JPH08306903A - Semiconductor optical integrated element - Google Patents

Semiconductor optical integrated element

Info

Publication number
JPH08306903A
JPH08306903A JP12960095A JP12960095A JPH08306903A JP H08306903 A JPH08306903 A JP H08306903A JP 12960095 A JP12960095 A JP 12960095A JP 12960095 A JP12960095 A JP 12960095A JP H08306903 A JPH08306903 A JP H08306903A
Authority
JP
Japan
Prior art keywords
layer
substrate
optical
region
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12960095A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
良治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12960095A priority Critical patent/JPH08306903A/en
Publication of JPH08306903A publication Critical patent/JPH08306903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE: To cut down the current expansion for improving the element characteristics such as power consumption efficiency, heat generation, etc., by a method wherein a high resistant and semi-insulating semiconductor substrate is used as a substrate so as to make a region forming an active optoelectronic device of the substrate by implanting impurities to be a dopant for the formation of an active optoelectric device on a conductive layer. CONSTITUTION: Firstly, zinc is selectively diffused in the region forming a photoamplifier and the peripheral electrode so as to form a conductive layer. Later, respective layers of the amplifiers, i.e., a light guide layer 3, an active layer 4, another light guide layer 3, a clad layer 4, another light guide layer 3, a clad layer 5, an electrode layer 6 are formed by successive growing steps. Next, any other parts having the photoamplifier part are removed using photolithographic method and RIE method to form a optical waveguide layer 7 and a clad layer 8 repeatedly leaving the photoamplifier part. Later, an n side electrode 9 and a p side electrode 10 are formed respectively on the electrode contact layer 6 and on the substrate side conductive layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体を用いた光集積素
子、特に光導波路等の受動的光素子と光変調器、光増幅
器等の能動的光素子とを同一基板上に集積して形成する
光集積素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical integrated device using a semiconductor, in particular, a passive optical device such as an optical waveguide and an active optical device such as an optical modulator and an optical amplifier are formed on the same substrate. The present invention relates to an integrated optical device.

【0002】[0002]

【従来の技術】従来、電子デバイスを含まない光素子の
みの光集積素子では、基板としてn型もしくはp型の導
電性基板を用い、これに適当な金属薄膜を被着すること
により光集積素子内の光変調器、光増幅器等の能動的光
素子の共通電極とする構造がとられてきた。
2. Description of the Related Art Conventionally, in an optical integrated device including only an optical device that does not include an electronic device, an n-type or p-type conductive substrate is used as a substrate, and an appropriate metal thin film is attached to the substrate to form an optical integrated device. The structure has been adopted as a common electrode of active optical elements such as optical modulators and optical amplifiers in the above.

【0003】[0003]

