JPH08309224A - Powder accelerator - Google Patents
Powder acceleratorInfo
- Publication number
- JPH08309224A JPH08309224A JP14558195A JP14558195A JPH08309224A JP H08309224 A JPH08309224 A JP H08309224A JP 14558195 A JP14558195 A JP 14558195A JP 14558195 A JP14558195 A JP 14558195A JP H08309224 A JPH08309224 A JP H08309224A
- Authority
- JP
- Japan
- Prior art keywords
- accelerating
- acceleration
- accelerator
- passage forming
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Disintegrating Or Milling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ジェット噴流を用いて
粉体を加速する減圧部供給型の粉体加速器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder supply accelerator of a decompression unit for accelerating powder using a jet jet.
【0002】[0002]
【従来の技術】特開平4−48942号、特開平5−1
5801号、特開平5−15802号等に見られる粉体
加速器は、例えば、電子写真現像プロセスに用いられる
乾式トナーの製造に用いられるジェット式気流粉砕機に
組み込まれている。すなわち、ジェット式気流粉砕機
は、減圧部供給型粉体加速器によって被粉砕物を音速以
上の気流で加速して衝突壁面に衝突させることにより微
粉末状の粉体を得るものであり、トナー、プラスチック
(エポキシ、ポリエチレン、ポリエステル、PVC、ア
クリル、ポリエチレンワック、フェノール樹脂等)、セ
ラミックス(窒化珪素、アルミナ酸化マグネシウム、二
酸化ジルコニウム、炭化珪素、炭化ホウ酸、チタン酸バ
リウム等)、繊維物質、コークス、黒鉛、その他無機有
機一般材料等の物質を1〜50μm程度の粒径に粉砕す
ることができる。2. Description of the Related Art Japanese Patent Application Laid-Open Nos. 4-48942 and 5-1
The powder accelerator disclosed in JP-A-5801 and JP-A-5-15802 is incorporated in, for example, a jet airflow pulverizer used for producing a dry toner used in an electrophotographic development process. That is, the jet-type airflow crusher obtains a fine powdery powder by accelerating an object to be crushed with an airflow at a speed higher than the sonic velocity by a pressure reducing part supply type powder accelerator to collide with a collision wall surface, a toner, Plastics (epoxy, polyethylene, polyester, PVC, acrylic, polyethylene wack, phenolic resin, etc.), ceramics (silicon nitride, magnesium alumina oxide, zirconium dioxide, silicon carbide, boric acid, barium titanate, etc.), fiber materials, coke, Materials such as graphite and other inorganic organic general materials can be pulverized to a particle size of about 1 to 50 μm.
【0003】この種の減圧部供給型粉体加速器は、図7
に示すように、圧縮気体を供給するノズル本体1と、ノ
ズル本体1の出口2側に連結された加速管3とで構成さ
れ、ノズル本体1内の流体の速度は喉部4で音速に達
し、その圧力は半減する。そして、加速管3の中に流入
して膨張した流体は更に減圧して超音速となり加速管路
6の出口7に達する。加速管路6の途中には被加速物を
加速管路6の中に供給するための供給ポート8が連通し
ており、このポート8を通じて吸引された被加速物は、
加速管路6内の流体と一緒になって出口7に達する。This type of depressurization part feed type powder accelerator is shown in FIG.
As shown in FIG. 3, the nozzle body 1 for supplying the compressed gas and the acceleration tube 3 connected to the outlet 2 side of the nozzle body 1 are configured so that the velocity of the fluid in the nozzle body 1 reaches the speed of sound at the throat portion 4. , Its pressure is halved. Then, the fluid that has flowed into the accelerating tube 3 and expanded further decompresses to become supersonic, and reaches the outlet 7 of the accelerating conduit 6. A supply port 8 for supplying an object to be accelerated into the acceleration conduit 6 is connected to the middle of the acceleration conduit 6, and the object to be sucked through the port 8 is
It reaches the outlet 7 together with the fluid in the acceleration line 6.
【0004】[0004]
【発明が解決しようとする課題】従来の減圧部供給型粉
体加速器は、金属あるいはセラミックス等の硬質材料か
ら製造されており、その材質に基づく種々の制限、制約
が存在している。すなわち、金属製の減圧部供給型粉体
加速器の場合、セラミックス製のもの比べて、製作期
間、価格面で1/5ないし1/10程度であり、取扱いも比較
的容易で破損の心配も無いという利点を有している。ま
た、加工精度もよく、ノズル本体1と加速管3とを組付
け際にも内部通路間に段差が出にくいことからスムーズ
な流体の加速を行うことができるという利点を有してい
る。しかし、金属製加速器にあっては、被加速物の影響
で内部通路の壁面に摩耗が発生し易く、通常の金属材料
からなる加速器を、例えば微粉末を連続生産するのに用
いることは、摩耗により頻繁に交換する必要があること
から適さない。The conventional depressurization part feed type powder accelerator is manufactured from a hard material such as metal or ceramics, and there are various restrictions and constraints based on the material. In other words, in the case of a metal decompression part-supply type powder accelerator, it is about 1/5 to 1/10 in terms of production period and price compared to ceramics, and it is relatively easy to handle and there is no risk of damage. It has the advantage of In addition, the processing accuracy is good, and even when the nozzle body 1 and the accelerating tube 3 are assembled, there is an advantage that a smooth fluid can be accelerated because a step is unlikely to occur between the internal passages. However, in the case of a metal accelerator, wear tends to occur on the wall surface of the internal passage due to the effect of the object to be accelerated, and it is difficult to use an accelerator made of a normal metal material for continuously producing fine powder, for example. Not suitable because it needs to be replaced more often.
