JPH08304456A - Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body - Google Patents

Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body

Info

Publication number
JPH08304456A
JPH08304456A JP11310595A JP11310595A JPH08304456A JP H08304456 A JPH08304456 A JP H08304456A JP 11310595 A JP11310595 A JP 11310595A JP 11310595 A JP11310595 A JP 11310595A JP H08304456 A JPH08304456 A JP H08304456A
Authority
JP
Japan
Prior art keywords
single crystal
shaped single
rod
conductive rod
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11310595A
Other languages
Japanese (ja)
Inventor
Masayoshi Shimokoshi
正義 霜越
Kazuo Kato
和男 加藤
Noriaki Nakasaki
範昭 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP11310595A priority Critical patent/JPH08304456A/en
Publication of JPH08304456A publication Critical patent/JPH08304456A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To achieve positionally accurate connection and sufficient conduction with a body to be tested and measure with high accuracy and high density, by setting a diameter and a length of rod-like single crystal body and a thickness of a coating conductive film, etc., within a specific range. CONSTITUTION: A rod-like single crystal body is formed so that a ratio (aspect ratio) of a length l and a diameter (d) becomes 1-500. Side faces of the body 1 are coated with a conductive film 2 of a thickness of 0.1-10μm. A relationship of a distance L(μm) between a fixed face and a front end of a worked body 3 of the conductive rod-like single crystal and the diameter (d) (μm) is set to hold 10<=L<=3000, 0.1<=d<=600, d<-2.4> .L<3.8> >=5.0×10<4> . More preferably, the diameter (d) is 1-50μm, the length l is 200μm-5mm and the thickness of the conductive film 2 is not larger than d×0.4μm and not smaller than 0.1μm, and at the same time, at least a surface of the conductive film is formed of Pd. A surface of the worked body 3 is coated with an insulating film 4 of a thickness of 0.1-10μm except a front end part thereof. As a result, the worked body 3 and an assembly for measuring electric characteristics are formed accurately with high density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の電気
特性測定用プローブピン、微小真空デバイスや電子銃、
或いは走査型トンネル顕微鏡や原子間力顕微鏡をはじめ
とする走査型プローブ顕微鏡のプローブ等に使用できる
導電性棒状単結晶加工体及びこれを用いた電気特性測定
用組立物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe pin for measuring electric characteristics of a semiconductor integrated circuit, a micro vacuum device, an electron gun,
Alternatively, the present invention relates to a conductive rod-shaped single crystal processed body that can be used as a probe of a scanning probe microscope such as a scanning tunnel microscope or an atomic force microscope, and an assembly for measuring electrical characteristics using the same.

【0002】[0002]

