JPH08308233A - Controller for ac-dc converter - Google Patents
Controller for ac-dc converterInfo
- Publication number
- JPH08308233A JPH08308233A JP11080195A JP11080195A JPH08308233A JP H08308233 A JPH08308233 A JP H08308233A JP 11080195 A JP11080195 A JP 11080195A JP 11080195 A JP11080195 A JP 11080195A JP H08308233 A JPH08308233 A JP H08308233A
- Authority
- JP
- Japan
- Prior art keywords
- control circuit
- constant
- angle control
- margin angle
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rectifiers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、順変換器と逆変換器の
協調をとりながら行う直流送電装置や、周波数変換装置
等に使用される交直変換器の制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC / DC power transmission device which cooperates with a forward converter and an inverse converter, and a control device for an AC / DC converter used in a frequency converter or the like.
【0002】[0002]
【従来の技術】図8は直流送電及び周波数変換装置等の
交直変換システムを示す図である。10,11は交流系
統、20,21は変圧器、30は順変換器、31は逆変
換器、40,41は直流リアクトル、50,51は直流
線路、60,61は制御装置を夫々示す。2. Description of the Related Art FIG. 8 is a diagram showing an AC / DC converter system such as a DC power transmitter and a frequency converter. Reference numerals 10 and 11 are AC systems, 20 and 21 are transformers, 30 is a forward converter, 31 is an inverse converter, 40 and 41 are DC reactors, 50 and 51 are DC lines, and 60 and 61 are control devices.
【0003】図8において、順変換器30は交流系統1
0からの交流電力を直流電力に変換し、逆変換器31は
順変換器30からの直流電力を交流電力に変換する。こ
のような交直変換システムでは順変換器30側は定電流
制御運転、逆変換器31側は定電圧制御運転または定余
裕角制御運転を行い電力を融通する。In FIG. 8, the forward converter 30 is an AC system 1
The AC power from 0 is converted into DC power, and the inverse converter 31 converts the DC power from the forward converter 30 into AC power. In such an AC / DC conversion system, the forward converter 30 side performs constant current control operation, and the inverse converter 31 side performs constant voltage control operation or constant margin angle control operation to exchange power.
【0004】図9は図8の制御装置61の構成を示すブ
ロック図である。81は定電流制御回路(以下ACRと
称す)であり、これに比較器88からの直流電流Idと
直流電流基準値Idpとの偏差を入力する。82は定電
圧制御回路(以下AVRと称す)であり、これに比較器
89からの直流電圧Vdと直流電圧基準値Vdpとの偏
差を入力する。100Aは定余裕角制御回路(以下Aγ
Rと称す)であり、1つの演算回路85を有し逆変換器
31にかかる逆電圧期間γを入力する。92は最小値選
択回路(以下MINと称す)であり、これにACR8
1、AVR82、AγR100Aの出力信号をそれぞれ
入力し、これらのうちの最小値を出力する。93は位相
制御回路であり、最小値選択回路92の出力信号を入力
し、系統電圧と同期した点弧信号を順変換器30または
逆変換器31へ出力する。FIG. 9 is a block diagram showing the configuration of the control device 61 shown in FIG. Reference numeral 81 is a constant current control circuit (hereinafter referred to as ACR), to which the deviation between the direct current Id from the comparator 88 and the direct current reference value Idp is input. Reference numeral 82 denotes a constant voltage control circuit (hereinafter referred to as AVR), to which the deviation between the DC voltage Vd from the comparator 89 and the DC voltage reference value Vdp is input. 100A is a constant margin angle control circuit (hereinafter referred to as Aγ
(Referred to as R), which has one arithmetic circuit 85 and inputs the reverse voltage period γ applied to the inverse converter 31. Reference numeral 92 denotes a minimum value selection circuit (hereinafter referred to as MIN), which has an ACR8
1, the output signals of AVR82 and AγR100A are respectively input, and the minimum value of these is output. Reference numeral 93 is a phase control circuit, which inputs the output signal of the minimum value selection circuit 92 and outputs an ignition signal synchronized with the system voltage to the forward converter 30 or the inverse converter 31.
【0005】従来、図9におけるAγR100Aの演算
回路85は、逆変換器31にかかる逆電圧期間γを入力
し、一つの一次遅れ演算、または積分演算で行ってお
り、応答速度は固定されていた。Conventionally, the arithmetic circuit 85 of the AγR100A in FIG. 9 inputs the reverse voltage period γ applied to the inverse converter 31 and performs one first-order delay calculation or integral calculation, and the response speed is fixed. .
【0006】[0006]
【発明が解決しようとする課題】図10は図8の制御装
置61の交流系統事故時の制御信号のタイムチャートで
ある。交流系統11に時刻t1で事故が発生し、時刻t
2で回復した場合を考える。時刻t1にて交流系統事故
が発生すると、逆変換器31にかかる逆電圧期間γがな
くなり、AγR100Aは逆電圧期間γを確保しようと
位相制御角を最小位相制御角αminまで進める。しか
し、位相制御角は、ある時間をかけて進むため、すぐに
は逆電圧期間を確保できずに転流失敗が発生する。FIG. 10 is a time chart of control signals of the control device 61 of FIG. 8 when an AC system fault occurs. An accident occurred in the AC system 11 at time t1, and the time t
Consider the case of recovery in 2. When an AC system fault occurs at time t1, the reverse voltage period γ applied to the inverse converter 31 disappears, and the AγR 100A advances the phase control angle to the minimum phase control angle αmin in order to secure the reverse voltage period γ. However, since the phase control angle advances over a certain period of time, the reverse voltage period cannot be secured immediately and commutation failure occurs.
【0007】時刻t2にて交流系統事故が回復するとA
γR100Aは制御角を戻し始めるが、今度は充分な逆
電圧期間γがあるためAγR100Aがオーバーシュー
トし、制御角を戻しすぎて再度転流失敗が発生する。At time t2, when the AC system fault recovers, A
γR100A begins to return the control angle, but this time there is a sufficient reverse voltage period γ, so that AγR100A overshoots, the control angle is returned too much, and commutation failure occurs again.
【0008】このように、AγR100Aの演算回路8
5は一つであるため、交流系統11の事故発生時に必要
な応答に合わせて制御演算の時定数を短くすると、事故
回復時には制御角が戻りすぎて再度転流失敗を起こすお
それがある。また、事故回復時に必要な応答に合わせて
制御演算の時定数を遅くすると、交流系統11の事故中
に制御角が進まず、転流失敗が継続するという不具合が
あった。In this way, the arithmetic circuit 8 of the AγR100A
Since there is only one, if the time constant of the control calculation is shortened according to the response required when an accident occurs in the AC system 11, the control angle may return too much and the commutation failure may occur again when the accident is recovered. Further, if the time constant of the control calculation is slowed according to the response required when recovering from the accident, the control angle does not advance during the accident of the AC system 11 and commutation failure continues.
【0009】また、交流系統11の事故中は直流電圧も
下がるため、直流電圧を増やす方向にAVR82が働
き、制御角が最大側リミッターに張りつき、事故回復後
のAVRの制御角が戻るのが遅いという不具合があっ
た。従って本発明の目的は、前述した不具合を補い、交
直変換システムの高速、且つ安定な運転を継続できる交
直変換器の制御装置を提供することである。Further, since the DC voltage also decreases during the accident of the AC system 11, the AVR 82 works in the direction of increasing the DC voltage, the control angle sticks to the maximum limiter, and the control angle of the AVR after the accident recovery slows to return. There was a problem. Therefore, an object of the present invention is to provide a control device for an AC / DC converter that can compensate for the above-mentioned problems and continue high-speed and stable operation of the AC / DC conversion system.
