輪のバネ上の車体上下方向の加
速度を検出するバネ上加速度検出手段と、各車輪のバネ
下の車体上下方向の加速度を検出するバネ下加速度検出
手段と、これらバネ上及びバネ下加速度検出手段の検出
値に基づいて前記ショックアブソーバの目標減衰係数を
演算するとともに、この目標減衰係数にショックアブソ
ーバの減衰係数が一致するよう前記減衰係数変更手段を
駆動する制御手段とを有する車両のサスペンション制御
装置において、車両の走行状態を検出する走行状態検出
手段と、前記制御手段は、前記バネ上加速度とバネ下加
速度から路面とバネ下の相対速度HV0を推定する路面
−バネ下相対速度推定手段と、この路面とバネ下の相対
速度に比例した力に対応する目標減衰係数Cuiを、前
記検出した車両の走行状態に応じた制御ゲインCuに基
づいて演算する目標減衰係数演算手段とを備えたことを
特徴とする車両のサスペンション制御装置。
2. A shock absorber having a damping coefficient changing means for changing a damping coefficient, which is interposed between an unsprung portion and an unsprung portion of each wheel, and a vertical acceleration of the vehicle body on the spring of each wheel is detected. Sprung acceleration detection means, unsprung acceleration detection means for detecting the unsprung acceleration of each wheel in the vertical direction of the vehicle body, and target damping of the shock absorber based on the detection values of these sprung and unsprung acceleration detection means In a suspension control device for a vehicle, which calculates a coefficient and has a control means for driving the damping coefficient changing means so that the damping coefficient of the shock absorber matches the target damping coefficient, a running state detection for detecting a running state of the vehicle means and said control means is road estimates the relative velocity HV 0 under the road surface and the spring from the sprung acceleration and the unsprung acceleration - unsprung relative speed estimation Means and the target damping coefficient Cu i corresponding to the road surface and the force proportional to the relative velocity of the unsprung and a target damping coefficient calculation means for calculating, based on the control gain Cu corresponding to the running state of the detected vehicle A suspension control device for a vehicle, comprising:
【請求項3】 前記走行状態検出手段が、車速を検出す
る車速検出手段で構成され、前記目標減衰係数演算手段
は、車速に応じて前記制御ゲインCuを変化させること
を特徴とする請求項2に記載の車両のサスペンション制
御装置。
3. The running state detecting means is constituted by a vehicle speed detecting means for detecting a vehicle speed, and the target damping coefficient calculating means changes the control gain Cu according to the vehicle speed. The vehicle suspension control device according to.
【請求項4】 前記走行状態検出手段が、車両の旋回状
態を検出する旋回検出手段で構成され、前記目標減衰係
数演算手段は、この旋回状態に応じて前記制御ゲインC
uを変化させることを特徴とする請求項2に記載の車両
のサスペンション制御装置。
4. The traveling state detecting means is constituted by a turning detecting means for detecting a turning state of the vehicle, and the target damping coefficient calculating means is adapted to control the gain C according to the turning state.
The suspension control device for a vehicle according to claim 2, wherein u is changed.
【請求項5】 前記走行状態検出手段が、路面の状態を
検出する路面状態検出手段で構成され、前記目標減衰係
数演算手段は、この路面状態に応じて前記制御ゲインC
uを変化させることを特徴とする請求項2に記載の車両
のサスペンション制御装置。
5. The running condition detecting means is constituted by a road condition detecting means for detecting a condition of a road surface, and the target damping coefficient calculating means calculates the control gain C according to the road condition.
The suspension control device for a vehicle according to claim 2, wherein u is changed.
【請求項6】 前記路面状態検出手段が、バネ下の車体
上下方向の加速度を検出する手段で構成され、前記目標
減衰係数演算手段は、このバネ下の加速度に応じて前記
制御ゲインCuを変化させることを特徴とする請求項5
に記載の車両のサスペンション制御装置。
6. The road surface condition detecting means is constituted by means for detecting an unsprung acceleration in the vertical direction of the vehicle body, and the target damping coefficient calculating means changes the control gain Cu according to the unsprung acceleration. 6. The method according to claim 5, wherein
The vehicle suspension control device according to.
【請求項7】 前記路面状態検出手段が、ショックアブ
ソーバのストロークを検出する手段で構成され、前記目
標減衰係数演算手段は、このストロークに応じて前記制
御ゲインCuを変化させることを特徴とする請求項5に
記載の車両のサスペンション制御装置。
7. The road surface condition detecting means is constituted by means for detecting a stroke of a shock absorber, and the target damping coefficient calculating means changes the control gain Cu according to the stroke. Item 5. The vehicle suspension control device according to item 5.
【請求項8】 前記路面−バネ下相対速度推定手段は、
前記バネ上加速度とバネ下加速度から路面とバネ下の相
対変位H0を演算する相対変位演算手段と、この相対変
位H0を微分する微分手段とを備えたことを特徴とする
請求項1ないし請求項7のいずれかひとつに記載の車両
のサスペンション制御装置。
8. The road surface-unsprung relative speed estimation means comprises:
2. A relative displacement calculating means for calculating a relative displacement H 0 between the road surface and the unsprung portion from the sprung acceleration and the unsprung acceleration, and a differentiating means for differentiating the relative displacement H 0. The suspension control device for a vehicle according to claim 7.
【請求項9】 前記目標減衰係数演算手段は、前記バネ
上加速度に基づいてバネ上の車体上下方向の速度ZVを
演算するバネ上速度演算手段を備えて、路面とバネ下の
相対速度HV0に比例した力と、前記バネ上速度ZVに
比例した力の合力に対応した目標減衰係数Cuiを演算
することを特徴とする請求項1ないし請求項8のいずれ
かひとつに記載の車両のサスペンション制御装置。
9. The target damping coefficient calculation means includes sprung speed calculation means for calculating a speed ZV in the vehicle body vertical direction on the spring based on the sprung acceleration, and a relative speed HV 0 between the road surface and the unsprung surface. 9. The vehicle suspension according to claim 1, wherein a target damping coefficient Cu i corresponding to a resultant force of a force proportional to the sprung speed ZV and a force proportional to the sprung speed ZV is calculated. Control device.
JP7117362A 1995-05-16 1995-05-16 Suspension control device for vehicle Pending JPH08310214A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7117362A JPH08310214A (en) 1995-05-16 1995-05-16 Suspension control device for vehicle
KR1019960015171A KR100207167B1 (en) 1995-05-16 1996-05-09 Vehicle suspension controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7117362A JPH08310214A (en) 1995-05-16 1995-05-16 Suspension control device for vehicle