【従来の技術】従来、半導体集積回路の電気特性測定用
プローブピン、微小真空デバイスや電子銃、或いは走査
型トンネル顕微鏡や原子間力顕微鏡をはじめとする走査
型プローブ顕微鏡のプローブ等の用途に導電性や電子放
射性を有する各種材質の材料が使用されている。例え
ば、半導体集積回路の電気特性測定用プローブピンは、
半導体集積回路の製造段階において、不良品除去のため
電気的特性を測定するプローブカードに使用されてい
る。以下、半導体集積回路の電気特性測定用プローブピ
ンの場合について具体的に説明する。LSIの製造にお
いては、ウエハー内に回路素子を製造した段階で各チッ
プを構成する回路素子の動作をテストするための測定が
行われ、この後、ウエハーから切り取られたチップをパ
ッケージに収容したり、TABテープに実装した状態
で、再度動作テストするための測定が行われる。このう
ち、前者は、通常タングステン等の金属によって構成さ
れたプローブピンを有するプローブカードが使用され
る。また、後者はアウターリードが挿入されるソケット
を使用して行われることが多いが、TABの場合はプロ
ーブカードが使用されることがある。これらのプローブ
カードでは、大半がタングステン線を材料としたプロー
ブピンが使用されており、その先端を「くの字」に曲
げ、半導体の評価用電極部に接触させる構造になってい
る。一般にプローブカードでは、複数のプローブピンを
半導体の評価用電極に接触させるために、プローブピン
の先端の平坦度や、半導体の評価用電極部の平坦度、及
び評価装置に組み込んだ場合の両者の平行度等の誤差を
吸収しなければならず、そのためタングステン線の場合
はプローブピンが撓む様に設計されている。このプロー
ブピンを撓ませる量をオーバードライブと称するが、タ
ングステン線を用いたプローブカードでは、このオーバ
ードライブが100μmまで加えられる様になってい
る。現行のプローブカードでは、この様なプローブピン
を半導体の評価用電極の位置と一致する様に1本1本、
位置固定して作られていたが、急速に進む半導体の微細
化に伴い、精度良くしかも高密度にプローブピンを固定
することが困難となりプローブカードの作製に限界がき
ている。
2. Description of the Related Art Conventionally, it has been used for probe pins for measuring electrical characteristics of semiconductor integrated circuits, micro vacuum devices, electron guns, and probes for scanning probe microscopes such as scanning tunnel microscopes and atomic force microscopes. Various types of materials having properties and electron emissivity are used. For example, a probe pin for measuring electrical characteristics of a semiconductor integrated circuit is
It is used in a probe card for measuring electrical characteristics for removing defective products in the manufacturing stage of semiconductor integrated circuits. Hereinafter, the case of the probe pin for measuring the electrical characteristics of the semiconductor integrated circuit will be specifically described. In the manufacture of LSIs, measurements are made to test the operation of the circuit elements that make up each chip at the stage when the circuit elements are manufactured in the wafer, and then the chips cut from the wafer are placed in a package. , The TAB tape is mounted and the measurement for performing the operation test is performed again. Of these, the former usually uses a probe card having a probe pin made of a metal such as tungsten. The latter is often performed using a socket into which outer leads are inserted, but in the case of TAB, a probe card may be used. In most of these probe cards, a probe pin made of a tungsten wire is used, and the tip of the probe pin is bent into a dogleg shape so as to be brought into contact with the evaluation electrode portion of the semiconductor. Generally, in a probe card, in order to bring a plurality of probe pins into contact with the evaluation electrode of the semiconductor, the flatness of the tip of the probe pin, the flatness of the evaluation electrode portion of the semiconductor, and both when incorporated in the evaluation device Errors such as parallelism must be absorbed, and therefore the probe pin is designed to bend in the case of a tungsten wire. The amount by which the probe pin is bent is called overdrive. In a probe card using a tungsten wire, this overdrive is applied up to 100 μm. In the current probe card, such probe pins are arranged one by one so that they are aligned with the position of the semiconductor evaluation electrode.
Although it was manufactured by fixing the position, with the rapid miniaturization of semiconductors, it is difficult to fix the probe pins with high precision and high density, and the production of the probe card is limited.

【0003】そこで、基板上に垂直又は適当な傾斜角を
もって、微細なプローブピンを植えつけたプローブカー
ドが考案されている。例えば、シリコン基板上に位置を
制御した単結晶をVLS法で製造して、プローブカード
用プローブピンに応用する方法が提案された(特開平5
ー198636号公報、特開平5ー215774号公
報、特開平5ー218156号公報参照)。これらの方
法では、Si基板上に位置を制御した単結晶ピンを成長
させ、更にこれをめっきなどにより導電化した導電性棒
状単結晶加工体をプローブピンとした基板がそのままプ
ローブカード用に使用されていた(以下、本発明の導電
性棒状単結晶加工体はプローブカード用プローブピンを
含み、又これを用いた電気特性測定用組立物はプローブ
カードを含むが、それぞれプローブピン及びプローブカ
ードと呼んでもよい)。
Therefore, there has been devised a probe card in which fine probe pins are planted on a substrate vertically or at an appropriate inclination angle. For example, a method has been proposed in which a single crystal whose position is controlled on a silicon substrate is manufactured by the VLS method and applied to a probe pin for a probe card (Japanese Patent Laid-Open No. Hei 5).
-198636, JP-A-5-215774, and JP-A-5-218156). In these methods, a single-crystal pin whose position is controlled is grown on a Si substrate, and a substrate using a conductive rod-shaped single-crystal processed body which is made conductive by plating or the like is used as a probe card as it is. (Hereinafter, the electroconductive rod-shaped single crystal processed body of the present invention includes a probe pin for a probe card, and an assembly for measuring electrical characteristics using the same includes a probe card, which may be referred to as a probe pin and a probe card, respectively. Good).

