JPH08309419A - Method for controlling tension in tandem mill for bar for tubing - Google Patents

Method for controlling tension in tandem mill for bar for tubing

Info

Publication number
JPH08309419A
JPH08309419A JP7113450A JP11345095A JPH08309419A JP H08309419 A JPH08309419 A JP H08309419A JP 7113450 A JP7113450 A JP 7113450A JP 11345095 A JP11345095 A JP 11345095A JP H08309419 A JPH08309419 A JP H08309419A
Authority
JP
Japan
Prior art keywords
stand
tension
pipe material
tubing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7113450A
Other languages
Japanese (ja)
Inventor
Toshio Asano
俊雄 浅野
Ichiro Ueda
一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7113450A priority Critical patent/JPH08309419A/en
Publication of JPH08309419A publication Critical patent/JPH08309419A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To uniformize thickness and to improve the quality of a tube and yield by obtaining tension component torque of every stand of a tandem mill for tubing and solving an equation of force acted on the tubing at every stand by using the method of least square. CONSTITUTION: For an (i-1)th stand 3 (#i-1), i-th stand 3 (#1) and (i+1)th stand 3 (#i+1) in the state where the tubing 1 is bitten, rolling torques TLi are calculated based on the number ni of revolution of each roll driving motor M and motor current Iai. The tension component torques are calculated from each of these rolling torques TLi and rolling load P1 detected by a load detector 4, thereby the equations of force is prepared for every stand. By utilizing that the back tension of the most upstream stand by which the tubing 1 is bitten and the front tension of the most downstream stand are respectively zero and solving the equations by the method of least square, the tension between stands is obtained. The tension is compared with the target value and the correction amount of the revolving number of roll at each stand is obtained in accordance with the deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は管材に作用させるべき張
力、又は圧縮力を制御する管材用タンデムミルの張力制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the tension of a tandem mill for pipes, which controls the tension or compression force to be applied to the pipes.

【0002】[0002]

【従来の技術】継ぎ目無し管の熱間圧延ラインにおい
て、圧延中の管材に付与すべき張力、又は圧縮力と管材
の肉厚,外径との間には密接な関係があり、不適切な張
力又は圧縮力の付与は管材の破断,穴開き,変形などを
招く他、肉厚,外径のばらつきの原因ともなることか
ら、管材に対する張力、又は圧縮力の適正な付与が重要
な課題となっている。このため従来よりマンドレルミル
等の張力制御方法が種々提案されているが、いずれも圧
延中の管材に加えられる張力、又は圧縮力それ自体の検
出精度が低いため、十分な張力又は圧縮力の制御精度が
得られていないのが現状である。
2. Description of the Related Art In a hot rolling line for seamless pipes, there is a close relationship between the tension or compression force to be applied to the pipe material during rolling and the wall thickness and outer diameter of the pipe material, which is inappropriate. The application of tension or compression force not only causes breakage, perforation, and deformation of the pipe material, but also causes variations in wall thickness and outer diameter. Therefore, appropriate application of tension or compression force to the pipe material is an important issue. Has become. For this reason, various tension control methods such as mandrel mills have been conventionally proposed, but since the detection accuracy of the tension applied to the pipe material during rolling or the compression force itself is low, sufficient tension or compression force control is possible. The current situation is that accuracy has not been obtained.

【0003】この対策として、従来次のような方法(特
開昭62−244511号)が提案されている。即ち、
管材のタンデム圧延機の各スタンドi毎に検出又は算出
した圧延荷重P i ,圧延トルクTLi に基づいて下記
(1)式により張力成分トルクTFi を算出し、(2)
式に示すように管材を噛み込んでいるスタンド(#Jス
タンド〜#Kスタンド,J≦K)のうちの最上流スタン
ドの後方張力FJ-1 が零であることを利用して、(3)
式に従って上流スタンドから順次管材に作用する張力を
算出し、この算出した張力を目標張力に一致させるべく
各スタンドのロール回転数を制御する方法である。
As a countermeasure against this, the following method (special
(Kaisho 62-244511) has been proposed. That is,
Detection or calculation for each stand i of the tandem rolling mill for pipe materials
Rolling load P i, Rolling torque TLiBased on below
Tension component torque TF according to equation (1)iAnd calculate (2)
As shown in the formula, the stand that bites the pipe material (#J
Tando ~ #K Stand, J ≦ K)
Rear tension FJ-1Taking advantage of the fact that is zero, (3)
According to the formula, the tension applied to the pipe material from the upstream stand in order
Calculate and match the calculated tension with the target tension
This is a method of controlling the roll rotation speed of each stand.

