JPH08308290A - Linkage inverter - Google Patents

Linkage inverter

Info

Publication number
JPH08308290A
JPH08308290A JP7106428A JP10642895A JPH08308290A JP H08308290 A JPH08308290 A JP H08308290A JP 7106428 A JP7106428 A JP 7106428A JP 10642895 A JP10642895 A JP 10642895A JP H08308290 A JPH08308290 A JP H08308290A
Authority
JP
Japan
Prior art keywords
output
load
circuit
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7106428A
Other languages
Japanese (ja)
Inventor
Chuichi Aoki
忠一 青木
Kunitoshi Tazume
國利 田爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7106428A priority Critical patent/JPH08308290A/en
Publication of JPH08308290A publication Critical patent/JPH08308290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE: To provide a linkage inverter which can always operate a system having an engine generator, a DC power source, and the linkage inverter in the maximum efficiency. CONSTITUTION: The linkage inverter comprises a fuel detector 21 for detecting the fuel consumption amount of an engine generator 6, a DC power source output detector 22 for detecting the output power of a DC power source 8, a load power detector 23 for detecting the power consumption of a load 7, and am efficiency calculator 24 for calculating the system efficiency from the outputs of these three detectors 21 to 23, wherein the shared amounts of the basic wave and the harmonic wave of the generator 6 and the inverter A can be varied according to the system efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エンジン発電機と直
流電源を連系するインバータ装置に関し、エンジン発電
機のエネルギーおよび直流電源のエネルギーの有効利用
を図った連系インバータ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter device for interconnecting an engine generator and a DC power source, and more particularly to an interconnected inverter device for effectively utilizing the energy of the engine generator and the energy of the DC power source.

【0002】[0002]

【従来の技術】従来からあるこの種のシステムを図4に
示す。図中、Cは従来の連系インバータ装置、1はイン
バータ、2はPWM回路、3は電圧同期信号発生回路、
4は電圧同期発振器、5は乗算器、6はエンジン発電
機、7は交流負荷、8は直流電源、9は加算器、10は
乗算器、11は減算器、12は電流同期発振器、13は
帯域通過フィルタである。
2. Description of the Related Art A conventional system of this type is shown in FIG. In the figure, C is a conventional interconnection inverter device, 1 is an inverter, 2 is a PWM circuit, 3 is a voltage synchronization signal generation circuit,
4 is a voltage synchronous oscillator, 5 is a multiplier, 6 is an engine generator, 7 is an AC load, 8 is a DC power supply, 9 is an adder, 10 is a multiplier, 11 is a subtractor, 12 is a current synchronous oscillator, and 13 is It is a bandpass filter.

【0003】従来の連系インバータ装置Cの動作を、図
面を参照しながら以下に説明する。電流同期発振器12
中の帯域通過フィルタ13は、負荷電流Iloadを検出
し、負荷電流Iloadの基本波成分のみからなる負荷電流
基本波信号IIfを出力する。負荷電流基本波信号I
Ifは、負荷電流Iloadと減算器11で比較減算され、負
荷電流高調波信号IIhが得られる。負荷電流高調波信号
Ihは、予め設定された高調波分担率Khと乗算器10
で乗算されて、高調波補償信号IChを得る。
The operation of the conventional interconnection inverter device C will be described below with reference to the drawings. Current synchronous oscillator 12
Bandpass filter 13 in detects the load current I load, and outputs a load current fundamental signal I the If consisting of only the fundamental wave component of the load current I load. Load current fundamental wave signal I
If is compared and subtracted with the load current I load by the subtractor 11, and the load current harmonic signal I Ih is obtained. The load current harmonic signal I Ih is calculated by multiplying the preset harmonic sharing ratio Kh and the multiplier 10
To obtain the harmonic compensation signal I Ch .

【0004】電圧同期信号発生回路3中の電圧同期発振
器4は、エンジン発電機6の出力電圧VENG を検出し、
基本波成分と周波数及び位相の等しい振幅の正弦波形の
基準正弦波SINを発生する。基準正弦波SINは予め
設定された振幅指令値Kpと乗算器5で乗算され、イン
バータ出力の基本波成分の電流指令値Ir を得る。電流
指令値Ir は、高調波補償信号IChと加算器9で加算さ
れて、電流指令信号ICrを得る。PWM回路2は、電流
指令信号ICrと極性が等しく、電流指令信号ICrの絶対
値に比例するパルス幅を有するスイッチ駆動信号PWM
を発生する。
The voltage synchronous oscillator 4 in the voltage synchronous signal generating circuit 3 detects the output voltage V ENG of the engine generator 6,
A reference sinusoidal wave SIN having a sinusoidal waveform having the same frequency and phase as the fundamental wave component is generated. The reference sine wave SIN is multiplied by a preset amplitude command value Kp in the multiplier 5 to obtain a current command value I r of the fundamental wave component of the inverter output. The current command value I r is added to the harmonic compensation signal I Ch by the adder 9 to obtain the current command signal I Cr . PWM circuit 2, equal current command signal I Cr and polarity current command signal switch drive signal PWM having a pulse width proportional to the absolute value of I Cr
Occurs.