【0004】しかしながら、従来のVLS法によるプロ
ーブピンには次のような問題があった。 多数のプローブピンが被検査体、例えば半導体の評価
用電極部に位置精度よく、確実に接触し適正な評価が行
われるためには、プローブピンの座屈変形による適当量
のオーバードライブ(変形分の沈み込み)が必要であ
り、測定の信頼性に及ぼす影響及びその要因がアスペク
ト比、直径、固定面からの突出長さにあることは知られ
ていなかった。そのため、全プローブピンを位置精度よ
く、確実に接触させることが難しく、信頼性に欠けると
いう問題点があった。 例えば、プローブピンの先端径とピン長の比をアスペ
クト比と呼んでいるが、このアスペクト比が小さい場
合、プローブピンにオーバードライブを負荷できず、複
数のプローブピンによる測定では、全部のプローブピン
が半導体の評価用電極部に接触することができなくな
る。またオーバドライブによるプローブピンの弾性領域
での座屈変形が期待できず、プローブピンの破損を招き
易い。アスペクト比が大きすぎる場合、作製及び使用に
際し作業性が悪い上に、プローブピンが破損し易く、ま
たプローブピン同士が座屈して接触したり、接触したと
きの荷重が小さくなり安定した導通が得られない。 プローブピンの直径が小さすぎる場合、プローブピン
が破損し易く、また大きすぎる場合は半導体端子の高密
度化に対応できなくなる。 また、プローブピンの固定面からの突出長さが短すぎ
たり、長すぎたりしても適当なオーバードライブ量が得
られなかった。 導電性膜の材質が適切でないと、プローブピンの先端
の導電性膜が何万回もの接触で剥離し、プローブピンの
寿命が短くなる。 導電性めっきの被覆厚さが薄すぎると、プローブピン
の抵抗値が高くなり、逆に厚すぎると、プローブピンの
弾性を損ねプローブピンの変形を招き易い。 また、VLS法によって基板上に成長された単結晶を
導電化させ、そのままプローブカード用プローブピンと
して用いることができるが、より大きなオーバードライ
ブが求められる場合には、プローブピンの根元より折れ
易くなり、根元の補強が必要とされるが適正な固定方法
が知られていなかった。 プローブピンの半導体端子に対する傾きが適切でない
と、接触した際、プローブピンが端子上で滑り位置ズレ
を起こすことがある。 プローブピンが狭ピッチで多ピンで構成される場合、
プローブピンからの配線の引き出しは、現在のガラス、
エポキシ等を用いた絶縁基板を用いたフォトリソグラフ
ィ加工技術では、絶縁基板配線を含めて半導体技術によ
るLSIと同等の微細ピッチでの加工は非常に困難であ
り、また可能であってもコスト高になってしまう。
However, the conventional VLS method probe pin has the following problems. In order for many probe pins to come into contact with the object to be inspected, for example, the semiconductor evaluation electrode part with good position accuracy and reliability, and proper evaluation can be performed, an appropriate amount of overdrive (deformation amount) due to buckling deformation of the probe pin is performed. It was not known that the influence on the reliability of the measurement and its factors are the aspect ratio, the diameter, and the protruding length from the fixed surface. Therefore, it is difficult to bring all the probe pins into contact with high positional accuracy and reliability, and there is a problem of lack of reliability. For example, the ratio of the tip diameter of the probe pin to the pin length is called the aspect ratio.If this aspect ratio is small, the overdrive cannot be applied to the probe pin, and when measuring with multiple probe pins, all probe pins cannot be loaded. Cannot contact the evaluation electrode portion of the semiconductor. Further, buckling deformation in the elastic region of the probe pin due to overdrive cannot be expected, and the probe pin is easily damaged. If the aspect ratio is too large, the workability during manufacture and use will be poor, the probe pins will be easily damaged, and the probe pins will buckle and come into contact with each other, and the load when contacting will be small and stable conduction will be obtained. I can't. If the diameter of the probe pin is too small, the probe pin is easily damaged, and if it is too large, it becomes impossible to cope with the high density of semiconductor terminals. Further, even if the protruding length of the probe pin from the fixed surface is too short or too long, an appropriate overdrive amount cannot be obtained. If the material of the conductive film is not appropriate, the conductive film at the tip of the probe pin will be peeled off by tens of thousands of contact, and the life of the probe pin will be shortened. If the coating thickness of the conductive plating is too thin, the resistance value of the probe pin becomes high, while if it is too thick, the elasticity of the probe pin is impaired and the probe pin is likely to be deformed. Further, the single crystal grown on the substrate by the VLS method can be made conductive and can be used as it is as a probe pin for a probe card. However, when a larger overdrive is required, it becomes easier to break than the root of the probe pin. , Reinforcement of the root was required, but the proper fixing method was not known. If the probe pin is not properly inclined with respect to the semiconductor terminal, the probe pin may slip on the terminal when it comes into contact with the semiconductor terminal. If the probe pins are composed of multiple pins with a narrow pitch,
The wiring from the probe pins can be pulled out from the current glass,
In the photolithography processing technology using an insulating substrate using epoxy or the like, it is very difficult to process the insulating substrate wiring at a fine pitch equivalent to that of the LSI by the semiconductor technology, and even if possible, the cost is high. turn into.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述したよ
うな従来の問題点に鑑みてなされたものであって、破損
し難く、被検査体と位置精度よく接触させることがで
き、被検査体と十分な導通がはかれる導電性棒状単結晶
加工体、さらには所望の位置に精度よく、高密度に形成
された該導電性棒状単結晶加工体、及びこの導電性棒状
単結晶加工体を用いた電気特性測定用組立物を提供する
ことを目的とする。本発明者等は、上記導電性棒状単結
晶加工体及びこれを用いた電気特性測定用組立物を得る
ために、導電性棒状単結晶加工体のアスペクト比(長さ
/先端の直径d)、導電性棒状単結晶加工体の固定面と
先端との距離L(μm)、導電性膜の厚さt、導電性棒
状単結晶加工体の補強固定方法等の方法及び条件につい
て鋭意検討した結果、従来では得られなかった良好な性
能を有する本発明の導電性棒状単結晶加工体を容易に得
るとともに、これを用い、プローブカード用等の電気特
性測定に使用することのできる電気特性測定用組立物を
完成するに至った。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. It is hard to break and can be brought into contact with an object to be inspected with a high degree of positional accuracy. Uses a conductive rod-shaped single crystal processed body that is sufficiently conductive with the body, and further, the conductive rod-shaped single crystal processed body formed at a desired position with high accuracy and high density, and this conductive rod-shaped single crystal processed body It is an object of the present invention to provide an assembly for measuring an electric characteristic. In order to obtain the above-mentioned conductive rod-shaped single crystal processed body and an assembly for measuring electrical characteristics using the same, the inventors of the present invention have an aspect ratio (length / diameter d at the tip) of the conductive rod-shaped single crystal processed body, As a result of diligent study on methods and conditions such as the distance L (μm) between the fixed surface of the conductive rod-shaped single crystal processed body and the tip, the thickness t of the conductive film, the method for reinforcing and fixing the conductive rod-shaped single crystal processed body, An assembly for electrical property measurement that can be used to easily obtain an electrically conductive rod-shaped single crystal processed product of the present invention having good performance that has not been obtained in the past and that can be used for electrical property measurement for probe cards and the like. It came to complete the thing.