Publications (1)

Publication Number Publication Date
JPH08310214A true JPH08310214A (en) 1996-11-26

Family

ID=14709804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7117362A Pending JPH08310214A (en) 1995-05-16 1995-05-16 Suspension control device for vehicle

Country Status (2)

Country Link
JP (1) JPH08310214A (en)
KR (1) KR100207167B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255152A (en) * 2004-02-12 2005-09-22 Hitachi Ltd Suspension control device
JP2008238921A (en) * 2007-03-27 2008-10-09 Honda Motor Co Ltd Controller for damping force variable damper
CN103707734A (en) * 2012-09-28 2014-04-09 日立汽车系统株式会社 Suspension control apparatus
JP2017165283A (en) * 2016-03-16 2017-09-21 本田技研工業株式会社 Suspension device of vehicle
JP6426794B1 (en) * 2017-06-16 2018-11-21 本田技研工業株式会社 Electromagnetic suspension device
JP2019001369A (en) * 2017-06-16 2019-01-10 本田技研工業株式会社 Electromagnetic suspension apparatus
US20220032711A1 (en) * 2020-07-30 2022-02-03 Hyundai Motor Company Apparatus and method for controlling vehicle suspension
EP4186720A1 (en) * 2021-11-26 2023-05-31 Audi AG Active chassis control for a motor vehicle
US11964529B2 (en) * 2020-07-30 2024-04-23 Hyundai Motor Company Apparatus and method for controlling vehicle suspension

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255152A (en) * 2004-02-12 2005-09-22 Hitachi Ltd Suspension control device
JP2008238921A (en) * 2007-03-27 2008-10-09 Honda Motor Co Ltd Controller for damping force variable damper
US9809076B2 (en) 2012-09-28 2017-11-07 Hitachi Automotive Systems, Ltd. Suspension control apparatus for damping oscillation of a vehicle
JP2014069759A (en) * 2012-09-28 2014-04-21 Hitachi Automotive Systems Ltd Suspension control device
CN103707734B (en) * 2012-09-28 2017-07-07 日立汽车系统株式会社 Suspension control apparatus
CN103707734A (en) * 2012-09-28 2014-04-09 日立汽车系统株式会社 Suspension control apparatus
JP2017165283A (en) * 2016-03-16 2017-09-21 本田技研工業株式会社 Suspension device of vehicle
JP6426794B1 (en) * 2017-06-16 2018-11-21 本田技研工業株式会社 Electromagnetic suspension device
JP2019001369A (en) * 2017-06-16 2019-01-10 本田技研工業株式会社 Electromagnetic suspension apparatus
US20220032711A1 (en) * 2020-07-30 2022-02-03 Hyundai Motor Company Apparatus and method for controlling vehicle suspension
US11964529B2 (en) * 2020-07-30 2024-04-23 Hyundai Motor Company Apparatus and method for controlling vehicle suspension
EP4186720A1 (en) * 2021-11-26 2023-05-31 Audi AG Active chassis control for a motor vehicle
US11760365B2 (en) 2021-11-26 2023-09-19 Audi Ag Active chassis control for a motor vehicle

Also Published As

Publication number Publication date
KR100207167B1 (en) 1999-07-15
KR960040709A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
US7340334B2 (en) Control device of variable damping force damper
JP4972440B2 (en) Control device for damping force variable damper
US5398184A (en) Apparatus for controlling damping coefficient of vehicular shock absorber
JPS60248416A (en) Active suspension apparatus
JP3037735B2 (en) Vehicle suspension device
US5559701A (en) Automotive suspension control system for anti-rolling control utilizing a steering sensor and body accelerometers
JP3083113B2 (en) Vehicle suspension system
JP3080274B2 (en) Vehicle suspension system
JPH08310214A (en) Suspension control device for vehicle
JP3209030B2 (en) Vehicle suspension control device
JP2002219921A (en) Control device for semiactive suspension system
JP3209031B2 (en) Vehicle suspension control device
JP3156502B2 (en) Suspension preview control device
JPH07117436A (en) Suspension control device
JP3087501B2 (en) Suspension control device
JPH0747829A (en) Damping characteristic controller
JP3185549B2 (en) Suspension preview control device
JPH07205628A (en) Suspension controller
JP3095398B2 (en) Vehicle suspension device
JP3060803B2 (en) Vehicle characteristic control device for four-wheel steering vehicle
JP3156480B2 (en) Suspension control device
JP2595238B2 (en) Active suspension device
JP3379742B2 (en) Vehicle suspension system
JP3087519B2 (en) Suspension control device
JP3016526B2 (en) Vehicle suspension system