【0005】インバータ1は、直流電源8から出力され
た直流電圧VDCを入力とし、スイッチ駆動信号PWMに
従って主スイッチを動作させ、電流指令信号ICrと相似
の波形を有するインバータ出力電流IINV を発生する。
The inverter 1 receives the DC voltage V DC output from the DC power supply 8, operates the main switch according to the switch drive signal PWM, and outputs an inverter output current I INV having a waveform similar to the current command signal I Cr. appear.

【0006】以上の動作により、インバータ出力電流I
INV はエンジン発電機6の出力電圧VENG の基本波成分
と同期のとれた基本波と負荷電流Iloadの高調波成分を
加え合わせた電流となる。また、エンジン発電機6の出
力電流も基本波成分と高調波成分を加え合わせた電流と
なる。よって、交流負荷7としてコンデンサインプット
形などの非線形な負荷が接続されても、エンジン発電機
6の出力電流に含まれる高調波成分を減少させることが
可能となる。この結果、エンジン発電機6の定格出力、
等価逆相電流の規格値、交流負荷に流れる高調波電流値
により基本波の振幅指令値Kpと高調波分担率Khを予
め適切に設定することにより、エンジン発電機6の等価
逆相電流の規格値を容易に満足でき、エンジン発電機6
の定格出力を確保することができる。
By the above operation, the inverter output current I
INV is a current obtained by adding the fundamental wave component synchronized with the fundamental wave component of the output voltage V ENG of the engine generator 6 and the harmonic component of the load current I load . Further, the output current of the engine generator 6 is a current obtained by adding the fundamental wave component and the harmonic component. Therefore, even if a non-linear load such as a capacitor input type is connected as the AC load 7, the harmonic component contained in the output current of the engine generator 6 can be reduced. As a result, the rated output of the engine generator 6,
By appropriately setting the amplitude command value Kp of the fundamental wave and the harmonic share ratio Kh in advance according to the standard value of the equivalent negative phase current and the harmonic current value flowing in the AC load, the standard of the equivalent negative phase current of the engine generator 6 is set. The value can be easily satisfied, and the engine generator 6
The rated output of can be secured.

【0007】[0007]

【発明が解決しようとする課題】直流電源8として考え
られる、例えば燃料電池の発電効率特性を図5(a)に
示す。燃料電池の発電電圧は発電電流に伴い低下し、燃
料流量は発電電流のみに依存するため、発電効率ηFUEL
は極大値を持つ特性となる。また、エンジン発電機6と
して考えられる。例えばガスエンジン発電機の発電効率
ηENG は図5(b)に示すように定格値に近づくにした
がって増加する。
FIG. 5A shows the power generation efficiency characteristics of a fuel cell, for example, which can be used as the DC power source 8. The power generation voltage of the fuel cell decreases with the power generation current, and the fuel flow rate depends only on the power generation current. Therefore , the power generation efficiency η FUEL
Is a property that has a maximum value. It can also be considered as the engine generator 6. For example, the power generation efficiency η ENG of the gas engine generator increases as it approaches the rated value as shown in FIG. 5 (b).

【0008】ここで、図5(a),(b)に示す発電効
率特性を持った燃料電池とガスエンジン発電機と連系イ
ンバータからなる従来例のシステムを考え、燃料電池と
ガスエンジン発電機の出力定格値が等しく、交流負荷消
費電力が燃料電池の出力定格値の1.5倍であるとす
る。この場合、燃料電池及びガスエンジン発電機の負荷
率は50%から100%に設定でき、それぞれの発電効
率ηFUELとηENG 、システム効率ηSYS は図6(a)で
示される。次に、交流負荷消費電力が減少して燃料電池
の出力定格値の1.2倍となったとすると、図6(a)
は図6(b)と変化する。
Considering a conventional system including a fuel cell having a power generation efficiency characteristic shown in FIGS. 5A and 5B, a gas engine generator, and an interconnection inverter, a fuel cell and a gas engine generator are considered. The output rated values are equal and the AC load power consumption is 1.5 times the output rated value of the fuel cell. In this case, the load factor of the fuel cell and the gas engine generator can be set from 50% to 100%, and the respective power generation efficiencies η FUEL and η ENG and the system efficiency η SYS are shown in FIG. 6 (a). Next, assuming that the AC load power consumption decreases to 1.2 times the rated output value of the fuel cell, FIG.
Changes from FIG. 6 (b).

【0009】図6(a)と図6(b)共にシステム効率
は最大値を持つが、図6(a)の場合は最大値Aはガス
エンジン発電機の負荷率(ガスエンジン発電機の出力値
/ガスエンジン発電機の出力定格値)が83%、すなわ
ち負荷分担率(ガスエンジン発電機の出力値/ガスエン
ジン発電機の出力値+燃料電池の出力値)が60%で、
図6(b)の場合は最大値Bはガスエンジン発電機の負
荷率が40%、すなわち負荷分担率が33%と変化して
いる。
6 (a) and 6 (b), the system efficiency has the maximum value, but in the case of FIG. 6 (a), the maximum value A is the load factor of the gas engine generator (the output of the gas engine generator). Value / rated output value of gas engine generator) is 83%, that is, load sharing ratio (output value of gas engine generator / output value of gas engine generator + output value of fuel cell) is 60%,
In the case of FIG. 6B, the maximum value B is such that the load factor of the gas engine generator changes to 40%, that is, the load sharing factor changes to 33%.

