JPH08309644A - Device for cooling lubrication oil for main shaft - Google Patents

Device for cooling lubrication oil for main shaft

Info

Publication number
JPH08309644A
JPH08309644A JP13841795A JP13841795A JPH08309644A JP H08309644 A JPH08309644 A JP H08309644A JP 13841795 A JP13841795 A JP 13841795A JP 13841795 A JP13841795 A JP 13841795A JP H08309644 A JPH08309644 A JP H08309644A
Authority
JP
Japan
Prior art keywords
hole
main shaft
spindle
valve
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13841795A
Other languages
Japanese (ja)
Inventor
Akitake Hashidate
橋立昭武
Katsuhiro Inoue
井上勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Enshu Ltd
Original Assignee
Sodick Co Ltd
Enshu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd, Enshu Ltd filed Critical Sodick Co Ltd
Priority to JP13841795A priority Critical patent/JPH08309644A/en
Publication of JPH08309644A publication Critical patent/JPH08309644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PURPOSE: To provide a device for cooling, lubrication oil for a simple execution, wherein an amount of lubrication oil of a bearing portion and an amount of cooling oil of a main shaft are compositely controlled corresponding to a rotational speed of the main shaft. CONSTITUTION: A separator cylinder 5 for providing a bearing supporting region BS of a main shaft at a hole wall in an annular space formed by inserting a drawing bar 2 is arranged in a hole of the main shaft for feeding lubrication oil through a tail end of the main shaft. A first hole for feeding lubrication oil to a cylinder wall of the separator cylinder confronting with the bearing supporting region BS. The first hole is connected to a second hole located at the main shaft 1 in the bearing supporting region BS. The second hole located at the main shaft 1 is connected to third holes located at inner walls 3A, 4A of each bearings 3, 4. A throttle valve 20 is located at the first hole at the separator cylinder. While the main shaft 1 is stopped or rotated at low speed, the throttle valve 20 is released to increase a lubricate amount Q1. While the main shaft 1 is rotated at high speed, the throttle vale 20 is squeezed to reduce the lubrication amount Q1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の主軸軸受等
のアンダーレース潤滑及び主軸の冷却に関し、特に、軸
受部の潤滑油量と主軸部の冷却油量の複合制御を簡潔に
実施出来るようにした主軸の潤滑冷却装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to underrace lubrication of a main shaft bearing of a machine tool and cooling of the main shaft, and in particular, it is possible to simply carry out complex control of the lubricating oil amount of the bearing part and the cooling oil amount of the main shaft part. The present invention relates to a spindle cooling and cooling device.

【0002】[0002]

【従来の技術】従来、工作機械の主軸軸受等のアンダー
レース潤滑は、回転軸の外周側に取付けられた軸受に対
して回転軸の内側の中空部から潤滑油を供給するものが
提案されている。このアンダーレース潤滑は、回転軸中
空部から半径方向に貫通して軸受に供給する流量よりも
大きな流量の潤滑油を外部から回転軸中空部に送り込
み、過剰な潤滑油は送入部の隙間から回収するようにし
たものである。従って、回転軸の中空部は、常に潤滑油
で充満しているので、この回転軸を支持する全ての軸受
に対して、その軸方向位置の如何に係わらずに均等且つ
充分な潤滑油の供給を行うことができるものである。
2. Description of the Related Art Conventionally, as for underrace lubrication for a main shaft bearing of a machine tool, it has been proposed to supply lubricating oil from a hollow portion inside a rotary shaft to a bearing mounted on the outer peripheral side of the rotary shaft. There is. This under-race lubrication sends a large amount of lubricating oil from the outside to the hollow shaft of the rotating shaft, penetrating radially from the hollow part of the rotating shaft to the bearing, and excess lubricating oil from the gap of the sending part. It was designed to be collected. Therefore, since the hollow part of the rotating shaft is always filled with lubricating oil, the lubricating oil is uniformly and sufficiently supplied to all bearings supporting this rotating shaft regardless of their axial positions. Is what you can do.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ア
ンダーレース潤滑によると、回転軸中空部の尾端に潤滑
油送給パイプをスキマを設けた状態に配置しているた
め、このスキマに交差が生じ易すく、この交差で芯振れ
を発生させ、高速回転の主軸に適応できないという問題
点がある。この現象は、潤滑油の送給精度にも悪影響を
及ぼし、均等な潤滑油の供給が保証出来ないから、主軸
の軸受部の冷却効果が充分に発揮されない。それにも増
して、主軸の軸受部への潤滑油量は一定に制御されるか
ら、主軸回転速度に対して主軸の停止から低速回転域ま
での区間は潤滑流量を増やして供給することが望ましい
がこれを行えず。又、主軸が高速回転になる程潤滑流量
を絞るようにしないと、過剰な潤滑流量のために主軸の
軸受部からの発熱量を増大させるという悪問題を引き起
こす。
However, according to the above underrace lubrication, since the lubricating oil supply pipe is arranged in the state where the clearance is provided at the tail end of the hollow portion of the rotating shaft, the clearance is crossed. It is easy to cause runout at this intersection and cannot be applied to a high-speed rotating spindle. This phenomenon also has an adverse effect on the accuracy of lubricating oil feeding, and the uniform supply of lubricating oil cannot be guaranteed, so that the effect of cooling the bearing portion of the main shaft cannot be fully exerted. Furthermore, since the amount of lubricating oil to the bearing portion of the spindle is controlled to be constant, it is desirable to increase the lubricating flow rate in the section from the stop of the spindle to the low speed rotation range with respect to the spindle rotation speed. I can't do this. If the lubricating flow rate is not reduced so that the main shaft rotates at a high speed, an excessive lubrication flow rate causes an adverse problem of increasing the amount of heat generated from the bearing portion of the main shaft.