【0005】一方、セラミックス製の加速器にあって
は、耐摩耗性に優れるものの、価格的に高価であり、そ
の寿命も清掃等の作業に伴う破損によるのが殆どであ
る。また、製作精度のばらつきが大きく、加速管3の交
換に伴って流体および被加速物の加速状態も変動し易い
という欠点を有する。On the other hand, ceramic accelerators are excellent in wear resistance, but are expensive in price, and their lifespan is almost always due to breakage due to cleaning work. Further, there is a drawback that the manufacturing accuracy varies greatly, and the accelerating state of the fluid and the object to be accelerated tends to change as the accelerating tube 3 is replaced.
【0006】そこで、本発明の目的は、このような従来
の問題点を解決することのできる粉体加速器を提供する
ことにある。Therefore, an object of the present invention is to provide a powder accelerator which can solve the above-mentioned conventional problems.
【0007】[0007]
【課題を解決するための手段および作用】かかる目的を
達成すべく、本発明にあっては、圧縮気体供給ノズル
と、該圧縮気体供給ノズルに連結され且つ被加速物供給
ポートを有する加速管とからなる粉体加速器を前提とし
て、前記加速管が、加速管本体と、該加速管本体に対し
て着脱自在とされ且つ前記加速管の加速管路のうち前記
被加速物供給ポートから加速管路の出口に至る長さ寸法
を有する出口側通路形成部品とからなり、これら加速管
本体と出口側通路形成部品および前記圧縮気体供給ノズ
ルが金属材料からなる構成を採用してある。In order to achieve the above object, according to the present invention, a compressed gas supply nozzle and an accelerating pipe connected to the compressed gas supply nozzle and having an acceleration target supply port. On the premise of a powder accelerator consisting of the accelerating pipe, the accelerating pipe is detachable from the accelerating pipe main body, and the accelerating pipe from the accelerating substance supply port to the accelerating pipe of the accelerating pipe. The outlet side passage forming component having a length dimension reaching the outlet of the above, and the acceleration pipe body, the outlet side passage forming component, and the compressed gas supply nozzle are made of a metal material.
【0008】この構成によれば、加速管が金属製である
ため、掃除等の作業で破損することはなく、また製作精
度のばらつきも少ない。また、加速管路を形成する壁面
のうち、摩耗し易い部分である被加速物供給ポートから
加速管路出口に至るまでの部分が別体の部品で作られて
いるため、摩耗が生じたときには、出口側通路形成部品
のみを交換すれば足り、加速管全体を廃棄する必要はな
い。According to this structure, since the accelerating tube is made of metal, it will not be damaged by the work such as cleaning, and the manufacturing accuracy will not vary. Further, of the wall surface forming the acceleration pipe, the portion from the object supply port to be accelerated, which is a part that is easily worn, to the outlet of the acceleration pipe is made of a separate component, so when wear occurs It is sufficient to replace only the outlet side passage forming component, and it is not necessary to discard the entire acceleration tube.
【0009】上記出口側通路形成部品は、前記加速管路
の軸線方向に分割された複数の分割部品で構成されてい
てもよい。これによれば、交換部品の部分を一層限定す
ることができるため、交換部品代を軽減することができ
る。The outlet side passage forming component may be composed of a plurality of divided components which are divided in the axial direction of the acceleration conduit. According to this, since the part of the replacement part can be further limited, the cost of the replacement part can be reduced.
【0010】このような複数の分割部品の加速管路の部
分の拡径角度を夫々異なる角度に設定してもよい。これ
によれば、被加速物供給ポートから流入する被加速物等
の影響を考慮して各部品の拡径角度を設定することで被
加速物の増速を図ることが可能になる。The diametrical expansion angles of the accelerating conduits of the plurality of divided parts may be set to different angles. According to this, it is possible to increase the speed of the accelerated object by setting the diameter expansion angle of each component in consideration of the influence of the accelerated object flowing from the accelerated object supply port.
【0011】加速管路を、被加速物供給ポートから加速
管路の出口まで拡径角度零度のストレート通路で構成し
てもよい。これによれば、被加速物供給ポート付近で発
生し易い流体流れの乱れによる速度減少を最小限に抑え
ることが可能になる。The accelerating pipe line may be constituted by a straight passage having a diameter expansion angle of zero degrees from the object supply port to be accelerated to the outlet of the accelerating pipe line. According to this, it becomes possible to minimize the speed reduction due to the turbulence of the fluid flow that is likely to occur near the acceleration target supply port.
【0012】また、加速管を、加速管本体および出口側
通路形成部品に加えて、加速管本体に対して着脱自在と
され且つ加速管の加速管路のうち該加速管路の入口から
被加速物供給ポートに至る金属製の入口側通路形成部品
とで構成するようにしてもよい。これによれば、加速管
の加速管路の入口部分つまり喉部の径を自由に設定及び
変更することができるため、加速管路を通過する流体流
量を任意に設定することが可能になる。In addition to the accelerating tube main body and the outlet side passage forming component, the accelerating tube is detachable from the accelerating tube main body and is accelerated from an inlet of the accelerating tube of the accelerating tube. It may be configured with a metal inlet side passage forming component reaching the material supply port. According to this, the diameter of the entrance portion of the acceleration pipe, that is, the diameter of the throat portion of the acceleration pipe can be freely set and changed, so that the flow rate of the fluid passing through the acceleration pipe can be arbitrarily set.