【0010】しかし、従来の連系インバータ装置の場合
は、負荷分担率が固定されているので、常にシステム効
率を最大で運転することができない。本発明は上記の事
情に鑑みてなされたもので、常にエンジン発電機、直流
電源、連系インバータ装置から成るシステムを最大効率
で運用することができる連系インバータ装置を提供する
ことを目的とする。
However, in the case of the conventional interconnected inverter device, since the load sharing ratio is fixed, it is not always possible to operate at maximum system efficiency. The present invention has been made in view of the above circumstances, and an object thereof is to provide a grid-connected inverter device that can always operate a system including an engine generator, a DC power supply, and a grid-connected inverter device with maximum efficiency. .

【0011】[0011]

【課題を解決するための手段】前記課題の解決は、本発
明が次に挙げる新規な特徴的な構成手段を採用すること
により達成される。すなわち、本発明の特徴は、エンジ
ン発電機の消費燃料量を検出する燃料検出回路と、直流
電源の出力電力を検出する直流電源出力検出回路と、負
荷の消費電力を検出する負荷電力検出回路と、それらの
3つの検出回路の出力からシステム効率を算出する効率
算出回路を備え、システム効率によりエンジン発電機と
連系インバータ装置の基本波および高調波の分担量を変
化させることができる特徴的な構成を持つ点にある。
The above-mentioned problems can be solved by adopting the following novel characteristic constitutional means of the present invention. That is, the features of the present invention are a fuel detection circuit that detects the amount of fuel consumed by the engine generator, a DC power supply output detection circuit that detects the output power of the DC power supply, and a load power detection circuit that detects the power consumption of the load. A characteristic calculation circuit that calculates the system efficiency from the outputs of these three detection circuits is provided, and it is possible to change the sharing amount of the fundamental wave and the harmonic wave of the engine generator and the interconnection inverter device depending on the system efficiency. The point is that it has a structure.

【0012】具体的には、入力端は直流電源に接続さ
れ、出力端は交流負荷と並列にエンジン発電機に接続さ
れる連系インバータ装置であって、前記エンジン発電機
の出力電圧の基本波成分に同期し、かつ振幅指令値と等
しい振幅を有する正弦波形の電流指令値を発生する電圧
同期信号発生回路と、前記交流負荷に流入する負荷電流
の基本波成分のみからなる負荷電流基本波信号を出力す
る電流同期発振器と、前記負荷電流から前記負荷電流基
本波信号を減算する減算器と、該減算器の出力信号に高
調波分担率を乗算する乗算器と、該乗算器の出力信号に
前記電圧同期信号発生回路が発生する前記電流指令値を
加算する加算器を具備し、該加算器の出力信号を電流指
令信号として、前記電流指令信号と極性が等しく、かつ
前記電流指令信号の絶対値に比例したパルス幅を有する
スイッチ駆動信号を発生するPWM回路とを備えた制御
回路と、前記スイッチ駆動信号に応じて主スイッチを駆
動するインバータから構成される連系インバータ装置に
おいて、前記制御回路に、エンジン発電機の消費燃料量
を検出する燃料検出回路と、直流電源の出力電力を検出
する直流電源出力検出回路と、負荷の消費電力を検出す
る負荷電力検出回路を具備させ、前記燃料検出回路の出
力である消費燃料値、前記直流電源出力検出回路の出力
である直流電源出力値および前記負荷電力検出回路の出
力である負荷消費電力値によりシステム効率を算出する
効率算出回路を備え、該効率算出回路の出力により前記
正弦波形の電流指令値と前記高調波分担率を変化させ、
前記効率算出回路の出力が最大となるように制御するこ
とを特徴とする連系インバータ装置である。及び前記連
系インバータ装置において、効率算出回路をニューラル
ネットワーク回路で構成することを特徴とする連系イン
バータ装置である。
Specifically, the invention is an interconnected inverter device having an input end connected to a DC power supply and an output end connected in parallel with an AC load to an engine generator, wherein a fundamental wave of an output voltage of the engine generator is provided. Voltage synchronization signal generating circuit that generates a sinusoidal current command value having an amplitude equal to the amplitude command value, and a load current fundamental wave signal consisting of only the fundamental wave component of the load current flowing into the AC load. , A subtractor that subtracts the load current fundamental wave signal from the load current, a multiplier that multiplies the output signal of the subtractor by a harmonic share ratio, and an output signal of the multiplier An adder for adding the current command values generated by the voltage synchronization signal generation circuit is provided, and the output signal of the adder is used as a current command signal, and the polarity is the same as that of the current command signal, and the current command signal In the interconnection inverter device including a control circuit including a PWM circuit that generates a switch drive signal having a pulse width proportional to a logarithmic value, and an inverter that drives a main switch according to the switch drive signal, the control The circuit is equipped with a fuel detection circuit for detecting the amount of fuel consumed by the engine generator, a DC power supply output detection circuit for detecting the output power of the DC power supply, and a load power detection circuit for detecting the power consumption of the load. A fuel consumption value that is the output of the detection circuit, a DC power supply output value that is the output of the DC power supply output detection circuit, and an efficiency calculation circuit that calculates the system efficiency by the load power consumption value that is the output of the load power detection circuit, The current command value of the sine waveform and the harmonic share are changed by the output of the efficiency calculation circuit,
The interconnected inverter device is characterized by controlling so that the output of the efficiency calculation circuit becomes maximum. Also, in the above-mentioned interconnection inverter device, the efficiency calculation circuit is configured by a neural network circuit.