【0004】本発明は、上記従来のアンダーレース潤滑
装置が持つ問題に鑑み、軸受部の潤滑油量及び主軸部の
冷却油量の複合制御を主軸回転速度に対応して簡潔に実
施出来るようにした潤滑冷却装置を提供することを目的
とする。
In view of the problems of the above-mentioned conventional underlace lubrication system, the present invention enables simple control of the composite control of the lubricating oil amount of the bearing portion and the cooling oil amount of the main spindle portion in accordance with the main spindle rotation speed. An object of the present invention is to provide a lubrication cooling device.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
すべく、請求項1において、主軸尾端側から潤滑油を送
り込む主軸孔内には、ドローイングバーを挿入して得ら
れた環状空間内の孔壁に主軸のベアリング支持領域を承
持するセパレータ筒を内装させ、上記ベアリング支持領
域に対面するセパレータ筒の筒壁に潤滑油を送り込むた
めの第1通孔を設け、上記第1通孔を上記ベアリング支
持領域の主軸に穿った第2通孔に連絡させると共に、こ
の主軸に穿った第2通孔を各ベアリングの内輪に穿った
第3通孔に連絡させ、上記セパレータ筒の第1通孔に絞
弁を配置し、この絞弁は主軸の停止から低速回転域まで
の区間は潤滑流量を解放させ主軸が高速回転になる程潤
滑流量を絞ることを特徴とする主軸の潤滑冷却装置とし
たものである。
In order to achieve the above object, the present invention provides the annular space according to claim 1 by inserting a drawing bar into the spindle hole into which lubricating oil is fed from the tail end side of the spindle. A separator cylinder for supporting the bearing support region of the main shaft is internally provided in the inner hole wall, and a first through hole for feeding lubricating oil is provided in the cylinder wall of the separator cylinder facing the bearing support region. The hole is connected to a second through hole formed in the main shaft of the bearing support region, and the second through hole formed in the main shaft is connected to a third through hole formed in the inner ring of each bearing, and the second hole of the separator cylinder is connected. Lubrication cooling of the main shaft characterized by arranging a throttle valve in one through hole, and this throttle valve releases the lubricating flow rate from the stop of the main spindle to the low speed rotation range and throttles the lubricating flow rate as the main spindle rotates at higher speed. It is a device.

【0006】本発明は上記目的を達成すべく、請求項2
において、主軸尾端側から潤滑油を送り込む主軸孔内に
は、ドローイングバーを挿入して得られた環状空間内の
孔壁に主軸の支持軸領域を承持するセパレータ筒を内装
させ、上記支持軸領域に対面するセパレータ筒の筒壁に
潤滑冷却液を送り込むための第4通孔を設け、上記第4
通孔を上記支持軸領域の主軸内に連絡させ且つこの第4
通孔に制御弁を配置し、この制御弁は主軸の停止から低
速回転域までの区間は潤滑冷却量を絞り、主軸が高速回
転になる程潤滑冷却量を増大することを特徴とする主軸
の潤滑冷却装置としたものである。
In order to achieve the above object, the present invention provides claim 2.
In the spindle hole for feeding the lubricating oil from the tail end side of the spindle, a separator cylinder for supporting the spindle supporting shaft region is provided inside the hole wall in the annular space obtained by inserting the drawing bar, and the above-mentioned support is performed. A fourth through hole for feeding the lubricating cooling liquid is provided in the cylinder wall of the separator cylinder facing the axial region, and the fourth through hole is provided.
A through hole communicating with the main shaft of the support shaft region and
A control valve is arranged in the through hole, and this control valve limits the lubricating cooling amount in the section from the stop of the main spindle to the low speed rotation range, and increases the lubricating cooling amount as the main spindle rotates at high speed. This is a lubrication cooling device.

【0007】本発明は上記目的を達成すべく、請求項3
において、請求項1記載の主軸の潤滑冷却装置におい
て、絞弁は 主軸の停止及び低速回転時では、バネの弾
発力で弁体を最大に開いた全開状態を呈し、主軸が回転
するとバネにより中心側へ押し戻されている弁体が、自
己の自重による遠心力の発生でバネの弾発力に抗してテ
ーパー面を弁孔体のテーパー面に接近させ遂には閉塞す
ることを特徴とする主軸の潤滑冷却装置としたものであ
る。
In order to achieve the above object, the present invention provides claim 3.
In the lubrication cooling device for a spindle according to claim 1, the throttle valve exhibits a fully opened state in which the valve element is opened to the maximum by elastic force of the spring when the spindle is stopped and rotated at low speed, and when the spindle rotates, The valve body pushed back toward the center side is characterized in that the tapered surface approaches the tapered surface of the valve hole body and finally closes against the elastic force of the spring due to the centrifugal force generated by its own weight. This is a lubrication cooling device for the main shaft.

【0008】本発明は上記目的を達成すべく、請求項4
において、請求項2記載の主軸の潤滑冷却装置におい
て、制御弁は主軸の停止及び低速回転時ではバネの弾発
力で弁体の全閉状態を呈し、主軸が回転すると、バネに
より中心側へ押されている弁体が、自己の自重による遠
心力の発生でバネの弾発力に抗してテーパー面を弁孔体
のテーパー面から遠ざけ遂には全開することを特徴とす
る主軸の潤滑冷却装置としたものである。
In order to achieve the above-mentioned object, the present invention provides a method according to claim 4.
In the spindle lubrication cooling device according to claim 2, the control valve exhibits a fully closed state of the valve body due to the elastic force of the spring when the spindle is stopped and rotates at a low speed, and when the spindle rotates, the control valve moves toward the center side by the spring. Lubrication cooling of the main shaft, characterized in that the pushed valve element moves the tapered surface away from the tapered surface of the valve hole body against the elastic force of the spring due to the generation of centrifugal force due to its own weight, and finally opens fully. It is a device.