【0004】 TFi =(Fi-1 −Fi )Ri =2(TLi −βi i )(なおi=J,…,K) …(1) FJ-1 =0 …(2) Fi =Fi-1 −TFi /Ri (なおi=J,…,K) …(3) 但し、Fi :#iスタンド前方張力,Ri :#iスタン
ド等価ロール径, βi :#iスタンド張力算出用パラメータ, TLi :#iスタンド圧延トルク,Pi :#iスタンド
圧延荷重, TFi :#iスタンド張力成分トルク
TF i = (F i-1 −F i ) R i = 2 (TL i −β i P i ) (note that i = J, ..., K) (1) F J-1 = 0 (( 2) F i = F i-1 −TF i / R i (note that i = J, ..., K) (3) where F i : #i stand front tension, R i : #i stand equivalent roll diameter, β i : #i stand tension calculation parameter, TL i : #i stand rolling torque, P i : #i stand rolling load, TF i : #i stand tension component torque

【0005】[0005]

【発明が解決しようとする課題】ところでこのような従
来の制御方法では管材に作用する張力を上流スタンドか
ら下流スタンドに向けて順次的に計算するため、その計
算過程で生じた誤差が蓄積されて下流スタンドでは張力
の算出精度が悪くなること、また管材が前段スタンドを
抜けたことによって生じる管材の張力変動がそのまま後
段スタンド間の管材張力変動としてあらわれるため、こ
れらの検出張力を基に張力制御を行うと、管材の長手方
向における肉厚が不均一となる等の問題があった。
By the way, in such a conventional control method, since the tension acting on the pipe material is sequentially calculated from the upstream stand to the downstream stand, the error generated in the calculation process is accumulated. In the downstream stand, the accuracy of the tension calculation becomes poor, and the fluctuation of the tube tension caused by the tube material passing through the former stand appears as it is as the fluctuation of the tube tension between the latter stands, so the tension control is performed based on these detected tensions. If this is done, there is a problem that the wall thickness of the pipe material becomes uneven in the longitudinal direction.

【0006】本発明は斯かる事情に鑑みなされたもので
あって、その目的とするところは、タンデムミルにおけ
る管材を噛み込んでいる状態の各スタンドについて、張
力成分トルクに基づく力の釣合式をたて、これら力の釣
合式を最小2乗法を用いて解くことにより、管材に作用
する張力を精度良く算出し、しかも前段スタンド抜けな
どによる後段スタンド間の管材張力変動に対する影響を
軽減可能とした管材用のタンデムミルの張力制御方法を
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to obtain a force balance formula based on a tension component torque for each stand in a tandem mill in which a pipe material is bitten. By using the least squares method to solve these force balance equations, it is possible to accurately calculate the tension acting on the pipe material and to reduce the effect on the pipe material tension fluctuation between the latter stage stands due to the former stage stand-out. It is to provide a tension control method for a tandem mill for pipe materials.

【0007】[0007]

【課題を解決するための手段】本発明に係る管材用のタ
ンデムミルの張力制御方法は、複数のスタンド夫々のロ
ールを駆動するモータの回転数を制御することで管材に
対する張力を制御するタンデムミルの張力制御方法にお
いて、管材を噛み込んでいる状態のスタンド夫々につい
て、各スタンド毎に検出又は算出した圧延荷重及び圧延
トルクに基づいて張力成分トルクを求め、この張力成分
トルクに基づき各スタンド毎に管材に作用する力の釣合
式をたて、この力の釣合式を最小2乗法にて解き、管材
に作用する張力を算出し、これを目標値と比較し、その
偏差に対応して各スタンドのロール回転数補正量を求め
る過程を含むことを特徴とする。
A tandem mill tension control method for a pipe material according to the present invention is a tandem mill for controlling a tension on a pipe material by controlling a rotation number of a motor for driving a roll of each of a plurality of stands. In the tension control method of 1), for each stand in a state in which the pipe material is bitten, the tension component torque is obtained based on the rolling load and the rolling torque detected or calculated for each stand, and for each stand based on this tension component torque. Create a balance formula of the force acting on the pipe material, solve this force balance formula by the least squares method, calculate the tension acting on the pipe material, compare it with the target value, and correspond to the deviation of each stand. It is characterized by including a process of obtaining the roll rotation number correction amount of.