【0013】[0013]

【作用】本発明は、前記のような新規な手段を講ずるの
で、常にエンジン発電機、直流電源、連系インバータ装
置から成るシステムを最大効率で運用することができ
る。
Since the present invention takes the above-mentioned novel means, it is possible to always operate the system including the engine generator, the DC power source and the interconnection inverter device with maximum efficiency.

【0014】[0014]

【実施例】【Example】

[実施例1]本発明の実施例1を図面につき説明する。
図1は本実施例1の構成を示すブロック図である。図
中、Aは本実施例1の連系インバータ装置で、入力端は
直流電源8に接続され、出力端は交流負荷7と並列にエ
ンジン発電機6に接続される。21は燃料検出回路、2
2は直流電源出力検出回路、23は負荷電力検出回路、
24は効率算出回路、25はメモリ、26は演算回路で
ある。図2はシステム効率を最大にするための原理図で
ある。なお、前記従来例と同一部分には、同一の符号を
使用し重複説明を省略する。
[Embodiment 1] Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the first embodiment. In the figure, A is the interconnection inverter device of the first embodiment, the input end of which is connected to the DC power supply 8 and the output end of which is connected in parallel with the AC load 7 to the engine generator 6. 21 is a fuel detection circuit, 2
2 is a DC power output detection circuit, 23 is a load power detection circuit,
Reference numeral 24 is an efficiency calculation circuit, 25 is a memory, and 26 is an arithmetic circuit. FIG. 2 is a principle diagram for maximizing system efficiency. The same parts as those in the conventional example will be designated by the same reference numerals, and duplicate description will be omitted.

【0015】本実施例1の連系インバータ装置Aの動作
を、図1を参照しながら以下に説明する。燃料検出回路
21ではエンジン発電機6の消費燃料量F′uelを検
出して消費燃料値F′uを効率算出回路24へ出力し、
直流電源出力検出回路22では直流電源の出力電流I′
DCと出力電圧VDCを検出して直流電源出力値W′DCを算
出し、この直流電源出力値W′DCを効率算出回路24へ
出力する。また、負荷電力検出回路23では負荷電流I
loadと負荷電圧VENG を検出して負荷消費電力値W′
loadを算出し、この負荷消費電力値W′loadを効率算出
回路24へ出力する。効率算出回路24では、直流電源
出力値W′DCと予めメモリ25に蓄えてあった直流電源
出力値に応じた直流電源の発電効率を演算回路26で乗
算して直流電源の消費エネルギーを算出する。さらに、
直流電源の消費エネルギーと消費燃料値F′uを演算回
路26で加算した値で負荷消費電力値W′loadを除して
システム効率Q′を求める。求めたシステム効率Q′と
負荷消費電力値W′loadにより高調波分担率K′hと振
幅指令値K′pを決定し、高調波分担率K′hは乗算器
10へ出力し、振幅指令値K′pは乗算器5へ出力す
る。
The operation of the interconnection inverter device A according to the first embodiment will be described below with reference to FIG. The fuel detection circuit 21 detects the fuel consumption amount F′uel of the engine generator 6 and outputs the fuel consumption value F′u to the efficiency calculation circuit 24.
In the DC power supply output detection circuit 22, the output current I ′ of the DC power supply
By detecting the DC output voltage V DC 'calculates the DC, the DC power supply output values W' DC power supply output value W and outputs the DC to efficiently calculating circuit 24. In the load power detection circuit 23, the load current I
Load power consumption value W ′ by detecting load and load voltage V ENG
The load is calculated and the load power consumption value W ′ load is output to the efficiency calculation circuit 24. In the efficiency calculation circuit 24, the DC power supply output value W'DC and the power generation efficiency of the DC power supply according to the DC power supply output value stored in the memory 25 in advance are multiplied by the arithmetic circuit 26 to calculate the energy consumption of the DC power supply. . further,
The system efficiency Q'is obtained by dividing the load power consumption value W'load by a value obtained by adding the energy consumption of the DC power source and the fuel consumption value F'u in the arithmetic circuit 26. The harmonic sharing rate K'h and the amplitude command value K'p are determined by the obtained system efficiency Q'and the load power consumption value W'load, and the harmonic sharing rate K'h is output to the multiplier 10 to output the amplitude command. The value K′p is output to the multiplier 5.

【0016】一方、電流同期発振器12中の帯域通過フ
ィルタ13は、負荷電流Iloadを検出し、負荷電流I
loadの基本波成分のみからなる負荷電流基本波信号IIf
を出力する。負荷電流基本波信号IIfは減算器11に入
力され、減算器11で負荷電流Iloadから負荷電流基本
波信号IIfが減算され、負荷電流高調波信号IIhが得ら
れる。負荷電流高調波信号IIhは、効率算出回路24か
ら出力された高調波分担率K′hと乗算器10で乗算さ
れて、高調波補償信号I′Chを得る。
On the other hand, the bandpass filter 13 in the current synchronous oscillator 12 detects the load current I load and detects the load current I load.
load current fundamental signal I the If consisting of only the fundamental wave component of the load
Is output. The load current fundamental wave signal I If is input to the subtractor 11, and the subtracter 11 subtracts the load current fundamental wave signal I If from the load current I load to obtain the load current harmonic signal I Ih . The load current harmonic signal I Ih is multiplied by the harmonic share ratio K′h output from the efficiency calculation circuit 24 in the multiplier 10 to obtain a harmonic compensation signal I ′ Ch .