【0009】[0009]

【作用】本発明の請求項1,3によると、主軸のベアリ
ング支持領域に対面するセパレータ筒の筒壁に穿った通
孔に絞弁を設けているから、このセパレータ筒の絞弁に
潤滑油の流体を送り込むと、この潤滑流体は、セパレー
タ筒の絞弁からベアリング支持領域の通孔と主軸に穿っ
た通孔とを通ってベアリングの内輪に穿った通孔に連絡
される。そして、このベアリングの内輪及びボールを潤
滑・冷却することになるが、主軸の停止から低速回転域
までの区間は潤滑流量を増やして供給するほか、主軸が
高速回転になる程潤滑流量を絞るように作用し、軸受部
での過剰な潤滑流量を無くし発熱を抑制する。
According to the first and third aspects of the present invention, since the throttle valve is provided in the through hole formed in the cylinder wall of the separator cylinder facing the bearing support area of the main shaft, the throttle valve of this separator cylinder is provided with the lubricating oil. When this fluid is sent, this lubricating fluid is communicated from the throttle valve of the separator cylinder through the through hole in the bearing support region and the through hole formed in the main shaft to the through hole formed in the inner ring of the bearing. The inner ring and balls of this bearing will be lubricated and cooled.In addition to increasing the lubrication flow rate in the section from the stop of the main spindle to the low speed rotation range, the lubrication flow rate should be reduced as the main spindle rotates at higher speeds. To prevent excessive lubrication flow rate in the bearing portion and suppress heat generation.

【0009】又、本発明の請求項2,4によると、上記
主軸の支持軸領域に対面するセパレータ筒の筒壁に穿っ
た通孔に制御弁を設けているから、このセパレータ筒の
制御弁から主軸内周面内に送り込まれた冷却用の流体
は、主軸をその内周壁から冷却した後、主軸尾端から外
部へ排出されるが、上記制御弁は主軸の停止から低速回
転域までの区間は潤滑冷却量を絞り、主軸が高速回転に
なる程潤滑冷却量を増大するように作用するから、主軸
の冷却作用が主軸回転速度に比例して増大し、理想的な
冷却特性が簡潔且つ簡便に実施できる。
According to the second and fourth aspects of the present invention, since the control valve is provided in the through hole formed in the cylinder wall of the separator cylinder facing the support shaft region of the main shaft, the control valve of this separator cylinder is provided. The cooling fluid sent from the inside of the spindle to the inner peripheral surface is discharged from the tail end of the main spindle after cooling the main spindle from its inner peripheral wall. Since the section cools down the lubricating cooling amount and acts so as to increase the lubricating cooling amount as the spindle rotates at higher speed, the cooling action of the spindle increases in proportion to the spindle rotation speed, and the ideal cooling characteristics are simple and simple. It can be carried out easily.

【0010】[0010]

【実施例】以下、図面に示す実施例につき説明する。図
1は本発明に係る工作機械の主軸軸受等のアンダーレー
ス潤滑冷却装置の全体を示す縦断面図であり、図2,3
は本発明に係る要部の横断面図である。図4は絞弁と制
御弁との特性を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments shown in the drawings will be described below. FIG. 1 is a vertical cross-sectional view showing an entire underrace lubrication cooling device for a main shaft bearing of a machine tool according to the present invention.
[Fig. 3] is a cross-sectional view of a main part according to the present invention. FIG. 4 shows the characteristics of the throttle valve and the control valve.

【0011】先ず、図1において、主軸1は、その先端
側を2つの軸受3,4によって支持され、図示されてい
ないが、後端側も軸受によって支持されている。更に、
図示されていないが、上記主軸1は、その中腹部にビル
トインモータのローターを嵌着し、軸芯位置に明けた内
周孔1Aには多層の皿バネとドローイングバー2を内装
し、主軸先端のテーパー穴1Bに挿入した工具を強力に
引き込み嵌着する。そして、上記ドローイングバー2の
後端には、アンクランプ装置を備え、ドローイングバー
側へ前進するときドローイングバーを強力に押出してア
ンクランプ動作する。
First, in FIG. 1, the main shaft 1 is supported at its tip end side by two bearings 3 and 4, and although not shown, the rear end side is also supported by the bearings. Furthermore,
Although not shown, the main shaft 1 has a rotor of a built-in motor fitted in the middle abdomen thereof, and a multi-layer disc spring and a drawing bar 2 are installed in the inner peripheral hole 1A opened at the shaft center position, and the main shaft tip The tool inserted in the taper hole 1B is strongly pulled in and fitted. An unclamping device is provided at the rear end of the drawing bar 2, and when the drawing bar 2 is advanced to the drawing bar side, the drawing bar is strongly pushed out to perform the unclamping operation.

【0012】上記主軸1の尾端孔部1Cには、主軸1の
軸芯冷却と各軸受3,4のアンダーレース潤滑を行うた
めの冷却潤滑液Cが供給されている。そして、この尾端
孔部1Cから挿通したドローイングバー2と該主軸の孔
壁1Eとの環状空間1D内には、主軸1のベアリング支
持領域BSと支持軸領域SSとを分離承持するセパレー
タ筒5を内装させている。上記ベアリング支持領域BS
及び支持軸領域SSに対面するセパレータ筒5の各筒壁
5A,5Bに潤滑兼冷却用の冷却潤滑液Cを送り込むた
めの通孔5C,5Dを各々明けている。上記ベアリング
支持領域BSの通孔5C・・・から主軸1に穿った通孔
1Fに連絡させ、この通孔1Fがベアリング3,4の内
輪に穿った通孔3A,4Aに連絡されている。上記通孔
5Cには、図2に示す絞弁20を備えている。
The tail end hole portion 1C of the main shaft 1 is supplied with a cooling lubricating liquid C for cooling the shaft core of the main shaft 1 and for underrace lubrication of the bearings 3 and 4. Then, in the annular space 1D between the drawing bar 2 inserted through the tail end hole portion 1C and the hole wall 1E of the main shaft, a separator cylinder for separately bearing the bearing support region BS and the support shaft region SS of the main shaft 1. It has 5 interiors. The bearing support area BS
Further, through holes 5C and 5D for feeding the cooling lubricating liquid C for lubricating and cooling are provided in the respective cylinder walls 5A and 5B of the separator cylinder 5 facing the support shaft region SS. The through holes 5C of the bearing support area BS are connected to the through holes 1F formed in the main shaft 1, and the through holes 1F are connected to the through holes 3A, 4A formed in the inner rings of the bearings 3, 4. The through hole 5C is provided with the throttle valve 20 shown in FIG.