【0008】[0008]

【作用】本発明にあってはこれによって、管材を噛み込
んでいる状態の各スタンド夫々について力の釣合式をた
て、これを最小2乗法にて解き、各スタンド毎の管材に
作用する張力を算出し、この張力と目標値との偏差に対
応してロール回転数補正量を求めることで正確な張力算
出及びこれに伴う張力補正が可能となる。
According to the present invention, a force balance equation is established for each stand in which the pipe material is engaged, and this is solved by the least-squares method to obtain the tension acting on the pipe material for each stand. Is calculated, and the roll rotation speed correction amount is obtained corresponding to the deviation between the tension and the target value, whereby accurate tension calculation and accompanying tension correction can be performed.

【0009】[0009]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明に係るタンデムミル
の張力制御方法を実施するための制御系を示すブロック
図であり、図中#i−1,#i,#i+1は連続する第
i−1スタンド,第iスタンド,第i+1スタンド(i
はスタンド番号)、1は管材、2はマンドレルバーを示
している。管材1はその内側にマンドレルバー2を挿入
した状態でマンドレルミルを構成する各スタンドに矢符
方向から通されて延伸圧延される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. FIG. 1 is a block diagram showing a control system for carrying out a tension control method for a tandem mill according to the present invention. In the figure, # i-1, #i, # i + 1 are continuous i-1 stand, i-th stand. Stand, i + 1 stand (i
Is a stand number), 1 is a pipe material, and 2 is a mandrel bar. The pipe material 1 is stretched and rolled by being passed through each stand constituting the mandrel mill from the direction of the arrow with the mandrel bar 2 inserted therein.

【0010】#i−1,#i,#i+1の各スタンドは
夫々一対のカリバーロール3及びこれを駆動するロール
駆動モータMが設置され、また各スタンド毎にロードセ
ル等で構成された荷重検出器(LC)4が設置されてい
る(図1には#1スタンドについてのみ示してある)。
各ロール駆動モータMには夫々その回転数を検出する回
転数検出器(TG)5、ロール駆動モータMのモータ電
流検出器6、ロール駆動モータMの回転数を調節する回
転数調整器(ASR)7が付設されている。その他図中
8は圧延トルク演算装置、9は演算制御装置を示してあ
る。先ず、圧延トルク演算装置8は回転数検出器5から
取り込んだモータ回転数n i とモータ電流検出器6から
取り込んだモータ電流Iaiとに基づき圧延トルクTLi
を演算し、これを演算制御装置9へ与える。
Each of the stands # i-1, #i and # i + 1
Each pair of caliber rolls 3 and rolls driving them
A drive motor M is installed, and a load set is provided for each stand.
Load detector (LC) 4 composed of
(Only the # 1 stand is shown in FIG. 1).
Each roll drive motor M has a number of times for detecting its rotation speed.
Turn detector (TG) 5, motor power for roll drive motor M
Flow detector 6 and a roll drive motor M
A turn number regulator (ASR) 7 is attached. Other figures
8 is a rolling torque calculation device, and 9 is a calculation control device.
It First, the rolling torque calculation device 8 is
The number of motor revolutions taken in n iAnd from the motor current detector 6
Captured motor current IaiRolling torque TL based oni
Is calculated and given to the arithmetic and control unit 9.

【0011】一方演算制御装置9は、管材1を噛み込ん
でいるスタンド(#Jスタンド〜#Kスタンド,J≦
K)のうちの任意の一スタンドを#iとして、この#i
スタンドの圧延トルクTLi と、前記荷重検出器4で検
出されたスタンドiの圧延荷重Pi とに基づき、#iス
タンドに作用する張力成分トルクTFi を下記(4)式
に従って算出する。 TFi =(Fi-1 −Fi )Ri =2(TLi −βi i ) (なおi=J,…,K) …(4) FJ-1 =0,FK =0 但し、Fi-1 :#iスタンド後方張力,Fi :#iスタ
ンド前方張力, TLi :#iスタンド圧延トルク,Pi :#iスタンド
圧延荷重, βi :#iスタンド張力算出用パラメータ, Ri :#iスタンド等価ロール径
On the other hand, the arithmetic and control unit 9 has a stand (#J stand to #K stand, J≤, where the pipe material 1 is bitten.
If any one of K) is #i,
Based on the rolling torque TL i of the stand and the rolling load P i of the stand i detected by the load detector 4, the tension component torque TF i acting on the #i stand is calculated according to the following equation (4). TF i = (F i-1 −F i ) R i = 2 (TL i −β i P i ) (where i = J, ..., K) (4) F J-1 = 0, F K = 0 Here, F i-1 : #i stand rear tension, F i : #i stand front tension, TL i : #i stand rolling torque, P i : #i stand rolling load, β i : #i stand tension calculation parameter , R i : #i stand equivalent roll diameter