【0017】電圧同期信号発生回路3中の電圧同期発振
器4は、エンジン発電機6の出力電圧VENG の基本波成
分と周波数及び位相の等しい振幅lの正弦波形の基準正
弦波SINを発生する。基準正弦波SINは、効率算出
回路24から出力された振幅指令値K′pと乗算器5で
乗算され、前記エンジン発電機6の出力電圧の基本波成
分に同期し、かつ振幅指令値K′pと等しい振幅を有す
る正弦波形の電流指令値I′r が得られる。電流指令値
I′r は、高調波補償信号I′Chと加算器9で加算され
て、電流指令信号I′Crを得る。PWM回路2は、電流
指令信号I′Crと極性が等しく、電流指令信号I′Cr
絶対値に比例するパルス幅を有するスイッチ駆動信号P
WM′を発生する。
The voltage-synchronized oscillator 4 in the voltage-synchronized signal generating circuit 3 generates a reference sine wave SIN having a sine waveform of amplitude 1 whose frequency and phase are equal to the fundamental wave component of the output voltage V ENG of the engine generator 6. The reference sine wave SIN is multiplied by the amplitude command value K′p output from the efficiency calculation circuit 24 in the multiplier 5, synchronized with the fundamental wave component of the output voltage of the engine generator 6, and the amplitude command value K ′. current command value I 'r sine waveform having an amplitude equal to p are obtained. Current command value I 'r is the harmonic compensation signal I' is added by the adder 9 and Ch, to obtain a current command signal I 'Cr. PWM circuit 2, the current command signal I 'Cr and polarity equal to the current command signal I' switch drive signal P having a pulse width proportional to the absolute value of Cr
Generate WM '.

【0018】インバータ1は、直流電源8から出力され
た直流電圧VDCを入力とし、スイッチ駆動信号PWM′
に従って主スイッチを動作させ、電流指令信号I′Cr
相似の波形を有するインバータ出力電流I′INV を発生
する。
The inverter 1 receives the DC voltage V DC output from the DC power source 8 as an input, and receives the switch drive signal PWM '.
According to operate the main switch to generate INV 'inverter output current I having a waveform similar to the Cr' of the current command signal I.

【0019】前記効率算出回路24の出力により前記正
弦波形の電流指令値I′r と前記高調波分担率K′hを
変化させ、前記効率算出回路24の出力が最大となるよ
うに制御する。
[0019] The by the output efficiency calculation circuit 24 to change the current command value I 'r and the harmonic sharing rate K'h of the sine wave, the output of said efficiency calculating circuit 24 is controlled to be maximum.

【0020】ここで、システムを最大効率で運転するた
めのシステム効率Q′と負荷消費電力値W′loadから高
調波分担率K′hと振幅指令値K′pを求める方法につ
いて図2に示すフローチャートを用いて詳細に説明す
る。
FIG. 2 shows a method of obtaining the harmonic share rate K'h and the amplitude command value K'p from the system efficiency Q'and the load power consumption value W'load for operating the system at maximum efficiency. This will be described in detail using a flowchart.

【0021】時刻t−Δtにおいて、以下に示す方法に
よりシステムが最大効率で運用されているとし、Δt
後、すなわち時刻tからの高調波分担率K′hと振幅指
令値K′pを求める方法について述べる。
At time t-Δt, it is assumed that the system is operated at the maximum efficiency by the following method, and Δt
After that, that is, a method of obtaining the harmonic share rate K'h and the amplitude command value K'p from the time t will be described.

【0022】時刻tにおける負荷消費電力値W′
load(t)と時刻t−Δtにおける有効電力値W′load
(t−Δt)を比較して等しい場合は、時刻t−Δtに
おける高調波分担率K′h(t−Δt)と等しい高調波
分担率K′h(t)を乗算器10へ出力し、時刻t−Δ
tにおける振幅指令値K′p(t−Δt)と等しい振幅
指令値K′p(t)を乗算器5へ出力する。
Load power consumption value W'at time t
load (t) and active power value W ′ load at time t−Δt
When (t−Δt) is compared and equal, the harmonic share K′h (t) equal to the harmonic share K′h (t−Δt) at time t−Δt is output to the multiplier 10. Time t-Δ
An amplitude command value K′p (t) equal to the amplitude command value K′p (t−Δt) at t is output to the multiplier 5.

【0023】違う場合は、時刻t−Δtにおける高調波
分担率K′h(t−Δt)にαを加えた高調波分担率
K′h(t)を乗算器10へ出力、時刻t−Δtにおけ
る振幅指令値K′p(t−Δt)と等しい振幅指令値
K′p(t)を乗算器5へ出力する。次に、時刻Δt後
のシステム効率と時刻tのシステム効率を比較し、時刻
Δt後のシステム効率が大きい場合は、時刻Δt前にお
ける高調波分担率K′h(t−Δt)にさらにαを加え
た高調波分担率K′h(t)を乗算器10へ出力、時刻
Δt前における振幅指令値K′p(t−Δt)と等しい
振幅指令値K′p(t)を乗算器5へ出力し、システム
効率が低下するまで繰り返す。
If they are different, the harmonic share K'h (t) obtained by adding α to the harmonic share K'h (t-Δt) at the time t-Δt is output to the multiplier 10, and the time t-Δt is obtained. The amplitude command value K'p (t) equal to the amplitude command value K'p (t- [Delta] t) is output to the multiplier 5. Next, the system efficiency after the time Δt is compared with the system efficiency at the time t, and when the system efficiency after the time Δt is large, α is further added to the harmonic share K′h (t−Δt) before the time Δt. The added harmonic share K'h (t) is output to the multiplier 10, and the amplitude command value K'p (t) equal to the amplitude command value K'p (t-Δt) before the time Δt is supplied to the multiplier 5. Output and repeat until system efficiency drops.