【0013】上記絞弁20は、ベアリング支持領域BS
の各通孔5C内に各々備えられている。その構成は、通
孔5Cを傘型に拡張した弁孔体22に傘型の弁体21を
遊嵌させ、段孔22Aに圧装したバネ23により中心側
へ押し戻される弁体21が通孔5Cに螺合した受座体2
4に受け止められている。この状態(主軸停止時)に
て、弁体21の中心部に明けた通孔21Aや弁体21の
テーパー面21Bと弁孔体22のテーパー面22Bとの
隙間を最大限に広げ、潤滑兼冷却用の冷却潤滑液Cを最
大限に送り込むことが出来る。そして、主軸1が回転す
ると、バネ23により中心側へ押し戻されている弁体2
1は、自己の自重による遠心力の発生でバネ23の弾発
力に抗してテーパー面21Bを弁孔体22のテーパー面
22Bに接近させ、遂には図4のように閉塞する。この
状態(主軸高速回転時)にて、通孔5Cは、絞弁20の
中心部に明けた通孔21Aだけの絞られたものとなる。
主軸回転数とベアリングへの潤滑油供給量Q1との関係
を図6に示している。
The throttle valve 20 has a bearing support region BS.
In each of the through holes 5C. The structure is such that the umbrella-shaped valve body 21 is loosely fitted into the valve hole body 22 in which the through hole 5C is expanded in an umbrella shape, and the valve body 21 is pushed back toward the center side by the spring 23 pressed into the step hole 22A. Seat 2 screwed to 5C
It is accepted by 4. In this state (when the spindle is stopped), the clearance between the through hole 21A opened in the center of the valve body 21 and the tapered surface 21B of the valve body 21 and the tapered surface 22B of the valve hole body 22 is widened to maximize lubrication. The cooling lubricant C for cooling can be sent to the maximum extent. When the main shaft 1 rotates, the valve body 2 is pushed back toward the center by the spring 23.
1 causes the tapered surface 21B to approach the tapered surface 22B of the valve hole body 22 against the elastic force of the spring 23 due to the generation of centrifugal force due to its own weight, and finally closes as shown in FIG. In this state (during high-speed rotation of the main shaft), the through hole 5C is only the through hole 21A opened at the center of the throttle valve 20.
FIG. 6 shows the relationship between the rotational speed of the main shaft and the amount Q1 of lubricating oil supplied to the bearing.

【0014】他方、上記支持軸領域SSの通孔5D・・
・は、主軸1の内周面たる孔壁1Eに連絡されており、
冷却潤滑液Cをこの内周面1Eから主軸尾端側に送り出
すような循環経路を形成している。上記通孔5Dには、
図3に示す制御弁30を備えている。上記制御弁30
は、支持軸領域SSの各通孔5D内に各々備えられてい
る。その構成は、通孔5Dを皿型に拡張した弁孔体32
に皿型の弁体33を遊嵌させ、通孔5Dに圧装したバネ
34により中心側へ押し戻される弁体33が通孔5Dに
螺合した受座体35に受け止められている。この状態
(主軸停止時)にて、弁体33の中心部に明けた通孔3
3Aや弁体33のテーパー面33Bと弁孔体32のテー
パー面32Bとの隙間を閉塞して絞り、冷却用の冷却潤
滑液Cを最少限に絞って送り込むことが出来る。そし
て、主軸1が回転すると、バネ34により中心側へ押し
戻されている弁体33は、自己の自重による遠心力の発
生でバネ34の弾発力に抗してテーパー面33Bを弁孔
体32のテーパー面32Bから離反させ、遂には図5の
ように全開する。この状態(主軸高速回転時)にて、通
孔5Dは、制御弁30の中心部に明けた通孔30Aと弁
体33のテーパー面33Bと弁孔体32のテーパー面3
2Bとの隙間によるものとなる。主軸回転数と主軸への
冷却液供給量Q2との関係を図6に示している。
On the other hand, the through holes 5D ...
Is connected to the hole wall 1E, which is the inner peripheral surface of the main shaft 1,
A circulation path is formed such that the cooling lubricating liquid C is sent from the inner peripheral surface 1E to the tail end side of the spindle. In the through hole 5D,
The control valve 30 shown in FIG. 3 is provided. The control valve 30
Are respectively provided in the through holes 5D of the support shaft region SS. The configuration is the valve hole body 32 in which the through hole 5D is expanded in a dish shape.
The disc-shaped valve body 33 is loosely fitted in the through hole 5D, and the valve body 33 pushed back toward the center side by the spring 34 pressed into the through hole 5D is received by the seat body 35 screwed into the through hole 5D. In this state (when the spindle is stopped), the through hole 3 opened in the center of the valve body 33.
3A or the tapered surface 33B of the valve body 33 and the tapered surface 32B of the valve hole body 32 can be closed and throttled, and the cooling lubricating liquid C for cooling can be sent to the minimum. Then, when the main shaft 1 rotates, the valve body 33 pushed back toward the center by the spring 34 resists the elastic force of the spring 34 due to the generation of centrifugal force due to its own weight, so that the valve face body 32 has the tapered surface 33B. It is separated from the taper surface 32B of No. 3 and finally fully opened as shown in FIG. In this state (during high-speed rotation of the main shaft), the through hole 5D includes the through hole 30A opened in the central portion of the control valve 30, the tapered surface 33B of the valve body 33, and the tapered surface 3 of the valve hole body 32.
It is due to the gap with 2B. FIG. 6 shows the relationship between the spindle rotation speed and the coolant supply amount Q2 to the spindle.