【0010】[0010]
【課題を解決するための手段】前述の目的を達成するた
めに、請求項1に対応する発明は、共通の直流回路に接
続され、交流側がそれぞれ異なる交流系統に接続され、
交流電力を直流電力に変換する順変換器と、前記直流電
力を交流電力に変換する逆変換器からなる交直変換器
と、この交直変換器の直流回路に流れる直流電流と直流
電流基準の偏差に基づき電流制御信号を出力する定電流
制御回路と、前記交直変換器の直流回路に印加される直
流電圧と直流電圧基準の偏差に基づき電圧制御信号を出
力する定電圧制御回路と、前記順変換器および逆変換器
の少なくとも一方を構成している半導体素子に逆電圧が
印加されるとき発生する信号を入力し、定余裕角制御信
号を出力する定余裕角制御回路と、前記定電流制御回路
と前記定電圧制御回路と前記定余裕角制御回路の出力信
号のうちの最小値に基づき、前記半導体素子に有する制
御端子に制御信号を供給する交直変換器の制御装置にお
いて、前記定余裕角制御回路は、高速定余裕角制御回路
と、低速定余裕角制御回路と、最小値選択回路からな
り、前記高速定余裕角制御回路は前記半導体素子に逆電
圧が印加されるとき発生する信号を入力し、かつ短い時
定数で演算制御され定余裕角制御信号を出力するもので
あり、前記低速定余裕角制御回路は前記半導体素子に逆
電圧が印加されるとき発生する信号を入力し、かつ長い
時定数で演算制御され定余裕角制御信号を出力するもの
であり、前記最小値選択回路は前記高速定余裕角制御回
路および前記低速定余裕角制御回路の定余裕角制御信号
の最小値を選択するものである。In order to achieve the above-mentioned object, the invention according to claim 1 is connected to a common DC circuit, and the AC sides are connected to different AC systems, respectively.
A forward converter for converting AC power into DC power, an AC / DC converter comprising an inverse converter for converting the DC power into AC power, and a DC current flowing in a DC circuit of the AC / DC converter and a deviation between DC current references. A constant current control circuit that outputs a current control signal based on the above, a constant voltage control circuit that outputs a voltage control signal based on a deviation between a DC voltage applied to the DC circuit of the AC / DC converter and a DC voltage reference, and the forward converter And a constant margin angle control circuit for inputting a signal generated when a reverse voltage is applied to a semiconductor element forming at least one of the inverse converter and outputting a constant margin angle control signal, and the constant current control circuit. In the controller of the AC / DC converter, which supplies a control signal to a control terminal of the semiconductor element based on a minimum value of output signals of the constant voltage control circuit and the constant margin angle control circuit, The control circuit includes a high-speed constant margin angle control circuit, a low-speed constant margin angle control circuit, and a minimum value selection circuit. The high-speed constant margin angle control circuit outputs a signal generated when a reverse voltage is applied to the semiconductor element. Is input and outputs a constant margin angle control signal that is arithmetically controlled with a short time constant, the low speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and The minimum value selection circuit is operated and controlled by a long time constant to output a constant margin angle control signal, and the minimum value selection circuit outputs the minimum value of the constant margin angle control signals of the high speed constant margin angle control circuit and the low speed constant margin angle control circuit. It is something to choose.
【0011】前述の目的を達成するために、請求項2に
対応する発明は、請求項1記載の定余裕角制御回路が、
高速定余裕角制御回路と、低速定余裕角制御回路と、制
御位相進め回路と、最小値選択回路からなり、前記高速
定余裕角制御回路は前記半導体素子に逆電圧が印加され
るとき発生する信号を入力し、かつ短い時定数で演算制
御され定余裕角制御信号を出力するものであり、前記低
速定余裕角制御回路は前記半導体素子に逆電圧が印加さ
れるとき発生する信号を入力し、かつ長い時定数で演算
制御され定余裕角制御信号を出力するものであり、前記
制御位相進め回路は転流失敗検出信号を入力して前記高
速定余裕角制御回路および低速定余裕角制御回路の定余
裕角制御信号の出力を制限する信号を出力するものであ
り、前記最小値選択回路は前記高速定余裕角制御回路お
よび前記低速定余裕角制御回路の定余裕角制御信号の最
小値を選択するものである。In order to achieve the above-mentioned object, the invention corresponding to claim 2 provides a constant margin angle control circuit according to claim 1,
It consists of a high-speed constant margin angle control circuit, a low-speed constant margin angle control circuit, a control phase advance circuit, and a minimum value selection circuit, and the high-speed constant margin angle control circuit is generated when a reverse voltage is applied to the semiconductor element. A signal is input, and a constant margin angle control signal is output by being arithmetically controlled with a short time constant.The low speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element. In addition, the control phase advance circuit inputs a commutation failure detection signal by being controlled by a long time constant and outputs the constant margin angle control signal. The high speed constant margin angle control circuit and the low speed constant margin angle control circuit. Of the constant margin angle control signal is output, and the minimum value selection circuit sets the minimum value of the constant margin angle control signals of the high speed constant margin angle control circuit and the low speed constant margin angle control circuit. Also choose It is.
【0012】前述の目的を達成するために、請求項3に
対応する発明は、請求項1記載の定余裕角制御回路が、
高速定余裕角制御回路と、低速定余裕角制御回路とから
なり、前記高速定余裕角制御回路は前記半導体素子に逆
電圧が印加されるとき発生する信号を入力し、かつ短い
時定数で演算制御され定余裕角制御信号を出力するもの
であり、前記低速定余裕角制御回路は前記半導体素子に
逆電圧が印加されるとき発生する信号を入力し、かつ長
い時定数で演算制御され定余裕角制御信号を出力するも
のであり、前記低速定余裕角制御回路の定余裕角制御信
号の出力を、前記高速定余裕角制御回路の定余裕角制御
信号の出力で制限するものである。In order to achieve the above-mentioned object, the invention corresponding to claim 3 provides a constant margin angle control circuit according to claim 1,
It is composed of a high-speed constant margin angle control circuit and a low-speed constant margin angle control circuit, and the high-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element and calculates with a short time constant. Is controlled to output a constant margin angle control signal, the low speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and is arithmetically controlled with a long time constant. An angle control signal is output, and the output of the constant margin angle control signal of the low speed constant margin angle control circuit is limited by the output of the constant margin angle control signal of the high speed constant margin angle control circuit.
【0013】前述の目的を達成するために、請求項4に
対応する発明は、請求項1記載の定余裕角制御回路が、
高速定余裕角制御回路と、低速定余裕角制御回路と、最
小値選択回路からなり、前記高速定余裕角制御回路は前
記半導体素子に逆電圧が印加されるとき発生する信号を
入力し、かつ短い時定数で演算制御され定余裕角制御信
号を出力するとともに最小位相角を90度にするもので
あり、前記低速定余裕角制御回路は前記半導体素子に逆
電圧が印加されるとき発生する信号を入力し、かつ長い
時定数で演算制御され定余裕角制御信号を出力するとと
もに最小位相角を90度にするものであり、前記最小値
選択回路は前記高速定余裕角制御回路および前記低速定
余裕角制御回路の定余裕角制御信号の最小値を選択する
ものである。In order to achieve the above-mentioned object, the invention corresponding to claim 4 is the constant margin angle control circuit according to claim 1,
It comprises a high-speed constant margin angle control circuit, a low-speed constant margin angle control circuit, and a minimum value selection circuit, and the high-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and The signal is generated when a reverse margin voltage is applied to the semiconductor element by the arithmetic operation control with a short time constant, outputting a constant margin angle control signal and setting the minimum phase angle to 90 degrees. Is input, and a constant margin angle control signal is output by being controlled by a long time constant and a minimum phase angle is set to 90 degrees. The minimum value selection circuit includes the high speed constant margin angle control circuit and the low speed constant angle control circuit. The minimum value of the constant margin angle control signal of the margin angle control circuit is selected.