【0013】このような出口側通路形成部品及び/又は
入口側通路形成部品を、加速管本体よりも高硬度の材料
で構成するようにしてもよい。これによれば、流体の通
過に伴って摩耗を生じ易い部分が高硬度の材質で構成さ
れることになり、耐摩耗性に優れたものにすることがで
き、したがって部品の交換頻度を低減することが可能に
なる。The outlet-side passage forming component and / or the inlet-side passage forming component may be made of a material having a hardness higher than that of the acceleration tube body. According to this, the portion that is likely to be worn by the passage of the fluid is made of a high hardness material, so that it can be made excellent in wear resistance, and therefore the frequency of replacement of parts is reduced. It will be possible.
【0014】[0014]
【実施例】以下に、本発明の実施例を添付の図面に基づ
いて説明する。図1は、第1実施例の減圧部供給型粉体
加速器100を示す。加速器100は、従来と同様に、
ノズル本体10と、ノズル本体10の喉部11の出口1
1a側に連結された加速管12とで構成され、加速管1
2には、その加速管路13の途中部分に通じる被加速物
供給ポート14が形成されている。加速管12は、加速
管本体15と、加速管路13の一部を構成する通路形成
部品16とで構成されている。通路形成部品16は、ポ
ート14から加速管路13の出口17に至る長さ寸法L
1を有し、本体15に対して着脱自在に嵌挿されてい
る。ノズル本体10と、通路形成部品16を含む加速管
12とは金属で作られている。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a depressurization part feed type powder accelerator 100 of the first embodiment. The accelerator 100 is similar to the conventional one,
Nozzle body 10 and outlet 1 of throat 11 of nozzle body 10
1a side is connected to the acceleration tube 12, and the acceleration tube 1
An accelerating object supply port 14 is formed at 2 in the middle of the accelerating pipeline 13. The accelerating tube 12 is composed of an accelerating tube body 15 and a passage forming component 16 that forms a part of the accelerating tube line 13. The passage forming component 16 has a length L from the port 14 to the outlet 17 of the acceleration pipeline 13.
1 and is detachably fitted into the main body 15. The nozzle body 10 and the accelerating tube 12 including the passage forming component 16 are made of metal.
【0015】したがって、ノズル本体10および加速管
12の加工精度を高い次元で保つことは容易であり、こ
のため両者10、12を組付けたときに、喉部11と加
速管路13との間に段差が生じないようにすることは比
較的容易である。また、使用により摩耗が生じ易い部分
つまり加速管12の加速管路13の壁面のうち被加速物
供給ポート14よりも下流部分が、本体15に対して着
脱自在とされた通路形成部品16で構成されているた
め、摩耗が生じたときには新たな通路形成部品16に交
換することができる。したがって、本体15を再利用す
ることができるために、消耗品として加速管12を全体
的に廃棄する必要はない。Therefore, it is easy to maintain the machining accuracy of the nozzle body 10 and the accelerating pipe 12 at a high level. Therefore, when the both 10 and 12 are assembled, the throat portion 11 and the accelerating pipe line 13 are separated from each other. It is relatively easy to prevent a step from occurring. Further, a portion where wear is likely to occur due to use, that is, a portion of the wall surface of the accelerating pipe line 13 of the accelerating pipe 12 which is downstream of the accelerating substance supply port 14 is constituted by the passage forming component 16 which is detachable from the main body 15. Therefore, when wear occurs, the passage forming component 16 can be replaced with a new one. Therefore, since the main body 15 can be reused, it is not necessary to totally dispose of the acceleration tube 12 as a consumable item.
【0016】図2ないし図5は本発明の他の実施例を示
すものであり、上記第1実施例と同様の要素には同一の
参照符号を付すことより、その詳細な説明は省略する。
図2は第2実施例の減圧部供給型粉体加速器200を示
す。加速器200にあっては、第1実施例の加速器10
0と同様に、加速管12が本体15と通路形成部品16
とで構成されている。加速器200に含まれる通路形成
部品16は、管路13の軸線に沿って分割された複数の
分割部品で構成されている。より具体的には、通路形成
部品16は、その一例として、共に金属で作られた第1
分割部品21と、第2分割部品22と、第3分割部品2
3とからなり、これら第1ないし第3分割部品21〜2
3は管路13の軸線方向に並んで配置され、また、その
全てが本体15に対して着脱自在に構成されている。こ
れにより、摩耗が進行した部品だけを交換することがで
きるため、第1実施例の加速器100の場合よりも更に
消耗部品に要する費用を削減することができる。管路形
成部品16は、上述したように第1ないし第3部品21
〜23というように3つの部品で構成してもよいが、4
つ以上の部品で構成してよいことは言うまでもない。2 to 5 show another embodiment of the present invention, in which the same elements as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
FIG. 2 shows a powder supply accelerator 200 of the pressure reducing section supply type according to the second embodiment. In the accelerator 200, the accelerator 10 of the first embodiment is used.
Like 0, the accelerating tube 12 has a body 15 and a passage forming component 16
It consists of and. The passage forming component 16 included in the accelerator 200 is composed of a plurality of divided components divided along the axis of the conduit 13. More specifically, the passage forming component 16 includes, as an example thereof, a first member made of metal together.
Split component 21, second split component 22, and third split component 2
3 and these first to third divided parts 21 to 2
3 are arranged side by side in the axial direction of the conduit 13, and all of them are configured to be detachable from the main body 15. As a result, only the worn parts can be replaced, so that the cost required for the consumable parts can be further reduced as compared with the accelerator 100 of the first embodiment. The pipe line forming component 16 includes the first to third components 21 as described above.
It may be composed of three parts such as ~ 23, but 4
It goes without saying that it may be composed of three or more parts.