【0015】本発明に係わる主軸の潤滑冷却装置は、上
記のように構成され、以下のように作用する。先ず、主
軸1の環状空間1D内に流入した冷却潤滑液Cの一部分
は、ベアリング支持領域BSに配置した軸受2,3のア
ンダーレース潤滑を行うべく、セパレータ筒5の通孔5
Cに設けた絞弁20から主軸の内周面1Eに至る。ここ
で、冷却潤滑液Cはベアリング支持領域BSの主軸を冷
却しつつ前後の通孔1Fからベアリング3,4の内輪に
穿った通孔3A,4Aに到達する。これにより、冷却潤
滑液Cの一部分は、ベアリング3,4のアンダーレース
潤滑を実施する。アンダーレース潤滑後の潤滑液Cは、
主軸固定機枠側のドレン通路から外部へ放出される。
The main spindle lubrication cooling device according to the present invention is constructed as described above and operates as follows. First, a part of the cooling lubricating liquid C that has flowed into the annular space 1D of the main shaft 1 is subjected to underrace lubrication of the bearings 2 and 3 arranged in the bearing support region BS so that the through hole 5 of the separator cylinder 5 can be used.
From the throttle valve 20 provided in C to the inner peripheral surface 1E of the main shaft. Here, the cooling lubricant C reaches the through holes 3A, 4A formed in the inner rings of the bearings 3, 4 from the front and rear through holes 1F while cooling the main shaft of the bearing support region BS. As a result, a part of the cooling lubricating liquid C carries out underrace lubrication of the bearings 3 and 4. The lubricating liquid C after underrace lubrication is
It is discharged to the outside from the drain passage on the frame side of the main shaft fixing machine.

【0016】上記ベアリング3,4のアンダーレース潤
滑は、主軸1の停止及び低速回転時では図2に示すよう
に、バネ23の弾発力で弁体21が最大に開いて絞弁2
0が全開状態を呈し、ここを通る冷却潤滑液Cが最大と
なる。そして、主軸1が回転すると、バネ23により中
心側へ押し戻されている弁体21は、自己の自重による
遠心力の発生でバネ23の弾発力に抗してテーパー面2
1Bを弁孔体22のテーパー面22Bに接近させ、遂に
は図4のように閉塞する。この状態(主軸高速回転時)
において、通孔5Cは、絞弁20の中心部に明けた通孔
21Aだけの絞られたものとなる。従って、主軸回転数
とベアリングへの潤滑油供給量Q1との関係は、図6に
示すように逆比例の制御のもとに行われ、主軸の高速回
転時に過剰の潤滑油供給量Q1とならないから、ベアリ
ング3,4が発熱せずベアリング3,4のアンダーレー
ス潤滑を理想的に実施する。
Underrace lubrication of the bearings 3 and 4 is such that when the main shaft 1 is stopped and the main shaft 1 is rotating at a low speed, as shown in FIG.
0 indicates a fully open state, and the cooling lubricant C passing therethrough becomes maximum. Then, when the main shaft 1 rotates, the valve body 21 pushed back toward the center by the spring 23 generates a centrifugal force due to its own weight and resists the elastic force of the spring 23 to form the tapered surface 2.
1B is brought close to the tapered surface 22B of the valve hole body 22 and finally closed as shown in FIG. This state (when the spindle rotates at high speed)
5C, only the through hole 21A opened in the center of the throttle valve 20 is restricted. Therefore, the relationship between the rotational speed of the main shaft and the lubricating oil supply amount Q1 to the bearing is controlled under the inverse proportional control as shown in FIG. 6, and the excessive lubricating oil supply amount Q1 does not occur when the main shaft rotates at high speed. Therefore, the bearings 3 and 4 do not generate heat and underrace lubrication of the bearings 3 and 4 is ideally performed.

【0017】他方、上記支持軸領域SSの各通孔5Dに
設けた制御弁30にも冷却潤滑液Cが供給される。ここ
で、主軸1の内周面へ各制御弁30の流通断面積により
流量制御された冷却潤滑液Cが供給され、内周面1Eか
ら主軸尾端側に送り出しながら主軸を冷却する。この関
係を、図3,5に示している。即ち、冷却潤滑液Cは、
主軸1の停止及び低速回転時には、通孔5Dに設けた制
御弁30が弁体33の中心部に明けた通孔33Aや弁体
33のテーパー面33Bと弁孔体32のテーパー面32
Bとの隙間を閉塞して絞り、冷却用の冷却潤滑液Cを最
少限に絞って送り込んでいる。
On the other hand, the cooling lubricating liquid C is also supplied to the control valve 30 provided in each through hole 5D of the support shaft region SS. Here, the cooling lubricating liquid C whose flow rate is controlled by the flow cross-sectional area of each control valve 30 is supplied to the inner peripheral surface of the main spindle 1, and the main spindle is cooled while being sent from the inner peripheral surface 1E to the tail end side of the main spindle. This relationship is shown in FIGS. That is, the cooling lubricant C is
When the main shaft 1 is stopped and rotates at low speed, the control valve 30 provided in the through hole 5D opens the through hole 33A in the center of the valve body 33, the tapered surface 33B of the valve body 33 and the tapered surface 32 of the valve hole body 32.
The clearance with B is closed and squeezed, and the cooling lubricating liquid C for cooling is squeezed to the minimum and sent.