【0014】前述の目的を達成するために、請求項5に
対応する発明は、請求項1記載の定余裕角制御回路が、
高速定余裕角制御回路と、低速定余裕角制御回路と、最
小値選択回路からなり、前記高速定余裕角制御回路は前
記半導体素子に逆電圧が印加されるとき発生する信号を
入力し、かつ短い時定数で演算制御され定余裕角制御信
号を出力するものであり、前記低速定余裕角制御回路は
前記半導体素子に逆電圧が印加されるとき発生する信号
を入力し、かつ長い時定数で演算制御され定余裕角制御
信号を出力するものであり、前記最小値選択回路は前記
高速定余裕角制御回路および前記低速定余裕角制御回路
の定余裕角制御信号の最小値を選択し、この選択された
最小値でを前記定電圧制御回路の出力を制限するもので
ある。In order to achieve the above-mentioned object, the invention corresponding to claim 5 is the constant margin angle control circuit according to claim 1,
It comprises a high-speed constant margin angle control circuit, a low-speed constant margin angle control circuit, and a minimum value selection circuit, and the high-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and The low-speed constant margin angle control circuit is operated and controlled by a short time constant to output a constant margin angle control signal, and the low-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element and has a long time constant. The constant margin angle control signal is arithmetically controlled and output, and the minimum value selection circuit selects the minimum value of the constant margin angle control signals of the high speed constant margin angle control circuit and the low speed constant margin angle control circuit. The output of the constant voltage control circuit is limited by the selected minimum value.
【0015】[0015]
【作用】請求項1に対応する発明によれば、交直変換器
の制御装置に有する定余裕角制御回路として、交流系統
事故時には高速定余裕角制御回路により速く制御角を進
めて転流失敗の継続を防止し、事故回復後は低速定余裕
角制御回路によりゆっくり制御角を戻すように構成する
ことにより、制御角の戻しすぎで再度転流失敗が発生す
ることを防止できる。According to the invention corresponding to claim 1, as the constant margin angle control circuit included in the control device for the AC / DC converter, the high-speed constant margin angle control circuit rapidly advances the control angle to prevent commutation failure when an AC system fault occurs. It is possible to prevent the commutation failure from occurring again due to the excessive return of the control angle by preventing the continuation and slowly returning the control angle by the low speed constant margin angle control circuit after the accident recovery.
【0016】又、請求項2に対応する発明によれば、請
求項1記載の交直変換器の制御装置に有する定余裕角制
御回路として、高速定余裕角制御回路の出力と低速定余
裕角制御回路を、転流失敗検出信号により予め決められ
た位相制御進め信号を出力する回路の出力で制限するよ
うにしたので、交流系統事故期間が短い場合でも、制御
位相進め回路により速く制御角を進めて転流失敗の継続
を防止し、事故回復後は低速定余裕角制御回路より充分
小さい出力からゆっくり制御角を戻して、制御角の戻し
すぎで再度転流失敗が発生することを防止できる。Further, according to the invention corresponding to claim 2, as the constant margin angle control circuit included in the controller of the AC / DC converter according to claim 1, the output of the high speed constant margin angle control circuit and the low speed constant margin angle control are provided. Since the circuit is limited by the output of the circuit that outputs the predetermined phase control advance signal based on the commutation failure detection signal, the control phase advance circuit advances the control angle faster even when the AC system fault period is short. Therefore, it is possible to prevent the commutation failure from continuing, and to slowly return the control angle from an output that is sufficiently smaller than the low-speed constant margin angle control circuit after the accident recovery, and to prevent the commutation failure from occurring again due to the excessive return of the control angle.
【0017】さらに、請求項3に対応する発明によれ
ば、請求項1記載の交直変換器の制御装置に有する定余
裕角制御回路として、低速定余裕角制御回路の出力を高
速定余裕角制御回路の出力で制限するようにしたので、
最小値選択回路がなくても交流系統事故時には高速定余
裕角制御回路により速く制御角を進めて転流失敗の継続
を防止し、事故回復後は低速定余裕角制御回路によりゆ
っくり制御角を戻して制御角の戻しすぎで再度転流失敗
が発生することを防止できる。Further, according to the invention corresponding to claim 3, as the constant margin angle control circuit included in the controller of the AC / DC converter according to claim 1, the output of the low speed constant margin angle control circuit is controlled by the high speed constant margin angle control. Since it is limited by the output of the circuit,
Even if there is no minimum value selection circuit, in the event of an AC system failure, the high-speed constant margin angle control circuit advances the control angle quickly to prevent continuation of commutation failure, and after the accident recovery, the low-speed constant margin angle control circuit slowly returns the control angle. It is possible to prevent the commutation failure from occurring again due to the excessive return of the control angle.
【0018】又、請求項4に対応する発明によれば、請
求項1記載の交直変換器の制御装置に有する定余裕角制
御回路として、高速定余裕角制御回路と、低速定余裕角
制御回路の、最小位相制御角を90°にすることによ
り、事故期間中定余裕角制御回路の出力が90°をした
まわって潮流が反転することを防止できる。Further, according to the invention corresponding to claim 4, a constant margin angle control circuit and a low speed constant margin angle control circuit are provided as the constant margin angle control circuit included in the controller of the AC / DC converter according to claim 1. By setting the minimum phase control angle to 90 °, it is possible to prevent the output of the constant margin angle control circuit from being 90 ° during the accident period and to prevent the power flow from being reversed.
【0019】請求項5に対応する発明によれば、請求項
1記載の交直変換器の制御装置に有する定余裕角制御回
路として、高速定余裕角制御回路と低速定余裕角制御回
路との最小値選択回路の出力で、定電圧制御回路の出力
を制限することにより、交流系統事故中の定電圧制御回
路の制御角を一定値以下に抑制でき、交流系統事故回復
後に定電圧制御回路の制御角が大きく出力されて直流電
圧がオーバーシュートすることを防止できる。According to the invention corresponding to claim 5, the constant margin angle control circuit included in the controller of the AC / DC converter according to claim 1 is a minimum of a high speed constant margin angle control circuit and a low speed constant margin angle control circuit. By limiting the output of the constant voltage control circuit with the output of the value selection circuit, the control angle of the constant voltage control circuit during an AC system fault can be suppressed below a certain value, and the constant voltage control circuit can be controlled after the AC system fault is recovered. It is possible to prevent the DC voltage from overshooting due to a large angle output.
【0020】[0020]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。 <第1実施例> (第1実施例の構成)本発明の請求項1に対応する第1
実施例の構成を図1に示しているが、定余裕角制御回路
100の構成のみが図9とは異る。図1中既に説明済み
の図9と同一の構成、これ以外の点は図9と同一である
ので、ここでは図9と同一部分には同一の符号を付し説
明を省略する。定余裕角制御回路100は図1に示すよ
うに、高速定余裕角制御回路(高速AγR)83と低速
定余裕角制御回路(低速AγR)84と最小値選択回路
(MIN)91から構成されている。Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> (Structure of the first embodiment) The first embodiment corresponding to claim 1 of the present invention.
Although the configuration of the embodiment is shown in FIG. 1, only the configuration of the constant margin angle control circuit 100 differs from that of FIG. 1 is the same as that of FIG. 9 already described in FIG. 1, and the other points are the same as those of FIG. 9, and therefore, the same parts as those of FIG. As shown in FIG. 1, the constant margin angle control circuit 100 includes a high speed constant margin angle control circuit (high speed AγR) 83, a low speed constant margin angle control circuit (low speed AγR) 84, and a minimum value selection circuit (MIN) 91. There is.