【0017】図3は第3実施例の減圧部供給型粉体加速
器300を示す。この第3実施例は、上述した第2実施
例の変形例でもある。すなわち、加速器300にあって
は、この加速器300に含まれる通路形成部品16が、
管路13の軸線に沿って並置された3つの金属製分割部
品31〜33で構成され、分割部品31〜33は本体1
5に対して着脱自在に構成されている。管路13を形成
する第1分割部品31の内壁面の角度はθ1に設定さ
れ、第2分割部品32の内壁面の角度はθ2に設定さ
れ、第3分割部品33の内壁面の角度はθ3に設定され
ている。これら角度θ1ないしθ3の具体的な角度は、例
えばポート14から管路13に供給される被加速物の増
速を図ることのできる角度に設定すればよい。FIG. 3 shows a powder accelerator 300 of the pressure reducing section supply type according to the third embodiment. The third embodiment is also a modification of the second embodiment described above. That is, in the accelerator 300, the passage forming component 16 included in the accelerator 300 is
It is composed of three metallic divided parts 31 to 33 arranged side by side along the axis of the pipe line 13, and the divided parts 31 to 33 are the main body 1
It is configured to be attachable / detachable to / from 5. The angle of the inner wall surface of the first divided part 31 forming the conduit 13 is set to θ1, the angle of the inner wall surface of the second divided part 32 is set to θ2, and the angle of the inner wall surface of the third divided part 33 is set to θ3. Is set to. Specific angles of these angles θ1 to θ3 may be set, for example, to an angle that can accelerate the object to be accelerated supplied from the port 14 to the conduit 13.
【0018】図4は第4実施例の減圧部供給型粉体加速
器400を示す。加速器400にあっては、加速管12
が本体40と入口側通路形成部品41と出口側通路形成
部品42とで構成されている。入口側通路形成部品41
は加速管路13の入口からポート14に至る長さ寸法L
2を有し、出口側通路形成部品42は被加速物供給ポー
ト14から加速管路13の出口17に至る長さ寸法L1
を有している。これら通路形成部品41、42は本体4
0に対して着脱自在に嵌挿され、通路形成部品41、4
2を含む加速管12は金属で作られている。本実施例に
よれば、入口側通路形成部品41内の通路径を自由に変
更できることから、減圧部供給型粉体加速器400を通
過する流体流量を任意に設定することが可能になる。FIG. 4 shows a pressure reducing part feed type powder accelerator 400 of a fourth embodiment. In the accelerator 400, the acceleration tube 12
Is composed of a main body 40, an inlet side passage forming component 41, and an outlet side passage forming component 42. Inlet side passage forming part 41
Is the length L from the inlet of the acceleration pipeline 13 to the port 14.
2, the outlet-side passage forming component 42 has a length dimension L1 from the acceleration target supply port 14 to the outlet 17 of the acceleration pipeline 13.
have. These passage forming parts 41, 42 are formed in the main body 4
0 is detachably fitted into the passage forming parts 41, 4
The accelerating tube 12 containing 2 is made of metal. According to the present embodiment, since the passage diameter inside the inlet-side passage forming component 41 can be freely changed, it becomes possible to arbitrarily set the flow rate of the fluid passing through the depressurization unit feed type powder accelerator 400.
【0019】図5は第5実施例の減圧部供給型粉体加速
器500を示す。この実施例は、上述した第2実施例、
第3実施例の変形例に相当するものであり、通路形成部
品16を構成する3つの金属部品51〜53の内壁面の
拡径角度θ1、θ2、θ3が全て零度に設定され、これに
より加速管路13のうち、被加速物供給ポート14から
出口17に至る部分L1の通路形状が軸線方向に同一径
のストレート通路となるように構成されている。この第
5実施例によれば、ポート14付近から発生する流体流
れの乱れによる速度減少を最小限に抑えることができ
る。FIG. 5 shows a depressurization part feed type powder accelerator 500 of the fifth embodiment. This embodiment corresponds to the second embodiment described above,
This is equivalent to a modification of the third embodiment, and the diametrical expansion angles θ1, θ2, θ3 of the inner wall surfaces of the three metal parts 51 to 53 constituting the passage forming part 16 are all set to zero degrees, and thereby acceleration is achieved. In the pipe line 13, the passage shape of the portion L1 from the accelerated substance supply port 14 to the outlet 17 is configured to be a straight passage having the same diameter in the axial direction. According to the fifth embodiment, it is possible to minimize the speed decrease due to the turbulence of the fluid flow generated near the port 14.
【0020】以上、本発明の各実施例を説明したが、通
路形成部品16、42および金属製分割部品21〜2
2、31〜33の全て或いは一部を本体15あるいは入
口側通路形成部品41よりも高硬度の材質で構成しても
よい。これによれば、消耗部品の交換頻度を減少するこ
とができる。Although the respective embodiments of the present invention have been described above, the passage forming parts 16 and 42 and the metallic split parts 21 and 2 are described.
All or part of 2, 31 to 33 may be made of a material having a hardness higher than that of the main body 15 or the inlet side passage forming component 41. According to this, the frequency of exchanging consumable parts can be reduced.
【0021】上述した加速器100、200、300、
400、500を評価するために、これら加速器を図6
に示すジェット式気流粉砕機60に組み込んで試験し
た。ジェット式気流粉砕機60は粉砕室61を有し、こ
の粉砕室61内に上述した減圧部供給型粉体加速器10
0等を設置した。加速器100等で増速された被加速物
62は、加速器100等の前方に設置された衝突板63
に衝突して粉砕され、この結果生成した粉砕物64のう
ち一定粒径以下のものは分級機65によって排出した。
一方、分級機65から排出されなかった大粒径のもの
は、戻り管66を通って被加速物供給ポート14に流入
する被加速物62と合流させて再度ポート14を通って
粉砕室61で粉砕した。分級機65からの排出粒子67
の径を所定の粒径に保つために、加速管100等内にど
れだけ多くの被加速物62を供給できるかで加速管10
0等の増速能力を判定した。The above-mentioned accelerators 100, 200, 300,
These accelerators are shown in FIG. 6 to evaluate 400,500.