【0024】小さい場合は、時刻Δt前における高調波
分担率K′h(t−Δt)にαを引いた高調波分担率
K′h(t)を乗算器10へ出力、時刻Δt前における
振幅指令値K′p(t−Δt)と等しい振幅指令値K′
p(t)を乗算器5へ出力し、システム効率が低下する
まで繰り返す。
If it is small, the harmonic share K'h (t) obtained by subtracting α from the harmonic share K'h (t-Δt) before the time Δt is output to the multiplier 10, and the amplitude before the time Δt is output. Amplitude command value K'equal to command value K'p (t-Δt)
It outputs p (t) to the multiplier 5 and repeats until the system efficiency decreases.

【0025】システム効率が低下したら、低下した前の
高調波分担率K′h(t−2Δt)に固定する。次に、
高調波分担率を固定し、振幅指令値を高調波分担率を固
定するまでの過程と同じ方法で変化させ、固定する。固
定された高調波分担率K′h(t−2Δt)と振幅指令
値K′p(t−2Δt)により、システム効率を最大で
運転できる。
When the system efficiency decreases, the higher harmonic sharing rate K'h (t-2Δt) is fixed. next,
The harmonic share is fixed, and the amplitude command value is changed and fixed in the same manner as in the process of fixing the harmonic share. With the fixed harmonic share K'h (t-2Δt) and the amplitude command value K'p (t-2Δt), the system efficiency can be maximized.

【0026】システム効率を算出する周期Δtを負荷消
費電力値が変化する周期よりも十分に小さくすること
で、負荷消費電力値が変化する前に必ずシステム効率最
大にできる高調波分担率と振幅指令値に設定することが
でき、常にシステムを最大効率で運用できることは言う
までもない。
By making the cycle Δt for calculating the system efficiency sufficiently smaller than the cycle in which the load power consumption value changes, it is possible to always maximize the system efficiency before the load power consumption value changes, and the harmonic share ratio and the amplitude command. Needless to say, it can be set to a value and the system will always operate at maximum efficiency.

【0027】[実施例2]本発明の実施例2を図面につ
き説明する。図3は本実施例2の構成を示すブロック図
である。図中、Bは本実施例2の連系インバータ装置、
31は効率算出回路を構成するニューラルネットワーク
回路である。なお、前記実施例1と同一部分には、同一
の符号を使用し重複説明を省略する。
[Second Embodiment] A second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a block diagram showing the configuration of the second embodiment. In the figure, B is the interconnection inverter device of the second embodiment,
Reference numeral 31 is a neural network circuit which constitutes an efficiency calculation circuit. The same parts as those in the first embodiment are designated by the same reference numerals, and the duplicated description will be omitted.

【0028】ニューラルネットワーク回路31は、燃料
検出回路21の出力である消費燃料値F′u、直流電源
出力検出回路22の出力である直流電源出力値W′DC
負荷電力検出回路23の出力である負荷消費電力値W′
loadを入力する。次に、予め学習しておいた消費燃料値
F′u、直流電源出力値W′DC及び負荷消費電力値W′
loadとシステム効率を最大にできる高調波分担率K′
h、振幅指令値K′pの関係からシステム効率を最大に
できる高調波分担率K′hと振幅指令値K′pを決定
し、高調波分担率K′hは乗算器10へ出力し、振幅指
令値K′pは乗算器5へ出力する。ニューラルネットワ
ーク回路31は、予備実験や各装置データなどで、消費
燃料値F′u、直流電源出力値W′DC及び負荷消費電力
値W′loadとシステム効率を最大にできる高調波分担率
K′h、振幅指令値K′pの関係を前もって学習させる
ことにより、入力した消費燃料値F′u、直流電源出力
値W′DC及び負荷消費電力値W′loadからシステム効率
を最大にできる高調波分担率K′hと振幅指令値K′p
を出力できる。
The neural network circuit 31, fuel consumption value which is the output of the fuel detection circuit 21 F'u, the output of the DC power supply output values W 'DC, which is the output of the DC power supply output detection circuit 22 load power detecting circuit 23 Certain load power consumption value W '
Enter load . Then, previously learned in advance fuel consumption value F'u was, the DC power supply output values W 'DC and the load power consumption value W'
Harmonic contribution ratio K'that maximizes load and system efficiency
From the relationship between h and the amplitude command value K'p, the harmonic share rate K'h and the amplitude command value K'p that can maximize the system efficiency are determined, and the harmonic share rate K'h is output to the multiplier 10. The amplitude command value K′p is output to the multiplier 5. Neural network circuit 31, such as in the preliminary experiment and the device data, fuel consumption value F'u, the DC power supply output values W 'DC and the load power consumption value W' load and harmonics sharing ratio K of the system efficiency can be maximized ' h, by previously learning the relation between the amplitude command k'P, harmonics can be consumed fuel value F'u input from the DC power supply output values W 'DC and the load power consumption value W' load to maximize system efficiency Sharing ratio K'h and amplitude command value K'p
Can be output.