【0006】[0006]

【課題を解決するための手段】本発明の特徴は、VLS
成長法にて形成されたアスペクト比1〜500の棒状単
結晶体又はその先端合金部を除去した棒状単結晶体の少
なくとも側面が0.1〜10μmの厚さの導電性膜で被
覆されてなり、該導電性棒状単結晶加工体の固定面と先
端との距離L(μm)と棒状単結晶体の直径dμmとの
関係が、10≦L≦3000、0.1≦d≦600、d
-2.4・L2.8 ≧5.0×104 の範囲にある導電性棒状
単結晶加工体及びこれを用いてなる電気特性測定用組立
物である。
The features of the present invention are VLS.
At least a side surface of a rod-shaped single crystal having an aspect ratio of 1 to 500 formed by a growth method or a rod-shaped single crystal having its tip alloy portion removed is coated with a conductive film having a thickness of 0.1 to 10 μm. The relationship between the distance L (μm) between the fixed surface of the electroconductive rod-shaped single crystal processed body and the tip and the diameter dμm of the rod-shaped single crystal is 10 ≦ L ≦ 3000, 0.1 ≦ d ≦ 600, d.
A conductive rod-shaped single crystal processed product having a range of −2.4 · L 2.8 ≧ 5.0 × 10 4 and an assembly for measuring electrical characteristics using the same.

【0007】導電性棒状単結晶加工体の導電性膜の厚さ
は、0.1〜10μmが好ましく、さらには、導電性棒
状単結晶加工体の棒状単結晶体の直径dが1〜50μm
であって、その導電性膜の厚さがd×0.4μm以下、
0.1μm以上であればより好ましい。また、導電性膜
の少なくとも表面がPdであることが好ましい。
The thickness of the conductive film of the processed rod-shaped single crystal is preferably 0.1 to 10 μm, and the diameter d of the rod-shaped single crystal of the processed rod-shaped single crystal is 1 to 50 μm.
And the thickness of the conductive film is d × 0.4 μm or less,
More preferably, it is 0.1 μm or more. Further, it is preferable that at least the surface of the conductive film is Pd.