The test was carried out by incorporating it in the jet airflow crusher 60 shown in. The jet-type airflow crusher 60 has a crushing chamber 61, and in the crushing chamber 61, the depressurization unit feed type powder accelerator 10 described above is provided.
0 was set. The accelerated object 62 accelerated by the accelerator 100 or the like is a collision plate 63 installed in front of the accelerator 100 or the like.
The crushed material 64 collided with and was crushed, and the crushed material 64 generated as a result was discharged by the classifier 65 if it had a particle diameter of a predetermined value or less.
On the other hand, those having a large particle size that has not been discharged from the classifier 65 are merged with the accelerated substance 62 flowing into the accelerated substance supply port 14 through the return pipe 66 and then passed through the port 14 again in the crushing chamber 61. Crushed. Particles 67 discharged from the classifier 65
In order to maintain the diameter of the accelerating tube to a predetermined particle diameter, the accelerating tube 10 is determined by how many objects 62 to be accelerated can be supplied into the accelerating tube 100 or the like.
The speed increasing ability of 0 etc. was judged.
【0022】被加速物62として、ポリエステル樹脂1
00重量部、フタロシアニン系顔料8重量部からなる組
成のトナー顔料を使用した。このトナー顔料をミキサー
を用いて混合して混合物を得た。この混合物をエクルト
ルーダーを用いて約200℃で溶融混練した後、冷却し
て固化し、溶融混練物の冷却物をハンマーミルで200
〜2000μmの粒子に粗粉砕し、この粗粉砕物を被加
速物62とした。分級機65として固定壁式風力分級機
を使用した。As the object 62 to be accelerated, the polyester resin 1
A toner pigment having a composition of 00 parts by weight and 8 parts by weight of a phthalocyanine-based pigment was used. This toner pigment was mixed using a mixer to obtain a mixture. This mixture was melt-kneaded at about 200 ° C. using an ecrutruder, then cooled and solidified, and the cooled mixture of the melt-kneaded product was heated to 200 with a hammer mill.
Particles of ˜2000 μm were roughly pulverized, and this coarsely pulverized material was used as an accelerated object 62. A fixed wall type wind power classifier was used as the classifier 65.
【0023】第1実施例の加速器100の評価試験 ノズル本体10から圧力0.588MPaの圧縮空気を導入し
た。また、被加速物供給ポート14から被加速物62を
50Kg/Hrの割合で供給した。得られた粉砕物64のうち
細粉は分級機65で分級粉体として取り除き、粗粉は、
再度、ポート14から粉体原料と共に被加速物62とし
て加速器100に投入した。その結果、体積平均粒径は
9μmであった。ここに、連続運転は6カ月行った。加
速器100の加速管本体15および通路形成部品16は
SUS304で作った。加速管路13の拡径角度θは6度
であった。加工精度はプラスマイナス0.05であり、通路
形成部品16の交換頻度は1カ月であり、交換の原因は
内部摩耗であった。Evaluation test of the accelerator 100 of the first embodiment Compressed air having a pressure of 0.588 MPa was introduced from the nozzle body 10. Further, the acceleration target 62 is fed from the acceleration target supply port 14.
It was supplied at a rate of 50 Kg / Hr. Fine powder in the obtained pulverized product 64 is removed as a classified powder by a classifier 65, and coarse powder is
Again, the powder raw material was charged into the accelerator 100 from the port 14 as the substance 62 to be accelerated. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The accelerator tube body 15 and the passage forming component 16 of the accelerator 100 are made of SUS304. The diameter expansion angle θ of the acceleration conduit 13 was 6 degrees. The processing accuracy was plus or minus 0.05, the passage forming component 16 was replaced every month, and the cause of the replacement was internal wear.
【0024】第2実施例の加速器200の評価試験 ノズル本体10から圧力0.588MPaの圧縮空気を導入し
た。また、被加速物供給ポート14から被加速物62を
50Kg/Hrの割合で供給した。得られた粉砕物64のうち
細粉は分級機65で分級粉体として取り除き、粗粉は、
再度、ポート14から粉体原料と共に被加速物62とし
て加速器200に投入した。その結果、体積平均粒径は
9μmであった。ここに、連続運転は6カ月行った。加
速器200の加速管本体15および通路形成部品16は
SUS304で作った。加速管路13の拡径角度θは6度
であった。加工精度はプラスマイナス0.05であり、通路
形成部品16のうち第1分割部品21だけを交換した。
交換頻度は1カ月であり、交換の原因は内部摩耗であっ
た。Evaluation test of accelerator 200 of the second embodiment Compressed air having a pressure of 0.588 MPa was introduced from the nozzle body 10. Further, the acceleration target 62 is fed from the acceleration target supply port 14.
It was supplied at a rate of 50 Kg / Hr. Fine powder in the obtained pulverized product 64 is removed as a classified powder by a classifier 65, and coarse powder is
Again, the powder raw material was charged into the accelerator 200 from the port 14 as the substance 62 to be accelerated. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The accelerator tube body 15 and the passage forming component 16 of the accelerator 200 are made of SUS304. The diameter expansion angle θ of the acceleration conduit 13 was 6 degrees. The processing accuracy is plus or minus 0.05, and only the first divided part 21 of the passage forming part 16 was replaced.
The replacement frequency was one month, and the cause of the replacement was internal wear.