【発明が解決しようとする課題】導電性基板を用いる従
来の方法の問題点を基板の種類ごとに説明する。まず、
p型基板を用いて光集積素子を作製すると、高濃度にド
ーピングしたp型基板への光のしみ出しによって光導波
路の伝搬損失が大きくなり、高品質の光集積素子を得る
ことが困難である。また、p型基板のドーパントが拡散
しやすい亜鉛であるため高温での結晶成長が困難であ
る。さらに、基板側を共通電極とする従来の構造では、
能動的光素子側に比べて基板側の電極面積が圧倒的に大
きいため能動的光素子に通電した場合に電流拡がりが起
こるが、p型基板を用いた場合には移動度が高い電子が
活性領域を決めることになるため、特に素子特性を悪化
させるという大きな問題がある。したがって、一般には
n型基板が多く用いられるが、この場合、電極面積が小
さいp側電極(基板側がn型なので能動的光素子側がp
型となる)の形成が難しく(特に、In P系)、良好な
オーミック電極の形成が困難である。さらに電流拡がり
の問題もp型基板ほどではないが存在し、消費電力、効
率や発熱等の面で問題となる。さらに、これらの問題点
は光素子の集積度が高くなると一層深刻となる。また極
性の異なる能動的光素子を同一基板に集積することが困
難である場合がある。本発明は前記問題点に鑑みてなさ
れたものであり、電流拡がりに対する本質的な解決方法
となるだけでなく、p型基板を用いる場合の長所とn型
基板を用いる場合の長所とを兼ね備えた構造をも実現で
き、かつ高密度集積にも有利な半導体光集積素子を提供
することにある。さらに本発明の半導体光集積素子によ
れば、同一基板上に極性の異なる能動的光素子を集積す
ることも極めて容易となる。
Problems of the conventional method using the conductive substrate will be described for each type of substrate. First,
When an optical integrated device is manufactured using a p-type substrate, the propagation loss of the optical waveguide increases due to the leakage of light into the p-type substrate that is highly doped, and it is difficult to obtain a high-quality optical integrated device. . Further, since the dopant of the p-type substrate is zinc, which is easy to diffuse, crystal growth at high temperature is difficult. Furthermore, in the conventional structure in which the substrate side is the common electrode,
Since the electrode area on the substrate side is overwhelmingly larger than that on the active optical element side, current spreading occurs when the active optical element is energized, but when the p-type substrate is used, electrons with high mobility are activated. Since the area is determined, there is a big problem that the element characteristics are deteriorated. Therefore, an n-type substrate is generally used in many cases, but in this case, a p-side electrode having a small electrode area (the substrate side is n-type, the active optical element side is
It is difficult to form a mold (especially, InP type), and it is difficult to form a good ohmic electrode. Further, there is a problem of current spreading, though not so much as that of the p-type substrate, and it becomes a problem in terms of power consumption, efficiency, heat generation and the like. Furthermore, these problems become more serious as the degree of integration of optical devices increases. In addition, it may be difficult to integrate active optical elements having different polarities on the same substrate. The present invention has been made in view of the above problems, and is not only an essential solution to current spreading but also has the advantages of using a p-type substrate and the advantages of using an n-type substrate. An object of the present invention is to provide a semiconductor optical integrated device that can realize a structure and is advantageous for high-density integration. Further, according to the semiconductor optical integrated device of the present invention, it becomes extremely easy to integrate active optical devices having different polarities on the same substrate.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明は、基板として高抵抗で半絶縁性の半導体基板
を用い、基板の能動的光素子を形成する領域、もしくは
前記領域とその周辺領域のみを、ドーパントとなる不純
物の注入により導電層とし、その上に能動的光素子を形
成することにより能動的光素子の電気的な通電を確保す
ることを基本的な特徴とする。
In order to solve the above-mentioned problems, the present invention uses a semiconductor substrate having a high resistance and a semi-insulating property as a substrate, and a region in which an active optical element is formed on the substrate, or the region and its region. A basic feature is that only the peripheral region is made into a conductive layer by implanting impurities serving as dopants, and an active optical element is formed on the conductive layer to ensure electrical conduction of the active optical element.

【0005】[0005]

【作用】従来技術のように基板側全体を導電層とするの
ではなく、基板側は半絶縁性であって能動的光素子を形
成する領域、もしくは前記領域とその周辺領域のみを導
電層とすることによって電流拡がりの問題を本質的に解
決することができる。この結果、消費電力、効率、発熱
等を著しく改善することができる。また、上記導電層を
p型とすれば、能動的光素子側の上部電極はn型で形成
できるためオーミック電極の形成が容易である(p型基
板を用いた場合の長所)と同時に光導波路部は基板側ク
ラッドが半絶縁性となるため伝搬損失の点でも良好な光
導波路を形成できる(n型基板を用いた場合の長所)。
上記導電層の形成は、選択拡散やイオン注入法といった
従来的な手法で容易にできる。
In contrast to the prior art, the entire substrate side is not made into a conductive layer, but the substrate side is semi-insulating and the region where an active optical element is formed, or only the region and its peripheral region is made into a conductive layer. By doing so, the problem of current spreading can be essentially solved. As a result, power consumption, efficiency, heat generation, etc. can be significantly improved. Further, if the conductive layer is of p-type, the upper electrode on the active optical element side can be formed of n-type, so that an ohmic electrode can be easily formed (advantage when using a p-type substrate) and at the same time, an optical waveguide. Since the substrate-side clad has a semi-insulating property, a good optical waveguide can be formed also in terms of propagation loss (advantage when using an n-type substrate).
The conductive layer can be easily formed by a conventional method such as selective diffusion or ion implantation.