【0018】そして、主軸1が回転すると、バネ34に
より中心側へ押し戻されている弁体33は、自己の自重
による遠心力の発生でバネ34の弾発力に抗してテーパ
ー面33Bを弁孔体32のテーパー面32Bから離反さ
せ、遂には図5のように全開する。この状態(主軸高速
回転時)にて、通孔5Dは、制御弁30の中心部に明け
た通孔30Aと弁体33のテーパー面33Bと弁孔体3
2のテーパー面32Bとの隙間によるものとなり、冷却
液供給量Q2を最大とする。上記主軸回転速度に対する
主軸1への冷却液供給量Q2は比例して増大するよう
に、その関係を図6に示している。しかして、主軸回転
速度に比例して発熱量を増大する主軸1の冷却作用が効
果的に行われる。
When the main shaft 1 rotates, the valve body 33 pushed back toward the center by the spring 34 acts on the tapered surface 33B against the elastic force of the spring 34 due to the centrifugal force generated by its own weight. The hole body 32 is separated from the tapered surface 32B and finally fully opened as shown in FIG. In this state (during high-speed rotation of the main shaft), the through hole 5D includes the through hole 30A opened in the central portion of the control valve 30, the tapered surface 33B of the valve body 33, and the valve hole body 3.
This is due to the gap between the second tapered surface 32B and the cooling liquid supply amount Q2 is maximized. The relationship is shown in FIG. 6 so that the coolant supply amount Q2 to the spindle 1 increases proportionally to the spindle rotation speed. Therefore, the cooling action of the spindle 1 that increases the amount of heat generation in proportion to the spindle rotation speed is effectively performed.

【0019】本発明は上記実施例に限定されず、要部構
成を設計変更できる。例えば、セパレータ筒5の通孔5
C,5Dや主軸1に明けた通孔1F及びベアリング3,
4の通孔3A,4Aの数やその断面積を適宜変更するこ
と。更に、主軸孔内に挿通したドローイングバーと該主
軸孔壁との環状空間内には、主軸のベアリング支持領域
BSと支持軸領域SSとを持ち、これらに絞弁20や制
御弁30を併設して備えたが、ベアリング3,4のみを
潤滑する上記ベアリング支持領域BS及び絞弁20のみ
を設けただけの構成としても良い。又、逆に主軸のみを
冷却する支持軸領域SS及び制御弁30のみを設けただ
けの構成としても良い。
The present invention is not limited to the above-mentioned embodiment, and the design of the main structure can be changed. For example, the through hole 5 of the separator tube 5
C, 5D and through hole 1F opened in the main shaft 1 and bearing 3,
Change the number of the through holes 3A and 4A of 4 and the cross-sectional area thereof appropriately. Furthermore, a bearing support region BS and a support shaft region SS of the main shaft are provided in an annular space between the drawing bar inserted through the main shaft hole and the wall of the main shaft hole, and the throttle valve 20 and the control valve 30 are provided side by side. However, the bearing supporting area BS for lubricating only the bearings 3 and 4 and the throttle valve 20 may be provided. On the contrary, the structure may be such that only the support shaft region SS for cooling only the main shaft and the control valve 30 are provided.

【0020】[0020]

【効果】本発明の請求項1によると、主軸のベアリング
支持領域に対面するセパレータ筒の筒壁に穿った通孔に
絞弁を設け、このセパレータ筒の絞弁に潤滑油の流体を
送り込むと、この潤滑流体は、セパレータ筒の絞弁から
ベアリング支持領域の通孔と主軸に穿った通孔とを通っ
てベアリングの内輪に穿った通孔に供給されるから、こ
のベアリングの内輪及びボールを簡潔に潤滑・冷却する
効果がある。そして、絞弁の作用で主軸の停止から低速
回転域までの区間は潤滑流量を増やして供給するほか、
主軸が高速回転になる程潤滑流量を絞るように作用し、
軸受部での過剰な潤滑流量を無くして発熱を合理的に抑
制する効果がある。
According to the first aspect of the present invention, a throttle valve is provided in a through hole formed in the cylinder wall of the separator cylinder facing the bearing support region of the main shaft, and the lubricating oil fluid is sent to the throttle valve of the separator cylinder. , This lubricating fluid is supplied from the throttle valve of the separator cylinder through the through hole of the bearing support region and the through hole of the main shaft to the through hole of the inner ring of the bearing. It has the effect of simply lubricating and cooling. And, in addition to increasing the lubrication flow rate in the section from the stop of the spindle to the low speed rotation range by the action of the throttle valve,
The higher the spindle speed, the more the lubricating flow is reduced,
It has an effect of rationally suppressing heat generation by eliminating an excessive lubricating flow rate in the bearing portion.

【0021】更に、本発明の請求項2によると、支持軸
領域の制御弁から主軸内周面内に送り込まれる冷却用の
流体は主軸をその内周壁から冷却する効果がある。そし
て、上記制御弁は主軸の停止から低速回転域までの区間
は潤滑冷却量を絞り、主軸が高速回転になる程潤滑冷却
量を増大するように作用するから、主軸の冷却作用が主
軸回転速度に比例して増大し、理想的な冷却特性が実施
できる効果かある。
Further, according to the second aspect of the present invention, the cooling fluid sent from the control valve in the support shaft region into the inner peripheral surface of the main shaft has an effect of cooling the main shaft from the inner peripheral wall thereof. The control valve acts to reduce the amount of lubricating cooling in the section from the stop of the main spindle to the low speed rotation range, and to increase the amount of lubricating cooling as the main spindle rotates at higher speed. There is an effect that it increases in proportion to the ideal cooling characteristics.