【0025】第3実施例の加速器300の評価試験 ノズル本体10から圧力0.588MPaの圧縮空気を導入し
た。また、被加速物供給ポート14から被加速物62を
60Kg/Hrの割合で供給した。得られた粉砕物64のうち
細粉は分級機65で分級粉体として取り除き、粗粉は、
再度、ポート14から粉体原料と共に被加速物62とし
て加速器300に投入した。その結果、体積平均粒径は
9μmであった。ここに、連続運転は6カ月行った。加
速器300の加速管本体15および通路形成部品16は
SUS304で作った。通路形成部品16のうち第1分割
部品31の拡径角度θ1=7度、部品32の拡径角度θ2
=6度、部品33の拡径角度θ3=5度であり、加工精
度はプラスマイナス0.05であり、通路形成部品16のう
ち部品31だけを交換した。交換頻度は1カ月であり、
交換の原因は内部摩耗であった。Evaluation test of the accelerator 300 of the third embodiment Compressed air having a pressure of 0.588 MPa was introduced from the nozzle body 10. Further, the acceleration target 62 is fed from the acceleration target supply port 14.
It was supplied at a rate of 60 kg / hr. Fine powder in the obtained pulverized product 64 is removed as a classified powder by a classifier 65, and coarse powder is
Again, the powder material was charged into the accelerator 300 from the port 14 as the substance 62 to be accelerated. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The accelerator tube body 15 and the passage forming component 16 of the accelerator 300 are made of SUS304. The diameter expansion angle θ1 of the first divided part 31 of the passage forming part 16 = 7 degrees, and the diameter expansion angle θ2 of the part 32.
= 6 degrees, the diameter expansion angle θ3 of the part 33 = 5 degrees, the processing accuracy is plus or minus 0.05, and only the part 31 of the passage forming part 16 was replaced. The replacement frequency is one month,
The cause of replacement was internal wear.
【0026】第4実施例の加速器300かつ400の評
価試験 加速器300かつ400の通路形成部品16を軸線方向
に並置した4つの部品で構成した。通路形成部品16の
うち、ポート14側から順に、第1分割部品の拡径角度
をθ1=7度、第2分割部品の拡径角度をθ2=6度、第
3分割部品の拡径角度をθ3=5度、第4分割部品41
の拡径角度をθ4=8度に設定し、加工精度はプラスマ
イナス0.05であった。そして、ノズル本体10から圧力
0.588MPaの圧縮空気を導入した。また、被加速物供給ポ
ート14から被加速物62を65Kg/Hrの割合で供給し
た。得られた粉砕物64のうち細粉は分級機65で分級
粉体として取り除き、粗粉は、再度、ポート14から粉
体原料と共に被加速物62として当該加速器に投入し
た。その結果、体積平均粒径は9μmであった。ここ
に、連続運転は6カ月行った。当該加速器の加速管本体
15、前側通路形成部品41および通路形成部品16は
共にSUS304で作った。通路形成部品16のうち第1
部品だけを交換した。交換頻度は1カ月であり、交換の
原因は内部摩耗であった。Evaluation test of the accelerators 300 and 400 of the fourth embodiment The passage forming component 16 of the accelerators 300 and 400 was composed of four components arranged side by side in the axial direction. In the passage forming component 16, the diametrical expansion angle of the first divisional component is θ1 = 7 degrees, the diametrical expansion angle of the second divisional component is θ2 = 6 degrees, and the diametrical expansion angle of the third divisional component is in order from the port 14 side. θ3 = 5 degrees, fourth split part 41
The expansion angle was set to θ4 = 8 degrees, and the processing accuracy was plus or minus 0.05. And the pressure from the nozzle body 10
Compressed air of 0.588 MPa was introduced. Further, the acceleration target 62 was supplied from the acceleration target supply port 14 at a rate of 65 kg / hr. The fine powder of the obtained pulverized product 64 was removed as a classified powder by a classifier 65, and the coarse powder was again charged into the accelerator from the port 14 together with the powder raw material as an accelerated product 62. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The accelerator tube body 15, the front passage forming component 41, and the passage forming component 16 of the accelerator are all made of SUS304. First of the passage forming components 16
I replaced only the parts. The replacement frequency was one month, and the cause of the replacement was internal wear.
【0027】第5実施例の加速器300かつ400の評
価試験 加速器300かつ400の通路形成部品16のうちポー
ト14側から順に、分割部品31をTiCで作り、分割
部品32、分割部品33を共にSUS304で作った。ま
た、加速管本体15をSUS304で作った。部品31の
加工精度はプラスマイナス0.1であり、部品32等の加
工精度はプラスマイナス0.05であった。そして、ノズル
本体10から圧力0.588MPaの圧縮空気を導入した。ま
た、被加速物供給ポート14から被加速物62を65Kg/H
rの割合で供給した。得られた粉砕物64のうち細粉は
分級機65で分級粉体として取り除き、粗粉は、再度、
ポート14から粉体原料と共に被加速物62として当該
加速器に投入した。その結果、体積平均粒径は9μmで
あった。ここに、連続運転は6カ月行った。部品の内部
摩耗が発生しなかったため、部品の交換は行わなかっ
た。Evaluation test of the accelerators 300 and 400 of the fifth embodiment Of the passage forming parts 16 of the accelerators 300 and 400, the divided parts 31 are made of TiC in this order from the port 14 side, and the divided parts 32 and 33 are both SUS304. Made in. Further, the acceleration tube body 15 is made of SUS304. The processing accuracy of the parts 31 was plus or minus 0.1, and the processing accuracy of the parts 32 or the like was plus or minus 0.05. Then, compressed air having a pressure of 0.588 MPa was introduced from the nozzle body 10. In addition, the acceleration target 62 is 65 kg / H from the acceleration target supply port 14.