【0012】ここで、張力算出用パラメータβi は従来
公知の方法(特開平2−217109号の方法)を用い
て算出(又は推定)すれば良い。また、(4)式は管材
を噛み込んでいるスタンドについて成立するから、K−
J+1個の釣合式が立つこととなり、しかもF0 =…=
J-1 =0,FK =…=FN =0(N:全スタンド数)
であるから変数はFJ ,…,FK-1 のK−J個となる。
よって(4)式の変数Fi の数に対して、釣合式の数は
常に1つ多くなる。そこで(4)式を最小2乗法に従っ
て解き、#iスタンドの前方張力Fi を算出し、これを
加え合わせ点10にて目標張力と比較し、その偏差にP
Iコントローラ11にてPI演算を施し、これを制御信
号として回転数調整器7へ出力する。回転数調整器7は
制御信号に対応してロール駆動モータMの回転数を調整
し、管材1に対する張力が目標値と一致するように修正
する。
Here, the tension calculation parameter β i may be calculated (or estimated) using a conventionally known method (method disclosed in Japanese Patent Laid-Open No. 2-217109). Further, since the formula (4) is established for the stand in which the pipe material is bitten, K−
There will be J + 1 balance equations, and F 0 = ... =
F J-1 = 0, F K = ... = F N = 0 (N: total number of stands)
Therefore , the variables are K- J of F J , ..., F K-1 .
Therefore, the number of balance equations is always increased by one with respect to the number of variables F i in equation (4). Therefore, the equation (4) is solved according to the least squares method, the front tension F i of the #i stand is calculated, and this is added and compared with the target tension at the alignment point 10.
PI calculation is performed by the I controller 11, and this is output to the rotation speed adjuster 7 as a control signal. The rotation speed adjuster 7 adjusts the rotation speed of the roll drive motor M in response to the control signal, and corrects the tension on the pipe material 1 so as to match the target value.

【0013】次に前述した圧延トルク演算装置8及び演
算制御装置9の演算処理過程を図2に示すフローチャー
トに従って説明する。図2は演算制御装置9及び圧延ト
ルク演算装置8での演算過程を示すフローチャートであ
る。いま、管材1を噛み込んである状態のスタンドを、
#iとして、これら各スタンドについて荷重検出器4、
圧延トルク演算装置8により圧延荷重Pi ,圧延トルク
TLi を夫々検出又は算出する (ステップS1)。
Next, the calculation processing steps of the rolling torque calculation device 8 and the calculation control device 9 will be described with reference to the flowchart shown in FIG. FIG. 2 is a flowchart showing a calculation process in the calculation control device 9 and the rolling torque calculation device 8. Now, with the stand in the state where the pipe material 1 is bitten,
#I, load detector 4, for each of these stands
The rolling torque P i and the rolling torque TL i are respectively detected or calculated by the rolling torque calculation device 8 (step S1).

【0014】次に演算制御装置9にて、圧延荷重Pi
び圧延トルクTLi を基に(4)式に従ってスタンド#
iの張力成分トルクTFi を算出する (ステップS
2)。算出したスタンド#iの張力成分トルクTFi
スタンド#iに作用する張力との関係を表す式(4)式
を、管材1を噛み込んでいる最上流スタンドの後方張力
が零、並びに管材1を噛み込んでいる最下流スタンドの
前方張力が零であることを利用して、最小2乗法を用い
て解くことにより、管材1を噛み込んである状態の全ス
タンド#J〜#Kの前方張力FJ 〜Fk を算出する (ス
テップS3)。最後に、求めた各スタンド間における管
材1に作用する張力を目標値と比較し、これを目標値に
一致させるべくロール回転数補正量を求め、ロール回転
数を補正する (ステップS4)。
Next, in the arithmetic and control unit 9, the stand # is calculated based on the rolling load P i and the rolling torque TL i according to the equation (4).
The tension component torque TF i of i is calculated (step S
2). The equation (4) representing the relationship between the calculated tension component torque TF i of the stand #i and the tension acting on the stand #i is calculated according to the following equation. The front tension of all stands #J to #K in the state in which the pipe material 1 is bitten is solved by solving it by using the least squares method by utilizing the fact that the front tension of the most downstream stand that bites the F J to F k are calculated (step S3). Finally, the calculated tension applied to the pipe material 1 between the stands is compared with a target value, a roll rotation speed correction amount is calculated so as to match this with the target value, and the roll rotation speed is corrected (step S4).