【0021】これらの機能は次の通りである。高速Aγ
R83は、短い時定数で演算を行い定余裕角制御信号b
を出力する定余裕角制御回路である。低速AγR84
は、長い時定数で演算を行い定余裕角制御信号cを出力
する定余裕角制御回路である。最小値選択回路91は、
2つの定余裕角制御回路83,84の出力b,cのうち
の小さい方を選択して出力信号dを出力する回路であ
る。These functions are as follows. High speed Aγ
R83 performs a calculation with a short time constant, and a constant margin angle control signal b
Is a constant margin angle control circuit that outputs Low speed AγR84
Is a constant margin angle control circuit that performs a calculation with a long time constant and outputs a constant margin angle control signal c. The minimum value selection circuit 91
This is a circuit that selects the smaller one of the outputs b and c of the two constant margin angle control circuits 83 and 84 and outputs the output signal d.
【0022】(第1実施例の作用)本実施例によれば、
定余裕角制御回路(AγR)100を高速AγR83
と、低速AγR84と、最小値選択回路91とで構成す
ることによって、交流系統事故時には高速AγR83で
制御角を速く進めることができ、事故回復後は低速Aγ
R84で制御角をゆっくり戻すことができる。(Operation of First Embodiment) According to the present embodiment,
The constant margin angle control circuit (AγR) 100 is connected to the high-speed AγR83
And the low speed AγR84 and the minimum value selection circuit 91, the control angle can be advanced rapidly by the high speed AγR83 in the case of an AC system accident, and the low speed AγR can be recovered after the accident recovery.
The control angle can be slowly returned with R84.
【0023】図2は本発明を用いた場合の制御装置の交
流系統事故時の制御信号のタイムチャートである。交流
系統に時刻t1で事故が発生し、時刻t2で回復した場
合を考える。時刻t1にて交流系統事故が発生し転流失
敗が生じると、変換器にかかる逆電圧期間γ減少し、ま
ず高速AγR83の出力が最小位相制御角αminまで
短時間に位相を進め、変換器は最小値選択回路91によ
り選択された高速AγR83の出力で制御される。FIG. 2 is a time chart of a control signal at the time of an AC system fault of the control device using the present invention. Consider a case where an accident occurs in the AC system at time t1 and the system recovers at time t2. When an AC system fault occurs at time t1 and commutation failure occurs, the reverse voltage period γ applied to the converter decreases, and the output of the high-speed AγR83 advances the phase to the minimum phase control angle αmin in a short time. It is controlled by the output of the high speed AγR 83 selected by the minimum value selection circuit 91.
【0024】時刻t2にて事故が回復し、交流系統電圧
が戻ると逆電圧期間γが増加するため、高速AγR83
の出力は最大位相制御角方向に戻る。低速AγR84も
最大位相制御角方向に戻るが時定数が長いため比較的ゆ
っくり戻る。At time t2, when the accident is recovered and the AC system voltage returns, the reverse voltage period γ increases, so that the high speed AγR83
Output returns to the maximum phase control angle direction. The low-speed AγR84 also returns in the maximum phase control angle direction, but returns relatively slowly due to the long time constant.
【0025】(第1実施例の効果)時刻t1にて交流系
統事故が発生すると、高速AγR83により制御角を短
時間で最小位相制御角まで進めることができ、交流系統
事故中の転流失敗継続を防止できる。(Effect of First Embodiment) When an AC system accident occurs at time t1, the control angle can be advanced to the minimum phase control angle in a short time by the high speed AγR83, and commutation failure continues during the AC system accident. Can be prevented.
【0026】また、時刻t2にて事故が回復し、交流系
統電圧が戻って逆電圧期間γが急速に増加しても、時定
数の長い低速AγR84の出力がゆっくり戻るため、事
故回復後の波形歪による転流失敗の再発を防止できる。Further, even if the accident is recovered at time t2, the AC system voltage returns and the reverse voltage period γ increases rapidly, the output of the low speed AγR84 having a long time constant returns slowly, so that the waveform after the accident recovery Recurrence of commutation failure due to strain can be prevented.
【0027】高速AγR83及び低速AγR84の演算
回路としては、比例演算、一次遅れ演算、一次進み遅れ
演算、積分演算等が考えられる。そのいずれを選択する
かは、系統条件、事故条件によって異なる。高速AγR
83を比例演算で行うと、逆電圧期間γの減少に伴い遅
れなく制御角を最小にできるので良い。低速AγR84
は、徐々に制御角を大きい方向に戻すことが望ましいの
で、時定数を長くした一次遅れ演算か、または積分演算
で行うと良い。As the arithmetic circuit for the high speed AγR83 and the low speed AγR84, a proportional calculation, a first-order lag calculation, a first-order lead-lag calculation, an integral calculation, etc. can be considered. Which one is selected depends on the system condition and the accident condition. High speed AγR
If 83 is calculated by a proportional calculation, the control angle can be minimized without delay as the reverse voltage period γ decreases. Low speed AγR84
Since it is desirable to gradually return the control angle to the larger direction, it is preferable to perform the first-order delay calculation with a long time constant or the integral calculation.
【0028】<第2実施例> (第2実施例の構成)本発明の請求項2に対応する第2
実施例の構成を図3に示す。図3中既に説明済みの図1
と同一の構成部分は同一の符号を付し説明を省略する。
図1と異る点はβ進め制御回路86を新たに追加した点
であり、これは交流系統事故が発生すると図には示して
いない保護装置から転流失敗検出信号を入力し、高速A
γR83と低速AγR84の出力を一時的に制限する。<Second Embodiment> (Configuration of Second Embodiment) Second embodiment corresponding to claim 2 of the present invention
The configuration of the embodiment is shown in FIG. FIG. 1 already described in FIG.
The same components as in FIG.
The difference from FIG. 1 is that a β advance control circuit 86 is newly added. This is because when a AC system accident occurs, a commutation failure detection signal is input from a protection device not shown in the figure, and high speed A
The outputs of γR83 and low-speed AγR84 are temporarily limited.
【0029】(第2実施例の作用)本実施例によれば、
高速AγR83の出力と、低速AγR84の出力をβ進
め制御回路86の出力で制限することで、交流系統事故
時には転流失敗検出信号により高速AγR83と低速A
γR84の制御角をより速く進めることができ、事故回
復後は低速AγR84で制御角をゆっくり戻すことがで
きる。(Operation of Second Embodiment) According to this embodiment,
By limiting the output of the high-speed AγR83 and the output of the low-speed AγR84 with the output of the β advance control circuit 86, the high-speed AγR83 and the low-speed AγR83 and the low-speed A
The control angle of γR84 can be advanced faster, and after recovery from the accident, the control angle can be slowly returned by low-speed AγR84.
【0030】図4は本発明を用いた場合の制御装置の交
流系統事故時の制御信号のタイムチャートである。交流
系統に時刻t1で事故が発生し、時刻t2で回復した場
合を考える。時刻t1にて交流系統事故が発生し転流失
敗が生じると、まずβ進め制御回路が働き、高速AγR
83と低速AγR84の制御角を瞬時に120°まで進
める。その後変換器にかかる逆電圧期間γの減少によ
り、高速AγR83及び低速AγR84は最小位相制御
角αmin方向に進む。FIG. 4 is a time chart of a control signal when an AC system fault occurs in the control device when the present invention is used. Consider a case where an accident occurs in the AC system at time t1 and the system recovers at time t2. When an AC system accident occurs at time t1 and a commutation failure occurs, the β advance control circuit operates first, and the high speed AγR
The control angle of 83 and the low speed AγR84 is instantly advanced to 120 °. After that, due to the decrease of the reverse voltage period γ applied to the converter, the high speed AγR83 and the low speed AγR84 advance toward the minimum phase control angle αmin.