【0006】[0006]

【実施例】受動的光素子として光導波路を、能動的光素
子として光増幅器を、同一基板上に集積した本発明の半
導体光集積素子の実施例について図1により説明する。
図1(a)は、半導体光集積素子の概要を示す平面図
で、図1(b)は、図l(a)のAーA´での断面図で
ある。光導波路と光増幅器の各層は以下の工程によって
形成される。まず、半絶縁性インジウムリン(In P)
基板1のうち、光増幅器を形成する領域とその周辺部な
らびに基板側の電極を形成する領域2に亜鉛を選択拡散
して導電層を形成する。この後、MOVPE法(有機金
属気相成長法)を用いて光増幅器の各層、すなわち、ア
ンドープIn Ga As P(バンドギャップ波長λg =
1.15μm)光ガイド層3、アンドープIn Ga As
P(λg =1.3μm)活性層4、アンドープIn Ga
As P(λg =1.15μm)光ガイド層3、nーIn
Pクラッド層5、n+ ーIn Ga As P(λg =1.3
μm)電極コンタクト層6を順次エピタキシャル成長に
よって形成する。次にフォトリソグラフィ法とRIE法
(リアクティブ・イオンエッチング法)を用いて光増幅
器部分を残して他を除去し再度MOVPE法を用いて、
アンドープIn Ga As P(λg =1.15μm)光導
波路層7、nーIn Pクラッド層8をエピタキシャル成
長によって形成する。光導波路と光増幅器を形成した
後、図1(a)に示すように光増幅器の電極コンタクト
層6上にn側電極9を、また、基板側の導電層上にp側
電極10を形成する。本発明の光集積素子に波長1.3
μmの信号光を通したところ、光導波路の伝搬損失0.
3db/mmの良好な特性が得られ光増幅器の動作も良
好であった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor optical integrated device of the present invention in which an optical waveguide as a passive optical device and an optical amplifier as an active optical device are integrated on the same substrate will be described with reference to FIG.
FIG. 1A is a plan view showing an outline of the semiconductor optical integrated device, and FIG. 1B is a sectional view taken along the line AA ′ in FIG. Each layer of the optical waveguide and the optical amplifier is formed by the following steps. First, semi-insulating indium phosphide (InP)
In the substrate 1, zinc is selectively diffused into a region where an optical amplifier is formed, its peripheral portion and a region 2 where an electrode on the substrate side is formed to form a conductive layer. After that, each layer of the optical amplifier, that is, undoped InGaAsP (bandgap wavelength λg =) is formed by MOVPE method (metal organic chemical vapor deposition method).
1.15 μm) Optical guide layer 3, undoped In Ga As
P (λg = 1.3 μm) active layer 4, undoped In Ga
As P (λg = 1.15 μm) Optical guide layer 3, n-In
P clad layer 5, n + -In Ga As P (λg = 1.3
μm) The electrode contact layer 6 is sequentially formed by epitaxial growth. Next, by using the photolithography method and the RIE method (reactive ion etching method), the optical amplifier portion is left and the others are removed, and the MOVPE method is used again.
An undoped InGaAsP (.lambda.g = 1.15 .mu.m) optical waveguide layer 7 and an n-InP cladding layer 8 are formed by epitaxial growth. After forming the optical waveguide and the optical amplifier, an n-side electrode 9 is formed on the electrode contact layer 6 of the optical amplifier, and a p-side electrode 10 is formed on the conductive layer on the substrate side, as shown in FIG. . The optical integrated device of the present invention has a wavelength of 1.3.
After passing a signal light of .mu.m, the propagation loss of the optical waveguide was 0.
Good characteristics of 3 db / mm were obtained and the operation of the optical amplifier was also good.