【0029】上記以外の動作は実施例1で説明した動作
と同じ動作をするので、説明を省略する。オフライン学
習させたニューラルネットワークはディジタルシグナル
プロセッサ(DSP)により構成することができるの
で、ワンチップ化が可能となり、制御回路の小形化を図
ることができる。また、図2に示すようなフローチャー
トに基づく計算を実行する必要がないので、システム効
率を最大にできる高調波分担率K′hと振幅指令値K′
pを高速に求めることができ、システム運転経費の一層
の削減が達成できる。
The operation other than the above is the same as the operation described in the first embodiment, and the description thereof will be omitted. Since the off-line learned neural network can be configured by a digital signal processor (DSP), it can be integrated into one chip and the control circuit can be downsized. Further, since it is not necessary to execute the calculation based on the flowchart as shown in FIG. 2, the harmonic share K'h and the amplitude command value K'that can maximize the system efficiency.
Since p can be obtained at high speed, the system operating cost can be further reduced.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、常にエ
ンジン発電機、直流電源、連系インバータ装置からなる
システムを最大効率で運用することができ、エンジン発
電機の燃料消費量及び直流電源として使用が考えられる
燃料電池などの燃料消費量の削減が達成できる。従っ
て、システムの運転経費が削減できる。
As described above, according to the present invention, the system including the engine generator, the DC power source, and the interconnection inverter device can be operated at the maximum efficiency, and the fuel consumption of the engine generator and the DC It is possible to reduce the fuel consumption of fuel cells and the like that can be used as a power source. Therefore, the operating cost of the system can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】図1のシステムを最大効率で運用するためのフ
ローチャートである。
2 is a flowchart for operating the system of FIG. 1 with maximum efficiency.

【図3】本発明の実施例2を示すブロック図である。FIG. 3 is a block diagram showing a second embodiment of the present invention.

【図4】従来例の連系インバータ装置の構成を示すブロ
ック図である。
FIG. 4 is a block diagram showing a configuration of a conventional interconnected inverter device.

【図5】(a) 燃料電池の発電効率を示す特性図であ
る。 (b) ガスエンジン発電機の発電効率を示す特性図で
ある。
5 (a) is a characteristic diagram showing power generation efficiency of a fuel cell. FIG. (B) It is a characteristic view which shows the power generation efficiency of a gas engine generator.

【図6】ガスエンジン発電機、燃料電池、連系インバー
タ装置からなるシステムの効率を示す特性図である。
FIG. 6 is a characteristic diagram showing the efficiency of a system including a gas engine generator, a fuel cell, and an interconnection inverter device.

【符号の説明】[Explanation of symbols]