【0031】時刻t2にて事故が回復し、交流系統電圧
が戻ると逆電圧期間γが増加するため、高速AγR83
の出力は最大位相制御角方向に戻る。低速AγR84も
最大位相制御角方向に戻るが時定数が長いため比較的ゆ
っくり戻る。At time t2, when the accident is recovered and the AC system voltage returns, the reverse voltage period γ increases, so the high speed AγR83
Output returns to the maximum phase control angle direction. The low-speed AγR84 also returns in the maximum phase control angle direction, but returns relatively slowly due to the long time constant.
【0032】(第2実施例の効果)第2実施例は図4の
タイムチャートに示すように、高速AγR83及び低速
AγR84の出力を、第1実施例の時よりも速くαmi
n方向に進めることができるため、変換器の逆電圧期間
をすばやく確保でき、転流失敗からの回復がはやまり、
交流系統事故中でもある程度の電力を送ることが可能と
なる。また、交流系統事故が短時間で回復した場合で
も、低速AγR84の出力は120°から徐々に戻るた
め、回復後の波形歪による転流失敗の再発も防止でき
る。(Effects of Second Embodiment) In the second embodiment, as shown in the time chart of FIG. 4, the outputs of the high speed AγR83 and the low speed AγR84 are changed to αmi faster than in the first embodiment.
Since it can proceed in the n direction, the reverse voltage period of the converter can be secured quickly, recovery from commutation failure is stopped,
It is possible to send a certain amount of power even during an AC system accident. Further, even if the AC system accident is recovered in a short time, the output of the low speed AγR84 gradually returns from 120 °, so that the commutation failure due to the waveform distortion after the recovery can be prevented from recurring.
【0033】<第3実施例> (第3実施例の構成)本発明の請求項3に対応する第3
実施例の構成を図5に示す。図5中既に説明済みの図1
と同一の構成部分は同一の符号を付し説明を省略する
が、図1とは異る点は低速AγR84の出力を高速Aγ
R83の出力で制限するように構成した点である。<Third Embodiment> (Structure of Third Embodiment) Third embodiment corresponding to claim 3 of the present invention.
The configuration of the embodiment is shown in FIG. FIG. 1 already described in FIG.
1 are denoted by the same reference numerals and the description thereof will be omitted. However, the difference from FIG. 1 is that the output of the low speed AγR 84 is the same as the high speed Aγ.
The point is that the output is limited by R83.
【0034】(第3実施例の作用)第3実施例によれ
ば、第1実施例の最小値選択回路91がなくても、交流
系統事故時には高速AγR83で制御角を速く進めるこ
とができ、事故回復後は低速AγR84で制御角をゆっ
くり戻すことができる。(Operation of Third Embodiment) According to the third embodiment, even if the minimum value selection circuit 91 of the first embodiment is not provided, the control angle can be advanced rapidly by the high speed AγR83 in the event of an AC system fault, After the accident recovery, the control angle can be slowly returned by the low speed AγR84.
【0035】(第3実施例の効果)交流系統事故が発生
すると、高速AγR83により制御角を短時間で最小位
相制御角まで進めることができ、交流系統事故中の転流
失敗継続を防止できる。また、事故が回復し、交流系統
電圧が戻って逆電圧期間γが急速に増加しても、時定数
の長い低速AγR84の出力が第1実施例よりも小さい
値からゆっくり戻るため、事故回復後の波形歪による転
流失敗の再発防止効果が大きい。(Effect of the third embodiment) When an AC system accident occurs, the control angle can be advanced to the minimum phase control angle in a short time by the high speed AγR83, and continuous commutation failure during the AC system accident can be prevented. Further, even if the accident is recovered, the AC system voltage is returned, and the reverse voltage period γ is rapidly increased, the output of the low speed AγR84 having a long time constant slowly returns from a value smaller than that in the first embodiment. The effect of preventing recurrence of commutation failure due to waveform distortion is large.
【0036】<第4実施例> (第4実施例の構成)本発明の請求項4に対応する第4
実施例の構成を図6に示す。図6中既に説明済みの図1
と同一の構成部分は同一の符号を付し説明を省略する
が、図1と異る点は高速AγR83と低速AγR84の
最小位相制御角を90°にした点である。<Fourth Embodiment> (Structure of Fourth Embodiment) A fourth embodiment corresponding to claim 4 of the present invention.
The configuration of the embodiment is shown in FIG. FIG. 1 already described in FIG.
Although the same components as in FIG. 1 are assigned the same reference numerals and explanations thereof are omitted, the difference from FIG. 1 is that the minimum phase control angles of the high speed AγR83 and the low speed AγR84 are set to 90 °.
【0037】(第4実施例の作用)第4実施例によれ
ば、交流系統事故により逆電圧期間が減少しても制御角
が90°までしか進まない。(Operation of Fourth Embodiment) According to the fourth embodiment, the control angle advances only to 90 ° even if the reverse voltage period is reduced due to an AC system fault.
【0038】(第4実施例の効果)低速AγR84と高
速AγR83の出力の最小位相制御角を90°にするこ
とにより、交流系統事故中逆電圧期間が減少してもAγ
Rの位相制御角が90°までしか進まないため、潮流が
反転する事を防止できる。(Effect of the Fourth Embodiment) By setting the minimum phase control angle of the outputs of the low speed AγR84 and the high speed AγR83 to 90 °, even if the reverse voltage period during the AC system fault decreases, Aγ
Since the R phase control angle advances only up to 90 °, it is possible to prevent the power flow from reversing.
【0039】<第5実施例> (第5実施例の構成)本発明の請求項5に対応する第5
実施例の構成を図7に示す。図7中既に説明済みの図1
と同一の構成部分は同一の符号を付し説明を省略する
が、図1と異る点は高速AγR83と低速AγR84と
の最小値選択回路91の出力で、AVR82の出力を制
限するように構成したものである。<Fifth Embodiment> (Structure of the fifth embodiment) The fifth embodiment of the invention.
The configuration of the embodiment is shown in FIG. FIG. 1 already described in FIG.
1 are denoted by the same reference numerals and description thereof will be omitted. However, the difference from FIG. 1 is the output of the minimum value selection circuit 91 of the high speed AγR83 and the low speed AγR84, and the output of the AVR82 is limited. It was done.
【0040】(第5実施例の作用)第5実施例によれ
ば、交流系統事故が発生して直流電圧が小さくなった時
でもAVR82の出力が最大位相制御角方向へ動くこと
を防止している。(Operation of the Fifth Embodiment) According to the fifth embodiment, the output of the AVR 82 is prevented from moving in the maximum phase control angle direction even when the AC system fault occurs and the DC voltage becomes small. There is.
【0041】(第5実施例の効果)本発明は交流系統事
故などにより、直流電圧が小さくなった時にAVR82
の出力が最大制御位相角方向へ動くことを防止している
ので、交流系統事故回復後の制御をAVR82で行え、
図1の第1実施例より安定した制御が実現できる。(Effect of Fifth Embodiment) The present invention is directed to the AVR82 when the DC voltage becomes small due to an AC system accident or the like.
Since the output of is prevented from moving in the direction of the maximum control phase angle, control after the AC system accident recovery can be performed by the AVR82,
More stable control can be realized than in the first embodiment of FIG.