【0007】本発明の他の実施例として、光導波路と光
スイッチとを集積して電流注入型の全反射型光スイッチ
として構成した例について図2により説明する。図2
(a)は1×2全反射型光スイッチの概要を示した平面
図である。電流注入がない場合は入力光は直進して光出
力1に出力される。p側電極18から電流を注入する
と、電極11の下方領域の屈折率が変化し、光の反射鏡
として機能するため入力光は全反射して光出力2に出力
される。図2(b)は図2(a)のBーB′での断面図
である。半絶縁性ガリウム砒素(GaAs)基板12上
にアンドープAlGa As クラッド層13をMBE法
(分子線エピタキシ法)を用いてエピタキシャル成長に
より形成する。次に、光スイッチの電流注入部に相当す
る領域及び電極形成部を含む領域14に亜鉛を選択拡散
する。このとき拡散した亜鉛はGaAs基板12にも十
分に拡散していることが重要である。その後、再びMB
E法でアンドープGaAs光導波路層15、nーAlG
aAsクラッド層16、n+ ーGaAs電極コンタクト
層17をエピタキシャル成長により形成する。フォトリ
ソグラフィ法とRIE法を用いて図2(a)に示すスイ
ッチ形状を形成し、最後にn側電極11、p側電極18
を形成する。本実施例の場合には能動的光素子を構成す
る層の一部にも導電層を形成することにより電極11の
下部の領域に効率よく且つ集中的に電流を注入すること
ができる。本実施例によれば、p型基板上に同じ構造の
光素子を作成した場合に比べ、スイッチング電流を約1
/3にすることができた。
As another embodiment of the present invention, an example in which an optical waveguide and an optical switch are integrated to form a current injection type total reflection type optical switch will be described with reference to FIG. Figure 2
FIG. 3A is a plan view showing an outline of a 1 × 2 total reflection type optical switch. When there is no current injection, the input light goes straight and is output to the optical output 1. When a current is injected from the p-side electrode 18, the refractive index of the lower region of the electrode 11 changes and functions as a light reflecting mirror, so that the input light is totally reflected and output to the light output 2. 2B is a sectional view taken along line BB ′ of FIG. An undoped AlGaAs clad layer 13 is formed on the semi-insulating gallium arsenide (GaAs) substrate 12 by epitaxial growth using the MBE method (molecular beam epitaxy method). Next, zinc is selectively diffused into the region 14 including the region corresponding to the current injection part of the optical switch and the electrode forming part. It is important that the zinc diffused at this time is sufficiently diffused also in the GaAs substrate 12. Then MB again
Undoped GaAs optical waveguide layer 15, n-AlG by E method
The aAs clad layer 16 and the n + -GaAs electrode contact layer 17 are formed by epitaxial growth. The switch shape shown in FIG. 2A is formed by using the photolithography method and the RIE method, and finally, the n-side electrode 11 and the p-side electrode 18 are formed.
To form. In the case of the present embodiment, by forming a conductive layer also in a part of the layers constituting the active optical element, the current can be efficiently and intensively injected into the region below the electrode 11. According to the present embodiment, the switching current is about 1 as compared with the case where the optical element having the same structure is formed on the p-type substrate.
I was able to set it to / 3.

【0008】[0008]