A,B,C … 連系インバータ装置 1 … インバータ 2 … PWM
回路 3 … 電圧同期信号発生回路 4 … 電圧同
期発振器 5、10 … 乗算器 6 … エンジ
ン発電機 7 … 交流負荷 8 … 直流電
源 9 … 加算器 11 … 減算器 12 … 電流同期発振器 13 … 帯域
通過フィルタ 21 … 燃料検出回路 22 … 直流
電源出力検出回路 23 … 負荷電力検出回路 24 … 効率
算出回路 25 … メモリ 26 … 演算
回路 31 … ニューラルネットワーク回路
A, B, C ... Connected inverter device 1 ... Inverter 2 ... PWM
Circuit 3 Voltage synchronous signal generation circuit 4 Voltage synchronous oscillator 5, 10 Multiplier 6 Engine generator 7 AC load 8 DC power source 9 Adder 11 Subtractor 12 Current synchronous oscillator 13 Bandpass filter 21 ... Fuel detection circuit 22 ... DC power supply output detection circuit 23 ... Load power detection circuit 24 ... Efficiency calculation circuit 25 ... Memory 26 ... Operation circuit 31 ... Neural network circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入力端は直流電源に接続され、出力端は
交流負荷と並列にエンジン発電機に接続される連系イン
バータ装置であって、 前記エンジン発電機の出力電圧の基本波成分に同期し、
かつ振幅指令値と等しい振幅を有する正弦波形の電流指
令値を発生する電圧同期信号発生回路と、前記交流負荷
に流入する負荷電流の基本波成分のみからなる負荷電流
基本波信号を出力する電流同期発振器と、前記負荷電流
から前記負荷電流基本波信号を減算する減算器と、該減
算器の出力信号に高調波分担率を乗算する乗算器と、該
乗算器の出力信号に前記電圧同期信号発生回路が発生す
る前記電流指令値を加算する加算器を具備し、該加算器
の出力信号を電流指令信号として、前記電流指令信号と
極性が等しく、かつ前記電流指令信号の絶対値に比例し
たパルス幅を有するスイッチ駆動信号を発生するPWM
回路とを備えた制御回路と、前記スイッチ駆動信号に応
じて主スイッチを駆動するインバータから構成される連
系インバータ装置において、 前記制御回路に、エンジン発電機の消費燃料量を検出す
る燃料検出回路と、直流電源の出力電力を検出する直流
電源出力検出回路と、負荷の消費電力を検出する負荷電
力検出回路を具備させ、 前記燃料検出回路の出力である消費燃料値、前記直流電
源出力検出回路の出力である直流電源出力値および前記
負荷電力検出回路の出力である負荷消費電力値によりシ
ステム効率を算出する効率算出回路を備え、該効率算出
回路の出力により前記正弦波形の電流指令値と前記高調
波分担率を変化させ、前記効率算出回路の出力が最大と
なるように制御することを特徴とする連系インバータ装
置。
1. An interconnected inverter device having an input end connected to a DC power source and an output end connected in parallel with an AC load to an engine generator, the synchronous inverter device being synchronized with a fundamental wave component of an output voltage of the engine generator. Then
And a voltage synchronization signal generation circuit that generates a sinusoidal current command value having an amplitude equal to the amplitude command value, and a current synchronization that outputs a load current fundamental wave signal consisting of only the fundamental wave component of the load current flowing into the AC load. An oscillator, a subtractor for subtracting the load current fundamental wave signal from the load current, a multiplier for multiplying the output signal of the subtractor by a harmonic share ratio, and a voltage synchronization signal generation for the output signal of the multiplier A pulse having an adder for adding the current command value generated by the circuit, the output signal of the adder being a current command signal, having the same polarity as the current command signal, and being proportional to the absolute value of the current command signal PWM for generating a switch drive signal having a width
A control circuit including a control circuit and an inverter that drives a main switch in response to the switch drive signal, wherein the control circuit includes a fuel detection circuit that detects a fuel consumption amount of an engine generator. A DC power supply output detection circuit for detecting the output power of the DC power supply, and a load power detection circuit for detecting the power consumption of the load, the fuel consumption value output from the fuel detection circuit, the DC power supply output detection circuit A DC power supply output value that is the output of the load power detection circuit and a load power consumption value that is the output of the load power detection circuit, and an efficiency calculation circuit that calculates the system efficiency. An interconnected inverter device, characterized in that a harmonic allocation ratio is changed and control is performed so that an output of the efficiency calculation circuit becomes maximum.
【請求項2】 請求項1に記載される連系インバータ装
置において、効率算出回路をニューラルネットワーク回
路で構成することを特徴とする連系インバータ装置。
2. The interconnected inverter device according to claim 1, wherein the efficiency calculation circuit comprises a neural network circuit.
JP7106428A 1995-04-28 1995-04-28 Linkage inverter Pending JPH08308290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7106428A JPH08308290A (en) 1995-04-28 1995-04-28 Linkage inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7106428A JPH08308290A (en) 1995-04-28 1995-04-28 Linkage inverter

Publications (1)

Publication Number Publication Date
JPH08308290A true JPH08308290A (en) 1996-11-22

Family

ID=14433396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7106428A Pending JPH08308290A (en) 1995-04-28 1995-04-28 Linkage inverter

Country Status (1)

Country Link
JP (1) JPH08308290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987453B1 (en) * 2007-04-05 2010-10-13 엘지전자 주식회사 the controlling method of electricity generating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987453B1 (en) * 2007-04-05 2010-10-13 엘지전자 주식회사 the controlling method of electricity generating system

Similar Documents

Publication Publication Date Title
JPH049035B2 (en)
Pranith et al. Improved Gaussian filter based solar PV-BES microgrid with PLL based islanding detection and seamless transfer control
Choi et al. Standby power supply with active power filter ability using digital controller
JP4907982B2 (en) Grid-connected inverter device
Sharma et al. Robust MMSOGI‐FLL control algorithm for power quality improvement of solar PV‐SyRG pico hydro‐BES based islanded microgrid with dynamic load
Peng et al. A simple model predictive instantaneous current control for single-phase PWM converters in stationary reference frame
Jain et al. Model-based design and sliding mode control approach for two-stage water pumping system with reduced sensors
Agrawal et al. Artificial neural network based three phase shunt active power filter
JPH06233464A (en) Apparatus for suppressing voltage fluctuations and harmonics
JPH09238472A (en) Pwm control equipment
Gupta et al. AES-FLL control of RES powered microgrid for power quality improvement with synchronization control
Yusoff et al. Predictive Control of a direct AC/AC matrix converter power supply under non-linear load conditions
JPH08308290A (en) Linkage inverter
Bandyopadhyay et al. Design-oriented dynamical analysis of single-phase H-bridge inverter
JP2001157441A (en) Power conversion apparatus
CN111756261B (en) PWM rectifier control method and device
JP3082849B2 (en) Uninterruptible power system
Tyagi et al. Utilization of small hydro energy conversion based renewable energy for dual mode operation
JP3112589B2 (en) Inverter control device
Pichan et al. Simple and efficient design and control of the single phase PWM rectifier for UPS applications
Sharma et al. Improved generalised integrator for optimal dispatch of SyRG‐based pico‐hydro‐PV system
Lamterkati et al. Direct Power Fuzzy Control of Three-Phase AC-DC Converter using a Space Vector Modulation
JPH10271829A (en) Rectifier circuit for general use inverter
Zhang et al. Design-oriented analysis of slow-scale bifurcations in single phase DC–AC inverters via autonomous transformation approach
Talebian Kouchaksaraei et al. Improvement of direct power control of DG-Interfaced grid connected Power Converter