【0042】[0042]
【発明の効果】本発明によれば、交直変換システムの高
速、且つ安定な運転を継続できる交直変換器の制御装置
を提供することができる。具体的には、請求項1に対応
する発明によれば、交流系統事故時には高速定余裕角制
御回路で制御角を進めて転流失敗の継続を防止でき、事
故回復後は低速定余裕角制御回路で制御角をゆっくり戻
して再度転流失敗が起こるのを防止できる。According to the present invention, it is possible to provide a control device for an AC / DC converter capable of continuing high-speed and stable operation of the AC / DC converter system. Specifically, according to the invention corresponding to claim 1, in the case of an AC system accident, the control angle can be advanced by the high speed constant margin angle control circuit to prevent continuation of commutation failure, and after the accident recovery, the low speed constant margin angle control is performed. The circuit can slowly return the control angle to prevent commutation failure again.
【0043】請求項2に対応する発明によれば、制御位
相進め制御回路の出力により高速定余裕角制御回路、低
速定余裕角制御回路の出力を瞬時に120°まで進めて
いるため、変換器の逆電圧期間をより速く確保でき、交
流系統事故中でもある程度の電力を送ることができる。According to the invention corresponding to claim 2, since the outputs of the high-speed constant margin angle control circuit and the low-speed constant margin angle control circuit are instantaneously advanced to 120 ° by the output of the control phase advance control circuit, the converter The reverse voltage period of can be secured faster, and a certain amount of power can be sent even during an AC system accident.
【0044】請求項3に対応する発明によれば、低速定
余裕角制御回路の出力を高速定余裕角制御回路の出力で
制限しているため、最小値選択回路を必要とせずに請求
項1の効果が期待できる。According to the invention corresponding to claim 3, since the output of the low speed constant margin angle control circuit is limited by the output of the high speed constant margin angle control circuit, the minimum value selection circuit is not required. The effect of can be expected.
【0045】請求項4に対応する発明によれば、定余裕
角制御回路の出力が90°までしか進まないため、交流
系統事故時の不要な潮流反転を防止できる。請求項5に
対応する発明によれば、2つの定余裕角制御回路の出力
を最小値選択回路の出力で定電圧制御回路の出力を制限
するため交流系統事故回復後の制御を定電圧制御回路で
より安定に行える。According to the invention according to claim 4, since the output of the constant margin angle control circuit advances only to 90 °, unnecessary power flow reversal at the time of an AC system fault can be prevented. According to the invention corresponding to claim 5, since the outputs of the two constant margin angle control circuits are limited by the output of the minimum value selection circuit, the output after the AC system fault recovery is controlled by the constant voltage control circuit. Can be more stable with.
【図1】本発明による交直変換器の制御装置の第1実施
例を示すブロック図。FIG. 1 is a block diagram showing a first embodiment of a control device for an AC / DC converter according to the present invention.
【図2】図1の動作を説明するための制御信号のタイム
チャート。FIG. 2 is a time chart of control signals for explaining the operation of FIG.
【図3】本発明による交直変換器の制御装置の第2実施
例を示すブロック図。FIG. 3 is a block diagram showing a second embodiment of a control device for an AC / DC converter according to the present invention.
【図4】図3の動作を説明するための制御信号のタイム
チャート。FIG. 4 is a time chart of control signals for explaining the operation of FIG.
【図5】本発明による交直変換器の制御装置の第3実施
例を示すブロック図。FIG. 5 is a block diagram showing a third embodiment of a control device for an AC / DC converter according to the present invention.
【図6】本発明による交直変換器の制御装置の第4実施
例を示すブロック図。FIG. 6 is a block diagram showing a fourth embodiment of a control device for an AC / DC converter according to the present invention.
【図7】本発明による交直変換器の制御装置の第5実施
例を示すブロック図。FIG. 7 is a block diagram showing a fifth embodiment of a control device for an AC / DC converter according to the present invention.
【図8】従来の交直変換システムの系統図。FIG. 8 is a system diagram of a conventional AC / DC conversion system.
【図9】従来の交直変換器の制御装置の1例を示すブロ
ック図。FIG. 9 is a block diagram showing an example of a conventional control device for an AC / DC converter.
【図10】従来の制御信号のタイムチャート。FIG. 10 is a time chart of a conventional control signal.
10,11…交流系統、20,21…変圧器、30,3
1…変換器、40,41…直流リアクトル、50,51
…直流線路、81…定電流制御回路(ACR)、82…
定電圧制御回路(AVR)、83…高速定余裕角制御回
路(高速AγR)、84…低速定余裕角制御回路(低速
AγR)、85…定余裕角制御回路(従来のAγR)、
86…β進め制御回路、88,89…比較器、91,9
2…最小値選択回路、93…位相制御回路、100…定
余裕角制御回路(AγR)。10, 11 ... AC system, 20, 21 ... Transformer, 30, 3
1 ... Converter, 40, 41 ... DC reactor, 50, 51
... DC line, 81 ... Constant current control circuit (ACR), 82 ...
Constant voltage control circuit (AVR), 83 ... High speed constant margin angle control circuit (high speed AγR), 84 ... Low speed constant margin angle control circuit (low speed AγR), 85 ... Constant margin angle control circuit (conventional AγR),
86 ... β advance control circuit, 88, 89 ... Comparator, 91, 9
2 ... Minimum value selection circuit, 93 ... Phase control circuit, 100 ... Constant margin angle control circuit (AγR).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野林 正盛 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 山地 幸司 香川県高松市丸の内2番5号 四国電力株 式会社内 (72)発明者 岡部 孝継 東京都中央区銀座六丁目15番1号 電源開 発株式会社内 (72)発明者 江川 勝美 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Masamori Nobayashi, Masamori Nobayashi, 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture, Kansai Electric Power Co., Inc. (72) Koji Yamaji, 2-5 Marunouchi, Takamatsu City, Kagawa Prefecture Electric power company (72) Inventor Takatsugu Okabe 6-15-1, Ginza, Chuo-ku, Tokyo Power source development Co., Ltd. (72) Inventor Katsumi Egawa No. 1, Toshiba-cho, Fuchu-shi, Tokyo Toshiba Fuchu factory Co., Ltd.
Claims (5)
れぞれ異なる交流系統に接続され、交流電力を直流電力
に変換する順変換器と、前記直流電力を交流電力に変換
する逆変換器からなる交直変換器と、 この交直変換器の直流回路に流れる直流電流と直流電流
基準の偏差に基づき電流制御信号を出力する定電流制御
回路と、 前記交直変換器の直流回路に印加される直流電圧と直流
電圧基準の偏差に基づき電圧制御信号を出力する定電圧
制御回路と、 前記順変換器および逆変換器の少なくとも一方を構成し
ている半導体素子に逆電圧が印加されるとき発生する信
号を入力し、定余裕角制御信号を出力する定余裕角制御
回路と、 前記定電流制御回路と前記定電圧制御回路と前記定余裕
角制御回路の出力信号のうちの最小値に基づき、前記半
導体素子に有する制御端子に制御信号を供給する交直変
換器の制御装置において、 前記定余裕角制御回路は、高速定余裕角制御回路と、低
速定余裕角制御回路と、最小値選択回路からなり、 前記高速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ短い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記低速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ長い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記最小値選択回路は前記高速定余裕角制御回路および
前記低速定余裕角制御回路の定余裕角制御信号の最小値
を選択するものである交直変換器の制御装置。1. A forward converter that is connected to a common DC circuit and that is connected to different AC systems on different AC sides and that converts AC power into DC power and an inverse converter that converts the DC power into AC power. An AC / DC converter, a constant current control circuit that outputs a current control signal based on the difference between the DC current flowing in the DC circuit of the AC / DC converter and the DC current reference, and a DC voltage applied to the DC circuit of the AC / DC converter. A constant voltage control circuit that outputs a voltage control signal based on a deviation of a DC voltage reference, and a signal that is generated when a reverse voltage is applied to a semiconductor element that constitutes at least one of the forward converter and the reverse converter is input. A constant margin angle control circuit that outputs a constant margin angle control signal, and the semiconductor device based on the minimum value of the output signals of the constant current control circuit, the constant voltage control circuit, and the constant margin angle control circuit. In a controller of an AC / DC converter that supplies a control signal to a control terminal of an element, the constant margin angle control circuit includes a high speed constant margin angle control circuit, a low speed constant margin angle control circuit, and a minimum value selection circuit, The high-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and outputs a constant margin angle control signal which is arithmetically controlled with a short time constant. The angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element and outputs a constant margin angle control signal which is arithmetically controlled with a long time constant, and the minimum value selection circuit is the high speed A controller of an AC / DC converter, which selects a minimum value of a constant margin angle control circuit and a constant margin angle control signal of the low speed constant margin angle control circuit.