【発明の効果】本発明の半導体光集積素子は、高抵抗で
半絶縁性の基板を用いることにより、従来の導電性基板
を用いた場合に問題となる電流拡がりを低減でき、消費
電力、効率、発熱等の素子特性を著しく向上させること
ができる。また、導電性領域を能動的光素子が形成され
る領域、あるいは前記領域とその周辺領域に限定するこ
とにより、低損失な光導波路を作製できる。さらに、基
板側をp型とすれば、コンタクト電極の作製が容易な光
集積素子を形成でき、集積度の向上にも有利なため、高
機能で小型の光集積素子を実現できる。さらに、極性の
異なる能動的光素子も容易に同一基板上に集積できる。
The semiconductor optical integrated device of the present invention can reduce the current spreading, which is a problem when a conventional conductive substrate is used, by using a high-resistance and semi-insulating substrate, thereby reducing power consumption and efficiency. The element characteristics such as heat generation can be remarkably improved. Further, by limiting the conductive region to the region where the active optical element is formed, or the region and its peripheral region, a low loss optical waveguide can be manufactured. Furthermore, if the substrate side is a p-type, an optical integrated device in which contact electrodes can be easily manufactured can be formed, and it is also advantageous in improving the degree of integration, so that a highly functional and small optical integrated device can be realized. Furthermore, active optical devices having different polarities can be easily integrated on the same substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 光導波路と光増幅器とを集積した本発明の光
集積素子の実施例の、(a)は概要を示す平面図、
(b)は(a)のAーA′での断面図。
FIG. 1A is a plan view showing an outline of an embodiment of an optical integrated device of the present invention in which an optical waveguide and an optical amplifier are integrated,
9B is a sectional view taken along line AA ′ of FIG.

【図2】 全反射型光スイッチとして構成した本発明の
光集積素子の他の実施例の、(a)は概要を示す平面
図、(b)は(a)のBーB′での断面図。
2A is a plan view showing an outline of another embodiment of the optical integrated device of the present invention configured as a total reflection type optical switch, and FIG. 2B is a sectional view taken along line BB ′ of FIG. 2A. Fig.

【符号の説明】[Explanation of symbols]

1 半絶縁性InP基板 2 亜鉛の選択拡散領域 3 アンドープInGaAsP(λg =1.15μm)
光ガイド層 4 アンドープInGaAsP(λg =1.3μm)活
性層 5 nーInPクラッド層 6 n+ ーInGaAsP(λg =1.3μm)電極コ
ンタクト層 7 アンドープInGaAsP(λg =1.15μm)
光導波路層 8 nーInPクラッド層 9 n側電極 10 p側電極 11 n側電極 12 半絶縁性GaAs基板 13 アンドープAlGaAsクラッド層 14 亜鉛の選択拡散領域 15 アンドープGaAs光導波路層 16 nーAlGaAsクラッド層 17 n+ ーGaAs電極コンタクト層 18 p側電極
1 Semi-insulating InP substrate 2 Zinc selective diffusion region 3 Undoped InGaAsP (λg = 1.15 μm)
Optical guide layer 4 Undoped InGaAsP (λg = 1.3 μm) active layer 5 n-InP clad layer 6 n + -InGaAsP (λg = 1.3 μm) electrode contact layer 7 Undoped InGaAsP (λg = 1.15 μm)
Optical waveguide layer 8 n-InP clad layer 9 n-side electrode 10 p-side electrode 11 n-side electrode 12 semi-insulating GaAs substrate 13 undoped AlGaAs clad layer 14 zinc selective diffusion region 15 undoped GaAs optical waveguide layer 16 n-AlGaAs clad layer 17 n + -GaAs electrode contact layer 18 p-side electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 能動的光素子と受動的光素子とを同一基
板上に集積形成し、電子素子は同一基板上に集積しない
半導体光集積素子において、基板に、高抵抗で半絶縁性
の半導体基板を用いると共に、該基板の能動的光素子が
形成される領域、もしくは前記領域とその周辺領域のみ
を、n型またはp型のドーパントとなる不純物の注入に
より導電性領域とし、該領域を前記能動的光素子の基板
側の通電領域としたことを特徴とする半導体光集積素
子。
1. A semiconductor optical integrated device in which an active optical device and a passive optical device are integrated and formed on the same substrate, and electronic devices are not integrated on the same substrate. In the semiconductor optical integrated device, a high resistance and semi-insulating semiconductor is provided on the substrate. A substrate is used, and a region of the substrate where an active optical element is formed, or only the region and its peripheral region is made into a conductive region by implanting an impurity serving as an n-type or p-type dopant, and the region is A semiconductor optical integrated device, characterized in that it is a conductive region on the substrate side of an active optical device.
【請求項2】 能動的光素子と受動的光素子とを同一基
板上に集積形成し、電子素子は同一基板上に集積しない
半導体光集積素子において、基板に、高抵抗で半絶縁性
の半導体基板を用いると共に、該基板の能動的光素子が
形成される領域と能動的光素子を構成する層の一部の領
域、もしくは前記領域とその周辺領域のみを、n型また
はp型のドーパントとなる不純物の注入により導電性領
域とし、該領域を前記能動的光素子の基板側の通電領域
としたことを特徴とする半導体光集積素子。
2. A semiconductor optical integrated device in which an active optical device and a passive optical device are integrated and formed on the same substrate, and electronic devices are not integrated on the same substrate. In the semiconductor optical integrated device, a high resistance and semi-insulating semiconductor is provided on the substrate. A substrate is used, and a region of the substrate in which the active optical element is formed and a part of a layer forming the active optical element, or only the region and its peripheral region, are provided with an n-type or p-type dopant. A semiconductor optical integrated device characterized in that a conductive region is formed by implanting the impurity, and the region is used as a conductive region on the substrate side of the active optical device.
JP12960095A 1995-04-29 1995-04-29 Semiconductor optical integrated element Pending JPH08306903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12960095A JPH08306903A (en) 1995-04-29 1995-04-29 Semiconductor optical integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12960095A JPH08306903A (en) 1995-04-29 1995-04-29 Semiconductor optical integrated element