【0015】本発明方法と従来方法とを6スタンドのマ
ンドレルミルに適用し、張力制御を行った場合における
スタンド#1〜#2間,スタンド#2〜#3間の管材張
力制御例を図3,図4に示す。図3,図4は夫々横軸に
時間を、また縦軸に張力をとって示してある。本発明方
法では、図3に示す如く管材の前段スタンド抜けなどに
よる後段スタンド間管材張力変動が、図4に示す従来方
法と比較して大幅に低減されており、この検出張力を基
に張力制御を行うことで管材の長手方向の肉厚を均一化
できることが確認出来た。
An example of pipe material tension control between stands # 1 and # 2 and between stands # 2 and # 3 when tension control is performed by applying the method of the present invention and the conventional method to a six-stand mandrel mill is shown in FIG. , As shown in FIG. 3 and 4, the horizontal axis represents time and the vertical axis represents tension. In the method of the present invention, as shown in FIG. 3, the fluctuation of the pipe tension between the rear stands due to the removal of the front stand of the pipe material and the like is significantly reduced compared to the conventional method shown in FIG. 4, and the tension control is performed based on this detected tension. It was confirmed that the thickness of the pipe material in the longitudinal direction can be made uniform by performing the above.

【0016】これに対して、従来技術(特開昭62−2
44511号)に依った場合、スタンド#1〜#2,ス
タンド#2〜#3間の管材張力は、図4に示す如く管材
の前段スタンド抜けなどによる前段スタンド#1〜#2
間の管材張力変動(図4A部)がそのまま後段スタンド
#2〜#3間の管材張力変動(図4A′部)として表れ
る。従ってこの検出張力を基に張力制御が行なわれる結
果、管材の長手方向の肉厚の不均一は避けられなかっ
た。
On the other hand, in the prior art (Japanese Patent Laid-Open No. 62-2 / 1987).
No. 44511), the tube tension between the stands # 1 to # 2 and the stands # 2 to # 3 is as shown in FIG.
Fluctuations in the pipe material tension (part A in FIG. 4) appear as they are as fluctuations in the pipe tension tension between the rear stands # 2 to # 3 (part A in FIG. 4A). Therefore, as a result of controlling the tension based on the detected tension, it is unavoidable that the wall thickness of the pipe material in the longitudinal direction is not uniform.

【0017】[0017]

【発明の効果】以上の如く本発明方法によれば、管材に
作用する張力を精度良く検出でき、しかも前段スタンド
抜けなどに起因する管材張力変動が後段スタンド間の管
材張力に与える影響を軽減することが可能となり、この
管材張力値に基づいて張力を制御することにより管材の
全長にわたって高精度の張力制御が出来、肉厚の均一化
が図れて、管品質が向上し、歩留まりも高くなるなど、
本発明は優れた効果を奏する。
As described above, according to the method of the present invention, it is possible to accurately detect the tension acting on the pipe material, and reduce the influence of the fluctuation of the pipe material tension caused by the removal of the front stand on the pipe material tension between the rear stands. By controlling the tension based on this pipe material tension value, the tension can be controlled with high accuracy over the entire length of the pipe material, the wall thickness can be made uniform, the pipe quality can be improved, and the yield can be increased. ,
The present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るタンデムミルの張力制御方法を実
施するための制御系を示すブロック図である。
FIG. 1 is a block diagram showing a control system for implementing a tension control method for a tandem mill according to the present invention.

【図2】圧延トルク演算装置、演算制御装置の演算処理
過程を示すフローチャートである。
FIG. 2 is a flowchart showing a calculation process of a rolling torque calculation device and a calculation control device.

【図3】本発明方法による張力(圧縮力)の制御結果を
示すグラフである。
FIG. 3 is a graph showing a control result of tension (compressive force) by the method of the present invention.

【図4】従来方法による張力(圧縮力)の制御結果を示
すグラフである。
FIG. 4 is a graph showing a control result of tension (compressive force) by a conventional method.