【0022】そして、本発明の請求項3によると、絞弁
は 主軸の停止及び低速回転時では、バネの弾発力で弁
体を最大に開いた全開状態を呈し、主軸が回転すると、
バネにより中心側へ押し戻されている弁体が、自己の自
重による遠心力の発生でバネの弾発力に抗してテーパー
面を弁孔体のテーパー面に接近させ遂には閉塞するか
ら、主軸回転数とベアリングへの潤滑油供給量とは、逆
比例の制御のもとに簡潔な構成で行われ、主軸の高速回
転時に過剰の潤滑油供給量とならないので、ベアリング
が発熱せずベアリングのアンダーレース潤滑を理想的に
実施するという効果が発揮される。
According to claim 3 of the present invention, the throttle valve is in a fully opened state in which the valve body is opened to the maximum by the elastic force of the spring when the main shaft is stopped and rotated at low speed, and when the main shaft rotates,
Since the valve body pushed back toward the center by the spring counteracts the elastic force of the spring due to the centrifugal force generated by its own weight, the taper surface approaches the taper surface of the valve hole body and finally closes. The number of revolutions and the amount of lubricating oil supplied to the bearing are controlled by a simple structure under the control of inverse proportion, and the amount of lubricating oil supplied does not become excessive when the spindle rotates at high speed. The effect of ideally performing underrace lubrication is exhibited.

【0023】更に、本発明の請求項4によると、制御弁
は 主軸の停止及び低速回転時では、バネの弾発力で弁
体の全閉状態を呈し、主軸が回転すると、バネにより中
心側へ押されている弁体が、自己の自重による遠心力の
発生でバネの弾発力に抗してテーパー面を弁孔体のテー
パー面から遠ざけ遂には全開するから、主軸回転数と主
軸内への冷却液供給量は、比例する制御のもとに簡潔な
構成で行われ、主軸の高速回転時に最大の冷却液供給量
となり、主軸が発熱せず主軸冷却を理想的に実施すると
いう効果が発揮される。
Further, according to claim 4 of the present invention, the control valve exhibits a fully closed state of the valve body due to the elastic force of the spring when the main shaft is stopped and rotates at low speed, and when the main shaft rotates, the control valve causes the central side to move. Since the valve body pushed to the side resists the elastic force of the spring due to the generation of centrifugal force due to its own weight, the tapered surface is moved away from the tapered surface of the valve hole body and finally fully opened. The amount of cooling liquid supplied to the spindle is controlled by a simple structure under proportional control, and the maximum amount of cooling liquid is supplied when the spindle rotates at high speed, and the spindle does not generate heat. Is demonstrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る主軸等のアンダーレース潤滑を示
す全体断面図である。
FIG. 1 is an overall cross-sectional view showing underrace lubrication of a spindle and the like according to the present invention.

【図2】本発明に係る第1実施例の拡大断面図である。FIG. 2 is an enlarged sectional view of the first embodiment according to the present invention.

【図3】本発明に係る第2実施例の要部の断面図であ
る。
FIG. 3 is a sectional view of an essential part of a second embodiment according to the present invention.

【図4】本発明に係る第1実施例の作用を示す拡大断面
図である。
FIG. 4 is an enlarged sectional view showing the operation of the first embodiment according to the present invention.

【図5】本発明に係る第2実施例の作用を示す拡大断面
図である。
FIG. 5 is an enlarged cross-sectional view showing the operation of the second embodiment according to the present invention.

【図6】本発明に係わる潤滑冷却量と主軸回転速度とを
示す説明図である。
FIG. 6 is an explanatory diagram showing a lubricating cooling amount and a spindle rotation speed according to the present invention.

【符号の説明】[Explanation of symbols]

1 主軸 1E 主軸尾端孔部 3,4 ベアリング 3A,4A 内輪 2 ドローイングバー 1F,3A,4A,5C,5D 通孔 5 セパレータ筒 BS ベアリング支持領
域 SS 支持軸領域 C 冷却潤滑液 20 絞弁 21,33 弁体 21A,33A 通孔 21B,22B,32B,33B テーパー面 22,32 弁孔体 23,34 バネ Q1 潤滑油供給量 30 制御弁 Q2 冷却液供給量
1 spindle 1E spindle tail end hole 3,4 bearing 3A, 4A inner ring 2 drawing bar 1F, 3A, 4A, 5C, 5D through hole 5 separator cylinder BS bearing support area SS support shaft area C cooling lubricant 20 throttle valve 21, 33 valve body 21A, 33A through hole 21B, 22B, 32B, 33B tapered surface 22,32 valve hole body 23,34 spring Q1 lubricating oil supply amount 30 control valve Q2 cooling liquid supply amount