【0008】さらに、導電性棒状単結晶加工体の表面が
少なくともその先端部を除いて厚さ0.1〜10μmの
絶縁膜により被覆されていることが好ましい。
Further, it is preferable that the surface of the conductive rod-shaped single crystal processed body is covered with an insulating film having a thickness of 0.1 to 10 μm except at least the tip portion thereof.

【0009】導電性棒状単結晶加工体の固定面と先端と
の距離とは、棒状単結晶体が形成された基板と一体の場
合は、その基板表面と先端との距離であり、導電性棒状
単結晶加工体を絶縁材料で包埋したり、その他の方法で
固定する場合はその絶縁材料の表面(先端側)と先端と
の距離のことをさす。
The distance between the fixed surface of the electroconductive rod-shaped single crystal processed body and the tip is the distance between the substrate surface and the tip when the rod-shaped single crystal is formed integrally with the substrate. When the single crystal processed body is embedded in an insulating material or fixed by another method, it means the distance between the surface (tip side) of the insulating material and the tip.

【0010】これらの導電性棒状単結晶加工体の限界オ
ーバードライブ量が1000μm以下であることが好ま
しい。さらに、これらの導電性棒状単結晶加工体は、基
板面又は絶縁材料面に対して80゜〜90゜の角度で固
定されていることが好ましい。
The limit overdrive amount of these electroconductive rod-shaped single crystal processed bodies is preferably 1000 μm or less. Further, it is preferable that these electroconductive rod-shaped single crystal processed bodies are fixed at an angle of 80 ° to 90 ° with respect to the surface of the substrate or the surface of the insulating material.

【0011】また、固定用の絶縁材料の厚さは、0.1
μm〜2000μmであることが好ましく、絶縁材料は
エポキシ樹脂、又は30℃〜250℃における熱膨張係
数(1/℃)が3.0×10-6〜8.0×10-6の低融
点ガラスであることが好ましい。
The thickness of the fixing insulating material is 0.1.
The insulating material is preferably an epoxy resin, or a low melting point glass having a thermal expansion coefficient (1 / ° C) at 30 ° C to 250 ° C of 3.0 x 10 -6 to 8.0 x 10 -6. Is preferred.

【0012】そして本発明の導電性棒状単結晶加工体
は、例えば基板上に上記L及びdが上記本発明の範囲に
入る所望の寸法、形状に棒状単結晶体を形成し、その表
面に導電性膜を形成して基板と一体のまま製造してもよ
く、また、導電性棒状単結晶加工体が存在する基板上
に、該導電性棒状単結晶加工体の基部及びその周辺が露
出されるような形状の堰板を配置し、該導電性棒状単結
晶加工体の基部及びその周辺の基板面の露出された部分
を絶縁材料からなる固定材料で覆い硬化させ固定するこ
とによっても製造することができる。
In the electroconductive rod-shaped single crystal processed body of the present invention, for example, a rod-shaped single crystal body having a desired size and shape in which L and d described above fall within the scope of the present invention is formed on a substrate, and the surface is electrically conductive. May be formed integrally with the substrate by forming a conductive film, and the base of the conductive rod-shaped single crystal processed body and its periphery are exposed on the substrate on which the conductive rod-shaped single crystal processed body exists. Manufacturing is also performed by arranging a barrier plate having such a shape, covering the exposed portion of the base surface of the conductive rod-shaped single crystal processed body and the surrounding substrate surface with a fixing material made of an insulating material, and hardening and fixing the covering material. You can

【0013】絶縁材料にガラスを用いる場合は、導電性
棒状単結晶加工体が存在する基板上に、30℃〜250
℃における熱膨張係数(1/℃)が3.0×10-6
8.0×10-6の低融点ガラスを配置して、加熱溶融、
冷却することによって製造することができる。
When glass is used as the insulating material, the conductive rod-shaped single crystal processed body is present on the substrate at 30 ° C. to 250 ° C.
Thermal expansion coefficient (1 / ° C) at ℃ is 3.0 × 10 -6 ~
A low melting point glass of 8.0 × 10 −6 is placed and melted by heating,
It can be manufactured by cooling.