れぞれ異なる交流系統に接続され、交流電力を直流電力
に変換する順変換器と、前記直流電力を交流電力に変換
する逆変換器からなる交直変換器と、 この交直変換器の直流回路に流れる直流電流と直流電流
基準の偏差に基づき電流制御信号を出力する定電流制御
回路と、 前記交直変換器の直流回路に印加される直流電圧と直流
電圧基準の偏差に基づき電圧制御信号を出力する定電圧
制御回路と、 前記順変換器および逆変換器の少なくとも一方を構成し
ている半導体素子に逆電圧が印加されるとき発生する信
号を入力し、定余裕角制御信号を出力する定余裕角制御
回路と、 前記定電流制御回路と前記定電圧制御回路と前記定余裕
角制御回路の出力信号のうちの最小値に基づき、前記半
導体素子に有する制御端子に制御信号を供給する交直変
換器の制御装置において、 前記定余裕角制御回路は、高速定余裕角制御回路と、低
速定余裕角制御回路と、制御位相進め回路と、最小値選
択回路からなり、 前記高速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ短い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記低速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ長い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記制御位相進め回路は転流失敗検出信号を入力して前
記高速定余裕角制御回路および低速定余裕角制御回路の
定余裕角制御信号の出力を制限する信号を出力するもの
であり、 前記最小値選択回路は前記高速定余裕角制御回路および
前記低速定余裕角制御回路の定余裕角制御信号の最小値
を選択するものである交直変換器の制御装置。2. A forward converter that is connected to a common DC circuit and that is connected to different AC systems on different AC sides, and that includes a forward converter that converts AC power into DC power and an inverse converter that converts the DC power into AC power. An AC / DC converter, a constant current control circuit that outputs a current control signal based on the difference between the DC current flowing in the DC circuit of the AC / DC converter and the DC current reference, and a DC voltage applied to the DC circuit of the AC / DC converter. A constant voltage control circuit that outputs a voltage control signal based on a deviation of a DC voltage reference, and a signal that is generated when a reverse voltage is applied to a semiconductor element that constitutes at least one of the forward converter and the reverse converter is input. A constant margin angle control circuit that outputs a constant margin angle control signal, and the semiconductor device based on the minimum value of the output signals of the constant current control circuit, the constant voltage control circuit, and the constant margin angle control circuit. In a controller of an AC / DC converter that supplies a control signal to a control terminal of an element, the constant margin angle control circuit includes a high speed constant margin angle control circuit, a low speed constant margin angle control circuit, a control phase advance circuit, and a minimum. The high-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and outputs a constant margin angle control signal which is arithmetically controlled with a short time constant. The low-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and outputs a constant margin angle control signal that is arithmetically controlled with a long time constant. The phase advance circuit inputs the commutation failure detection signal and outputs a signal for limiting the output of the constant margin angle control signal of the high speed constant margin angle control circuit and the low speed constant margin angle control circuit. Road control apparatus AC-DC converter and selects the minimum value of the high-speed constant margin angle control circuit and the constant margin angle control signal of the low-speed constant margin angle control circuit.
れぞれ異なる交流系統に接続され、交流電力を直流電力
に変換する順変換器と、前記直流電力を交流電力に変換
する逆変換器からなる交直変換器において、 前記交直変換器の直流回路に流れる直流電流と直流電流
基準の偏差に基づき電流制御信号を出力する定電流制御
回路と、 前記交直変換器の直流回路に印加される直流電圧と直流
電圧基準の偏差に基づき電圧制御信号を出力する定電圧
制御回路と、 前記順変換器および逆変換器の少なくとも一方を構成し
ている半導体素子に逆電圧が印加されるとき発生する信
号を入力し、定余裕角制御信号を出力する定余裕角制御
回路と、 前記定電流制御回路と前記定電圧制御回路と前記定余裕
角制御回路の出力信号のうちの最小値に基づき、前記半
導体素子に有する制御端子に制御信号を供給する交直変
換器の制御装置において、 前記定余裕角制御回路は、高速定余裕角制御回路と、低
速定余裕角制御回路とからなり、 前記高速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ短い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記低速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ長い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記低速定余裕角制御回路の定余裕角制御信号の出力
を、前記高速定余裕角制御回路の定余裕角制御信号の出
力で制限するものである交直変換器の制御装置。3. A forward converter that is connected to a common DC circuit and that is connected to different AC systems on different AC sides and that converts AC power into DC power and an inverse converter that converts the DC power into AC power. In the AC / DC converter, a constant current control circuit that outputs a current control signal based on a deviation between a DC current flowing in the DC circuit of the AC / DC converter and a DC current reference, and a DC voltage applied to the DC circuit of the AC / DC converter. A constant voltage control circuit that outputs a voltage control signal based on a deviation of a DC voltage reference, and a signal that is generated when a reverse voltage is applied to a semiconductor element that constitutes at least one of the forward converter and the reverse converter is input. A constant margin angle control circuit that outputs a constant margin angle control signal, based on the minimum value of the output signals of the constant current control circuit, the constant voltage control circuit, and the constant margin angle control circuit, In a controller of an AC / DC converter that supplies a control signal to a control terminal of a semiconductor element, the constant margin angle control circuit includes a high speed constant margin angle control circuit and a low speed constant margin angle control circuit. The angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and outputs a constant margin angle control signal which is arithmetically controlled with a short time constant, and the low speed constant margin angle control circuit is A signal generated when a reverse voltage is applied to the semiconductor element is input, and a constant margin angle control signal is output by being arithmetically controlled with a long time constant. The constant margin angle control of the low speed constant margin angle control circuit is performed. A controller for an AC / DC converter, which limits the output of a signal by the output of a constant margin angle control signal of the high-speed constant margin angle control circuit.