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主軸尾端側から潤滑油を送り込む主軸孔
内には、ドローイングバーを挿入して得られた環状空間
内の孔壁に主軸のベアリング支持領域を承持するセパレ
ータ筒を内装させ、上記ベアリング支持領域に対面する
セパレータ筒の筒壁に潤滑油を送り込むための第1通孔
を設け、上記第1通孔を上記ベアリング支持領域の主軸
に穿った第2通孔に連絡させると共に、この主軸に穿っ
た第2通孔を各ベアリングの内輪に穿った第3通孔に連
絡させ、上記セパレータ筒の第1通孔に絞弁を配置し、
この絞弁は主軸の停止から低速回転域までの区間は潤滑
流量を解放させ主軸が高速回転になる程潤滑流量を絞る
ことを特徴とする主軸の潤滑冷却装置。
1. A separator cylinder for bearing a bearing support area of a main shaft is provided inside a main shaft hole into which lubricating oil is fed from the tail end side of the main shaft, the hole wall in an annular space obtained by inserting a drawing bar. A first through hole for feeding lubricating oil is provided in a cylinder wall of the separator cylinder facing the bearing supporting area, and the first through hole is connected to a second through hole formed in the main shaft of the bearing supporting area. The second through hole formed in the main shaft is connected to the third through hole formed in the inner ring of each bearing, and the throttle valve is arranged in the first through hole of the separator cylinder.
This throttle valve is a lubrication cooling device for a spindle, characterized in that the lubrication flow rate is released in the section from the stop of the spindle to the low speed rotation range, and the lubrication flow rate is throttled as the spindle rotates at a higher speed.
【請求項2】 主軸尾端側から潤滑油を送り込む主軸孔
内には、ドローイングバーを挿入して得られた環状空間
内の孔壁に主軸の支持軸領域を承持するセパレータ筒を
内装させ、上記支持軸領域に対面するセパレータ筒の筒
壁に潤滑冷却液を送り込むための第4通孔を設け、上記
第4通孔を上記支持軸領域の主軸内に連絡させ且つこの
第4通孔に制御弁を配置し、この制御弁は主軸の停止か
ら低速回転域までの区間は潤滑冷却量を絞り、主軸が高
速回転になる程潤滑冷却量を増大することを特徴とする
主軸の潤滑冷却装置。
2. A separator cylinder for supporting a supporting shaft region of a main shaft is provided in a hole wall in an annular space obtained by inserting a drawing bar in the main shaft hole into which lubricating oil is fed from the tail end side of the main shaft. A fourth through hole for feeding the lubricating coolant to the cylinder wall of the separator cylinder facing the support shaft region, the fourth through hole communicating with the main shaft of the support shaft region, and the fourth through hole. A control valve is installed in the control valve.The control valve throttles the lubricating cooling amount in the section from the stop of the main spindle to the low speed rotation range, and the lubricating cooling amount of the main spindle is increased as the main spindle rotates at higher speed. apparatus.
【請求項3】 請求項1記載の主軸の潤滑冷却装置にお
いて、絞弁は 主軸の停止及び低速回転時では、バネの
弾発力で弁体を最大に開いた全開状態を呈し、主軸が回
転するとバネにより中心側へ押し戻されている弁体が、
自己の自重による遠心力の発生でバネの弾発力に抗して
テーパー面を弁孔体のテーパー面に接近させ遂には閉塞
することを特徴とする主軸の潤滑冷却装置。
3. The lubrication cooling device for a spindle according to claim 1, wherein the throttle valve is in a fully opened state in which the valve element is fully opened by the elastic force of the spring when the spindle is stopped and rotated at a low speed, and the spindle rotates. Then, the valve element pushed back toward the center by the spring,
A lubricating and cooling device for a main shaft, characterized in that a tapered surface is made to approach a tapered surface of a valve hole body and finally closed against a resilient force of a spring due to generation of centrifugal force due to its own weight.
【請求項4】 請求項2記載の主軸の潤滑冷却装置にお
いて、制御弁は主軸の停止及び低速回転時ではバネの弾
発力で弁体の全閉状態を呈し、主軸が回転すると、バネ
により中心側へ押されている弁体が、自己の自重による
遠心力の発生でバネの弾発力に抗してテーパー面を弁孔
体のテーパー面から遠ざけ遂には全開することを特徴と
する主軸の潤滑冷却装置。
4. The lubrication cooling device for a spindle according to claim 2, wherein the control valve exhibits a fully closed state of the valve body due to the elastic force of the spring when the spindle is stopped and rotates at a low speed, and when the spindle rotates, the control valve is operated by the spring. The main shaft is characterized in that the valve body pushed toward the center side moves the tapered surface away from the taper surface of the valve hole body and fully opens against the elastic force of the spring due to the generation of centrifugal force due to its own weight. Lubricating cooling device.
JP13841795A 1995-05-12 1995-05-12 Device for cooling lubrication oil for main shaft Pending JPH08309644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13841795A JPH08309644A (en) 1995-05-12 1995-05-12 Device for cooling lubrication oil for main shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13841795A JPH08309644A (en) 1995-05-12 1995-05-12 Device for cooling lubrication oil for main shaft

Publications (1)

Publication Number Publication Date
JPH08309644A true JPH08309644A (en) 1996-11-26

Family

ID=15221484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13841795A Pending JPH08309644A (en) 1995-05-12 1995-05-12 Device for cooling lubrication oil for main shaft

Country Status (1)

Country Link
JP (1) JPH08309644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063945A (en) * 2017-10-02 2019-04-25 株式会社ニイガタマシンテクノ Cooling device for machine tool main spindle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063945A (en) * 2017-10-02 2019-04-25 株式会社ニイガタマシンテクノ Cooling device for machine tool main spindle

Similar Documents

Publication Publication Date Title
CN104889425A (en) High speed spindle box structure
JPH079247B2 (en) Vibration suppressor for rolling bearings
US6872003B2 (en) Oil-damped rolling bearing
JP2002357222A (en) Fluid bearing
CN107249816A (en) Main shaft device
WO2018034240A1 (en) Ball bearing, ball bearing device, and machine tool
JPS58102819A (en) Tilting pad bearing
CN108044136B (en) Novel static pressure air-float electric spindle
US20040003678A1 (en) Device and method for balancing rotating systems
JP3084356B2 (en) Spindle device with lubricating oil flow control device
JPH09294351A (en) Cooling structure of motor for hot roller and cooling/ damper structure
JP3548330B2 (en) Spindle bearing cooling system
JPH08309644A (en) Device for cooling lubrication oil for main shaft
US2168345A (en) High speed thrust bearing
JPH08309643A (en) Device for lubricating bearing of main shaft
JP2510758B2 (en) Cooling method for bearings for machine spindles
JPH06264934A (en) Bearing lubricating mechanism of spindle device
CN109926632A (en) A kind of degreasing unit on double-pendulum milling head
JPH05263830A (en) Main shaft device
JP3325082B2 (en) Pneumatic spindle device
JP6791525B1 (en) How to produce a shaft support structure and a shaft support structure
CN107120352A (en) A kind of electro spindle dynamic and hydrostatic bearing with the annular oil supply tank of square shape
JP2000280102A (en) Damper device of spindle
JP2001132740A (en) Pneumatic spindle device
JPH0571358A (en) Bearing device of turbocharger