Supplied at a rate of r. Fine powder of the obtained pulverized product 64 is removed as a classified powder by a classifier 65, and coarse powder is
From the port 14, the powder raw material was charged into the accelerator as an object to be accelerated 62. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The parts were not replaced because internal wear of the parts did not occur.
【0028】第6実施例の加速器500の評価試験 ノズル本体10から圧力0.588MPaの圧縮空気を導入し
た。また、被加速物供給ポート14から被加速物62を
70Kg/Hrの割合で供給した。得られた粉砕物64のうち
細粉は分級機65で分級粉体として取り除き、粗粉は、
再度、ポート14から粉体原料と共に被加速物62とし
て加速器500に投入した。その結果、体積平均粒径は
9μmであった。ここに、連続運転は6カ月行った。加
速器500の加速管本体15および通路形成部品16は
SUS304で作った。加工精度はプラスマイナス0.05で
あり、通路形成部品16のうち部品51だけを交換し
た。交換頻度は1カ月であり、交換の原因は内部摩耗で
あった。Evaluation test of the accelerator 500 of the sixth embodiment Compressed air having a pressure of 0.588 MPa was introduced from the nozzle body 10. Further, the acceleration target 62 is fed from the acceleration target supply port 14.
It was supplied at a rate of 70 kg / hr. Fine powder in the obtained pulverized product 64 is removed as a classified powder by a classifier 65, and coarse powder is
Again, the powder material was charged into the accelerator 500 from the port 14 as the substance 62 to be accelerated. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The accelerator tube body 15 and the passage forming component 16 of the accelerator 500 are made of SUS304. The processing accuracy was plus or minus 0.05, and only the part 51 of the passage forming part 16 was replaced. The replacement frequency was one month, and the cause of the replacement was internal wear.
【0029】比較例としての従来の加速器の評価試験 図6の粉砕機60に従来のSiC製加速器(図7)を組
み込んで試験した。ノズル本体14から圧力0.588MPaの
圧縮空気を導入した。また、被加速物供給ポート14か
ら被加速物62を45Kg/Hrの割合で供給した。得られた
粉砕物64のうち細粉は分級機65で分級粉体として取
り除き、粗粉は、再度、ポート14から粉体原料と共に
被加速物62として加速器に投入した。その結果、体積
平均粒径は9μmであった。ここに、連続運転は6カ月
行った。加速管路6の拡径角度θは6度であり、加工精
度はプラスマイナス0.5であった。交換頻度は6カ月で
あり、交換の原因は掃除作業での破損であった。Evaluation Test of Conventional Accelerator as Comparative Example A test was performed by incorporating a conventional SiC accelerator (FIG. 7) into the crusher 60 of FIG. Compressed air having a pressure of 0.588 MPa was introduced from the nozzle body 14. Further, the acceleration target 62 was supplied from the acceleration target supply port 14 at a rate of 45 Kg / Hr. The fine powder of the obtained pulverized product 64 was removed as a classified powder by a classifier 65, and the coarse powder was again charged into the accelerator as a substance to be accelerated 62 from the port 14 together with the powder raw material. As a result, the volume average particle diameter was 9 μm. Continuous operation was performed here for 6 months. The diametrical expansion angle θ of the acceleration conduit 6 was 6 degrees, and the processing accuracy was plus or minus 0.5. The replacement frequency was 6 months, and the cause of the replacement was damage during cleaning work.
【0030】[0030]
【発明の効果】以上の説明から明らかなように、本発明
によれば、製作精度に優れた金属製であるため圧縮気体
供給ノズルと加速管との間の流体流路の繋ぎ目に段差が
なく、また、加速管内の加速流路を形成する壁面の摩耗
に対して加速管全体を廃棄する必要がないので消耗品費
用を削減することができる。As is apparent from the above description, according to the present invention, since it is made of metal with excellent manufacturing accuracy, a step is formed at the connection of the fluid flow path between the compressed gas supply nozzle and the acceleration tube. Moreover, since it is not necessary to discard the entire acceleration tube due to wear of the wall surface forming the acceleration flow path in the acceleration tube, it is possible to reduce the cost of consumables.
【図1】第1実施例の粉体加速器の断面図である。FIG. 1 is a sectional view of a powder accelerator according to a first embodiment.
【図2】第2実施例の粉体加速器の断面図である。FIG. 2 is a sectional view of a powder accelerator according to a second embodiment.
【図3】第3実施例の粉体加速器の断面図である。FIG. 3 is a sectional view of a powder accelerator according to a third embodiment.
【図4】第4実施例の粉体加速器の断面図である。FIG. 4 is a sectional view of a powder accelerator according to a fourth embodiment.
【図5】第5実施例の粉体加速器の断面図である。FIG. 5 is a sectional view of a powder accelerator according to a fifth embodiment.
【図6】比較試験のために用いたジェット式気流粉砕機
の全体系統図である。FIG. 6 is an overall system diagram of a jet airflow crusher used for a comparative test.
【図7】従来の粉体加速器の断面図である。FIG. 7 is a sectional view of a conventional powder accelerator.