れぞれ異なる交流系統に接続され、交流電力を直流電力
に変換する順変換器と、前記直流電力を交流電力に変換
する逆変換器からなる交直変換器において、交流電力を
直流電力に変換する順変換器と、前記直流電力を交流電
力に変換する逆変換器からなる交直変換器において、 前記交直変換器の直流回路に流れる直流電流と直流電流
基準の偏差に基づき電流制御信号を出力する定電流制御
回路と、 前記交直変換器の直流回路に印加される直流電圧と直流
電圧基準の偏差に基づき電圧制御信号を出力する定電圧
制御回路と、 前記順変換器および逆変換器の少なくとも一方を構成し
ている半導体素子に逆電圧が印加されるとき発生する信
号を入力し、定余裕角制御信号を出力する定余裕角制御
回路と、 前記定電流制御回路と前記定電圧制御回路と前記定余裕
角制御回路の出力信号のうちの最小値に基づき、前記半
導体素子に有する制御端子に制御信号を供給する交直変
換器の制御装置において、 前記定余裕角制御回路は、高速定余裕角制御回路と、低
速定余裕角制御回路と、最小値選択回路からなり、 前記高速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ短い時定数
で演算制御され定余裕角制御信号を出力するとともに最
小位相角を90度にするものであり、 前記低速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ長い時定数
で演算制御され定余裕角制御信号を出力するとともに最
小位相角を90度にするものであり、 前記最小値選択回路は前記高速定余裕角制御回路および
前記低速定余裕角制御回路の定余裕角制御信号の最小値
を選択するものである交直変換器の制御装置。4. A forward converter that is connected to a common DC circuit and that is connected to different AC systems on different AC sides and that converts AC power into DC power and an inverse converter that converts the DC power into AC power. In the AC / DC converter, a forward / conversion converter that converts AC power into DC power and an inverse converter that converts the DC power into AC power, wherein a DC current and a DC current flowing in the DC circuit of the AC / DC converter are used. A constant current control circuit that outputs a current control signal based on the deviation of the current reference; and a constant voltage control circuit that outputs a voltage control signal based on the deviation of the DC voltage applied to the DC circuit of the AC / DC converter and the DC voltage reference. A constant margin angle control for inputting a signal generated when a reverse voltage is applied to a semiconductor element forming at least one of the forward converter and the inverse converter and outputting a constant margin angle control signal. Control circuit, based on the minimum value of the output signal of the constant current control circuit, the constant voltage control circuit and the constant margin angle control circuit of the AC-DC converter for supplying a control signal to the control terminal of the semiconductor element. In the control device, the constant margin angle control circuit includes a high-speed constant margin angle control circuit, a low-speed constant margin angle control circuit, and a minimum value selection circuit, and the high-speed constant margin angle control circuit applies a reverse voltage to the semiconductor element. A signal generated when being applied is input, a constant margin angle control signal is output by being arithmetically controlled with a short time constant, and a minimum phase angle is set to 90 degrees. A signal generated when a reverse voltage is applied to the element is input, and a constant margin angle control signal is output by being arithmetically controlled with a long time constant and a minimum phase angle is set to 90 degrees. Road control apparatus AC-DC converter and selects the minimum value of the high-speed constant margin angle control circuit and the constant margin angle control signal of the low-speed constant margin angle control circuit.
れぞれ異なる交流系統に接続され、交流電力を直流電力
に変換する順変換器と、前記直流電力を交流電力に変換
する逆変換器からなる交直変換器と、 この交直変換器の直流回路に流れる直流電流と直流電流
基準の偏差に基づき電流制御信号を出力する定電流制御
回路と、 前記交直変換器の直流回路に印加される直流電圧と直流
電圧基準の偏差に基づき電圧制御信号を出力する定電圧
制御回路と、 前記順変換器および逆変換器の少なくとも一方を構成し
ている半導体素子に逆電圧が印加されるとき発生する信
号を入力し、定余裕角制御信号を出力する定余裕角制御
回路と、 前記定電流制御回路と前記定電圧制御回路と前記定余裕
角制御回路の出力信号のうちの最小値に基づき、前記半
導体素子に有する制御端子に制御信号を供給する交直変
換器の制御装置において、 前記定余裕角制御回路は、高速定余裕角制御回路と、低
速定余裕角制御回路と、最小値選択回路からなり、 前記高速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ短い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記低速定余裕角制御回路は前記半導体素子に逆電圧が
印加されるとき発生する信号を入力し、かつ長い時定数
で演算制御され定余裕角制御信号を出力するものであ
り、 前記最小値選択回路は前記高速定余裕角制御回路および
前記低速定余裕角制御回路の定余裕角制御信号の最小値
を選択し、この選択された最小値で前記定電圧制御回路
の出力を制限するものである交直変換器の制御装置。5. A forward converter that is connected to a common DC circuit and that is connected to different AC systems on different AC sides and that converts AC power into DC power and an inverse converter that converts the DC power into AC power. An AC / DC converter, a constant current control circuit that outputs a current control signal based on the difference between the DC current flowing in the DC circuit of the AC / DC converter and the DC current reference, and a DC voltage applied to the DC circuit of the AC / DC converter. A constant voltage control circuit that outputs a voltage control signal based on a deviation of a DC voltage reference, and a signal that is generated when a reverse voltage is applied to a semiconductor element that constitutes at least one of the forward converter and the reverse converter is input. A constant margin angle control circuit that outputs a constant margin angle control signal, and the semiconductor device based on the minimum value of the output signals of the constant current control circuit, the constant voltage control circuit, and the constant margin angle control circuit. In a controller of an AC / DC converter that supplies a control signal to a control terminal of an element, the constant margin angle control circuit includes a high speed constant margin angle control circuit, a low speed constant margin angle control circuit, and a minimum value selection circuit, The high-speed constant margin angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element, and outputs a constant margin angle control signal which is arithmetically controlled with a short time constant. The angle control circuit inputs a signal generated when a reverse voltage is applied to the semiconductor element and outputs a constant margin angle control signal which is arithmetically controlled with a long time constant, and the minimum value selection circuit is the high speed In the AC / DC converter, the minimum value of the constant margin angle control signal of the constant margin angle control circuit and the low speed constant margin angle control circuit is selected, and the output of the constant voltage control circuit is limited by the selected minimum value. control Location.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11080195A JPH08308233A (en) | 1995-05-09 | 1995-05-09 | Controller for ac-dc converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11080195A JPH08308233A (en) | 1995-05-09 | 1995-05-09 | Controller for ac-dc converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08308233A true JPH08308233A (en) | 1996-11-22 |
Family
ID=14545005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11080195A Pending JPH08308233A (en) | 1995-05-09 | 1995-05-09 | Controller for ac-dc converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08308233A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017042018A (en) * | 2015-08-21 | 2017-02-23 | 株式会社東芝 | Power converter controller |
JP2022177890A (en) * | 2021-05-19 | 2022-12-02 | 株式会社日立製作所 | Line commutation type power converter control device and control method for the same |
-
1995
- 1995-05-09 JP JP11080195A patent/JPH08308233A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017042018A (en) * | 2015-08-21 | 2017-02-23 | 株式会社東芝 | Power converter controller |
JP2022177890A (en) * | 2021-05-19 | 2022-12-02 | 株式会社日立製作所 | Line commutation type power converter control device and control method for the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3311214B2 (en) | Control device for power converter | |
JPH08308233A (en) | Controller for ac-dc converter | |
JPH11155236A (en) | Method and system for compensating reactive power | |
JPS5915257B2 (en) | High voltage DC power transmission equipment | |
JP3314260B2 (en) | Power conversion device control method and device | |
JP3235331B2 (en) | Current control circuit | |
JP2001025171A (en) | Controller and phase detection circuit for self-excited ac-dc converter | |
JP3573514B2 (en) | Power converter | |
JP2000175463A (en) | Controller for voltage type self-excited ac-to-dc converter | |
JP2000245066A (en) | Control equipment of dc power transmission system | |
JP2781145B2 (en) | Power transmission control device | |
EP0279428B1 (en) | Electric motor control system | |
JP2553511B2 (en) | Control device for thyristor converter | |
JPH1023763A (en) | Controller for externally excited reverse inverter | |
JPS60156277A (en) | Controlling method for preventing continuous commutation failure | |
JPS59201635A (en) | Method of starting power converter | |
JP3276980B2 (en) | Control device for AC / DC converter | |
JPH05207650A (en) | Controller for dc transmission system | |
SU1515317A1 (en) | Thyratron electric drive | |
JPS6154824A (en) | Controller of ac/dc converter | |
JPS62239863A (en) | Multiple power source reduntant operation system | |
JP2994022B2 (en) | Control device for AC / DC converter | |
JPS59149736A (en) | Frequency controller of dc transmission | |
JPH0974668A (en) | Method and device for controlling dc power transmission | |
JPH08308234A (en) | Controller for ac-dc converter |