【符号の説明】[Explanation of symbols]

1 管材 2 マンドレルバー 4 荷重検出器 5 回転数検出器 6 モータ電流検出器 7 回転数調整器 8 圧延トルク演算装置 9 演算制御装置 1 Tubular Material 2 Mandrel Bar 4 Load Detector 5 Rotation Speed Detector 6 Motor Current Detector 7 Rotation Speed Adjuster 8 Rolling Torque Calculator 9 Calculation Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数のスタンド夫々のロールを駆動する
モータの回転数を制御することで管材に対する張力を制
御するタンデムミルの張力制御方法において、管材を噛
み込んでいる状態のスタンド夫々について、各スタンド
毎に検出又は算出した圧延荷重及び圧延トルクに基づい
て張力成分トルクを求め、この張力成分トルクに基づき
各スタンド毎に管材に作用する力の釣合式をたて、この
力の釣合式を最小2乗法にて解き、管材に作用する張力
を算出し、これを目標値と比較し、その偏差に対応して
各スタンドのロール回転数補正量を求める過程を含むこ
とを特徴とする管材用タンデムミルの張力制御方法。
1. A tension control method for a tandem mill, which controls the tension on a pipe material by controlling the rotational speed of a motor that drives a roll of each of the plurality of stands. The tension component torque is calculated based on the rolling load and rolling torque detected or calculated for each stand, and the balance formula of the force acting on the pipe material is established for each stand based on this tension component torque. The tandem for pipe material is characterized by including a process of solving by the square method to calculate the tension acting on the pipe material, comparing this with a target value, and obtaining the roll rotation speed correction amount of each stand corresponding to the deviation. Mill tension control method.
JP7113450A 1995-05-11 1995-05-11 Method for controlling tension in tandem mill for bar for tubing Pending JPH08309419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7113450A JPH08309419A (en) 1995-05-11 1995-05-11 Method for controlling tension in tandem mill for bar for tubing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7113450A JPH08309419A (en) 1995-05-11 1995-05-11 Method for controlling tension in tandem mill for bar for tubing

Publications (1)

Publication Number Publication Date
JPH08309419A true JPH08309419A (en) 1996-11-26

Family

ID=14612546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7113450A Pending JPH08309419A (en) 1995-05-11 1995-05-11 Method for controlling tension in tandem mill for bar for tubing

Country Status (1)

Country Link
JP (1) JPH08309419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222202A (en) * 2019-06-30 2021-01-15 宝山钢铁股份有限公司 Control method for tension switching of strip steel welding line over-leveling equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222202A (en) * 2019-06-30 2021-01-15 宝山钢铁股份有限公司 Control method for tension switching of strip steel welding line over-leveling equipment
CN112222202B (en) * 2019-06-30 2022-11-18 宝山钢铁股份有限公司 Control method for tension switching of strip steel welding line over-leveling equipment

Similar Documents

Publication Publication Date Title
JPS6016850B2 (en) Rolling speed uniform method for cold tandem mill
JPH08309419A (en) Method for controlling tension in tandem mill for bar for tubing
JP3129162B2 (en) Method and apparatus for controlling thickness of tandem rolling mill
JP3224052B2 (en) Thickness control method for continuous rolling mill
JP2541311B2 (en) A method for learning the starting point of the pipe end control of a reduction rolling mill
JPH09276915A (en) Dynamic setup method in continuous rolling mill
JP2002172406A (en) Method for correcting plate thickness by rolling mill
JPH07246414A (en) Method for controlling wall thickness in tube end part with stretch reducer
JP2800993B2 (en) How to change the strip thickness of continuous rolling mill
JP2004066263A (en) Method for rolling structual steel
JP2698884B2 (en) Pipe thickness control method with stretch reducer
JPH10180331A (en) Head part plate thickness control method in hot finishing tandem rolling mill
JPH05138251A (en) Method for controlling elongation percentage
JP2003211210A (en) Plate thickness control method for tandem rolling mill
JP2562011B2 (en) Shape control method for continuous rolling mill
JPH06335719A (en) Method for controlling speed for continuous rolling mill
JPH08252620A (en) Method for calculating elongation percentage
JP2692512B2 (en) Roll rotation speed control method for mandrel mill
JP2540666B2 (en) Hot rolled sheet thickness control method using inter-stand thickness gauge
JP2001018004A (en) Method for rolling tube stock with mandrel mill and mandrel mill
JPH0596315A (en) Controller for continuous rolling mill
JPH0558804B2 (en)
JP2555894B2 (en) Stretch reducer learning control method
JPS61262413A (en) Sheet temperature control device for rolling sheet material taking sheet thickness change
JPS6137311A (en) Method for controlling tension of mandrel mill