100 第1実施例の粉体加速器 200 第2実施例の粉体加速器 300 第3実施例の粉体加速器 400 第4実施例の粉体加速器 500 第5実施例の粉体加速器 10 ノズル本体 12 加速管 13 加速管路 14 被加速物供給ポート 16 出口側通路形成部品 41 入口側通路形成部品 100 Powder Accelerator of 1st Example 200 Powder Accelerator of 2nd Example 300 Powder Accelerator of 3rd Example 400 Powder Accelerator of 4th Example 500 Powder Accelerator of 5th Example 10 Nozzle body 12 Acceleration Pipe 13 Accelerating Pipeline 14 Accelerated Object Supply Port 16 Exit Side Passage Forming Part 41 Inlet Side Passage Forming Part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 啓子 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 岡野 覚 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiko Watanabe 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Co., Ltd. (72) Satoru Okano 1-3-6 Nakamagome, Ota-ku, Tokyo Shares Company Ricoh
Claims (6)
ノズルに連結され且つ被加速物供給ポートを有する加速
管とからなる粉体加速器において、 前記加速管が、加速管本体と、該加速管本体に対して着
脱自在とされ且つ前記加速管の加速管路のうち前記被加
速物供給ポートから加速管路の出口に至る長さ寸法を有
する出口側通路形成部品とからなり、これら加速管本体
と出口側通路形成部品および前記圧縮気体供給ノズルが
金属材料からなることを特徴とする粉体加速器。1. A powder accelerator comprising a compressed gas supply nozzle and an accelerating pipe connected to the compressed gas supply nozzle and having an accelerating substance supply port, wherein the accelerating pipe is an accelerating pipe body and the accelerating pipe. And an outlet side passage forming part which is detachable from the main body and has a length dimension from the acceleration target supply port to the outlet of the acceleration pipe of the acceleration pipe of the acceleration pipe. A powder accelerator, wherein the outlet side passage forming component and the compressed gas supply nozzle are made of a metal material.
路の軸線方向に分割された複数の分割部品からなること
を特徴とする請求項1に記載の粉体加速器。2. The powder accelerator according to claim 1, wherein the outlet-side passage forming component is composed of a plurality of divided components that are divided in the axial direction of the acceleration conduit.
分の拡径角度が夫々異なる角度に設定されていることを
特徴とする請求項2に記載の粉体加速器。3. The powder accelerator according to claim 2, wherein the diameter expansion angles of the portions of the acceleration pipes of the plurality of divided parts are set to different angles.
トから加速管路の出口まで拡径角度零度のストレート通
路で構成されていることを特徴とする請求項1ないし請
求項3のいずれか一項に記載の粉体加速器。4. The accelerating pipe line is constituted by a straight passage having a diameter expansion angle of zero degrees from the accelerating object supply port to the outlet of the accelerating pipe line. The powder accelerator according to item 1.
対して着脱自在とされ且つ前記加速管の加速管路のうち
該加速管路の入口から前記被加速物供給ポートに至る金
属製の入口側通路形成部品を有することを特徴とする請
求項1ないし請求項4のいずれか一項に記載の粉体加速
器。5. The accelerating tube is further made detachable from the accelerating tube main body and is made of a metal that extends from an inlet of the accelerating tube of the accelerating tube to the accelerating object supply port. The powder accelerator according to any one of claims 1 to 4, further comprising:
入口側通路形成部品が、前記加速管本体よりも高硬度の
材料からなることを特徴とする請求項5に記載の粉体加
速器。6. The powder accelerator according to claim 5, wherein the outlet-side passage forming component and / or the inlet-side passage forming component is made of a material having a hardness higher than that of the acceleration tube main body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14558195A JPH08309224A (en) | 1995-05-19 | 1995-05-19 | Powder accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14558195A JPH08309224A (en) | 1995-05-19 | 1995-05-19 | Powder accelerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08309224A true JPH08309224A (en) | 1996-11-26 |
Family
ID=15388407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14558195A Pending JPH08309224A (en) | 1995-05-19 | 1995-05-19 | Powder accelerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08309224A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223858A (en) * | 2012-03-21 | 2013-10-31 | Ricoh Co Ltd | Method and apparatus for manufacturing toner |
-
1995
- 1995-05-19 JP JP14558195A patent/JPH08309224A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223858A (en) * | 2012-03-21 | 2013-10-31 | Ricoh Co Ltd | Method and apparatus for manufacturing toner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4248387A (en) | Method and apparatus for comminuting material in a re-entrant circulating stream mill | |
US5133504A (en) | Throughput efficiency enhancement of fluidized bed jet mill | |
US6951312B2 (en) | Particle entraining eductor-spike nozzle device for a fluidized bed jet mill | |
AU4886799A (en) | Jet mill | |
US6942170B2 (en) | Plural odd number bell-like openings nozzle device for a fluidized bed jet mill | |
US7398934B1 (en) | Deep-chamber, stepped, fluid-energy mill | |
JP2000042441A (en) | Jet mill | |
KR910004253A (en) | Impingement air pulverizer and pulverization method | |
US4875629A (en) | Particle pulverizer injection nozzle | |
JP2017176956A (en) | Magnetic high-hardness metal particle crushing device | |
JPH08309224A (en) | Powder accelerator | |
US4807815A (en) | Air-jet mill and associated pregrinding apparatus for comminuating solid materials | |
US7422167B2 (en) | Fluid-energy mill | |
JP5790042B2 (en) | Crusher and cylindrical adapter | |
JP5778934B2 (en) | Crusher | |
JPH01254266A (en) | Impact type air crusher and crushing method | |
JP3984120B2 (en) | Fluidized bed type pulverization and classification device | |
US5547135A (en) | Micromilling apparatus | |
JPS6372361A (en) | Jet air flow type crusher | |
US20140070035A1 (en) | Toner producing apparatus and toner producing method | |
JPH02152559A (en) | Pulverizing and coating device | |
CN104941762B (en) | Large high-temperature-resistant double-ejection type ceramic airflow pulverizer | |
JP2704777B2 (en) | Collision type air flow crusher and crushing method | |
JP2003047880A (en) | Pulverization nozzle, auxiliary pulverization nozzle, and jet mill provided with them | |
JPH08206536A (en) | Pulverizer |