Publications (1)

Publication Number Publication Date
JPH08306903A true JPH08306903A (en) 1996-11-22

Family

ID=15013469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12960095A Pending JPH08306903A (en) 1995-04-29 1995-04-29 Semiconductor optical integrated element

Country Status (1)

Country Link
JP (1) JPH08306903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955742A (en) * 1995-04-28 1999-09-21 Fujitsu Limited Semiconductor device formed on a substrate having an off-angle surface and a fabrication process thereof
JP2013007952A (en) * 2011-06-27 2013-01-10 Fujitsu Ltd Optical semiconductor integrated device and method of manufacturing the same
KR101394478B1 (en) * 2013-05-16 2014-05-13 (주)포인트엔지니어링 substrate for light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955742A (en) * 1995-04-28 1999-09-21 Fujitsu Limited Semiconductor device formed on a substrate having an off-angle surface and a fabrication process thereof
JP2013007952A (en) * 2011-06-27 2013-01-10 Fujitsu Ltd Optical semiconductor integrated device and method of manufacturing the same
KR101394478B1 (en) * 2013-05-16 2014-05-13 (주)포인트엔지니어링 substrate for light emitting device

Similar Documents

Publication Publication Date Title
US5418183A (en) Method for a reflective digitally tunable laser
JP2534444B2 (en) Integrated short cavity laser
US4937835A (en) Semiconductor laser device and a method of producing same
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH0381317B2 (en)
KR100386928B1 (en) Manufacturing a heterobipolar transistor and a laser diode on the same substrate
US4841532A (en) Semiconductor laser
JP2553731B2 (en) Semiconductor optical device
US6878959B2 (en) Group III-V semiconductor devices including semiconductor materials made by spatially-selective intermixing of atoms on the group V sublattice
FR2465337A1 (en) METHOD FOR MANUFACTURING AN OPTICAL AND ELECTRICAL CROSS-CONTAINING SEMICONDUCTOR LASER AND LASER OBTAINED THEREBY
EP0487192B1 (en) Opto-electronic integrated circuit having a transmitter of long wavelength
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPH08306903A (en) Semiconductor optical integrated element
JP2792826B2 (en) Optical switch and method of manufacturing the same
JP3421140B2 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
GB2318211A (en) Optical waveguide
KR100459888B1 (en) A semiconductor laser diode and manufacturing method thereof
JP3755107B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device
KR100243686B1 (en) Plane buried type semiconductor laser
KR0178488B1 (en) Fabrication method of a surface emitting laser
KR0155514B1 (en) Laser diode and method of fabricating thereof
JPH0882810A (en) Optical switch
JPH0384985A (en) Variable wavelength semiconductor laser
JPH02237190A (en) Semiconductor laser
JPS62144379A (en) Semiconductor laser element