【0014】また、本発明の電気特性測定用組立物は、
根元が絶縁材料で包埋、固定された導電性棒状単結晶加
工体の絶縁材料に近い端部と配線基板の配線とを接合し
てなるものである。この導電性棒状単結晶加工体及びこ
れに近い端部と配線基板の配線とを接合してなる電気特
性測定用組立物は、例えば以下のようにして作製され
る。まず、導電性棒状単結晶加工体が存在する基板上
に、該導電性棒状単結晶加工体の基部及びその周辺が露
出されるような形状の堰板を配置し、該導電性棒状単結
晶加工体の基部と堰板の間の基板面の露出された部分を
絶縁材料からなる固定材料で覆い硬化させ、絶縁材料で
包埋、固定された導電性棒状単結晶加工体を作製する。
The assembly for measuring electrical characteristics of the present invention is
The root of the conductive rod-shaped single crystal processed body is embedded and fixed with an insulating material, and the end of the processed body close to the insulating material is joined to the wiring of the wiring board. The electrically conductive rod-shaped single crystal processed body and the electrical characteristic measuring assembly obtained by joining the end portion close to the electrically conductive rod-shaped single crystal body and the wiring of the wiring board are manufactured as follows, for example. First, a dam plate having a shape such that the base of the conductive rod-shaped single crystal processed body and its periphery is exposed is arranged on the substrate on which the conductive rod-shaped single crystal processed body is present, and the conductive rod-shaped single crystal processed body is processed. An exposed portion of the substrate surface between the base of the body and the dam plate is covered with a fixing material made of an insulating material and hardened, and embedded in the insulating material to prepare a fixed conductive rod-shaped single crystal processed body.

【0015】次に、例えば下記(1)〜(4)の工程に
より、この絶縁材料で包埋、固定された導電性棒状単結
晶加工体の絶縁材料に近い端部と配線基板の配線とを接
合して、電気特性測定用組立物を作製する。 (1)導電性棒状単結晶加工体が存在する基板上に、酸
無水物を硬化剤とするエポキシ組成物を塗布、硬化させ
硬化物を形成する工程。 (2)該基板全体を除去する工程。 (3)該硬化物をアルカリ水溶液で処理して、該導電性
棒状単結晶加工体の両端部を露出させる工程。 (4)(3)により露出させた導電性棒状単結晶加工体
の端面を配線基板の配線に接合させる工程。
Next, for example, by the following steps (1) to (4), the end of the conductive rod-shaped single crystal processed body, which is embedded and fixed by this insulating material, close to the insulating material and the wiring of the wiring board are connected. Bonding is performed to produce an assembly for measuring electrical characteristics. (1) A step of applying and curing an epoxy composition having an acid anhydride as a curing agent on a substrate on which a conductive rod-shaped single crystal processed body is present to form a cured product. (2) A step of removing the entire substrate. (3) A step of treating the cured product with an alkaline aqueous solution to expose both ends of the conductive rod-shaped single crystal processed body. (4) A step of joining the end face of the conductive rod-shaped single crystal processed body exposed by (3) to the wiring of the wiring board.

【0016】また、本発明の電気特性測定用組立物は、
上記本発明の導電性棒状単結晶加工体と外部引き出し用
配線を有する半導体チップとから構成されたものでもよ
い。
The electrical characteristic measuring assembly of the present invention is
It may be composed of the conductive rod-shaped single crystal processed body of the present invention and a semiconductor chip having a wiring for external extraction.

【0017】以下、本発明を詳細に説明する。本発明で
用いられる導電性棒状単結晶加工体は、図1(a)に示
す様に、特にVLS成長法にて形成されたアスペクト比
(棒状単結晶体の長さ/該先端径d)が1〜500の棒
状単結晶体1又は該棒状単結晶体の先端合金部を除去し
たもの1の少なくとも側面が0.1〜10μmの導電性
膜2で被覆されたもの又、隣接する導電性棒状単結晶加
工体同士の電気的接触を避けるために、図1(b)の様
に、導電性棒状単結晶加工体3の先端部を除いて、厚さ
0.1〜10μmの絶縁膜4で被覆された構造のものを
図1(c)の様に、棒状単結晶体が形成された基板5と
一体となった状態のものでもよいし、基板を除去したも
のを図1(d)の様に導電性棒状単結晶加工体3の所望
の位置を絶縁材料6で包埋して固定したものでもよい。
そして、導電性棒状単結晶加工体の固定面(例えば上記
基板5面又は絶縁材料6で包埋して固定した面)と先端
との距離L(μm)と棒状単結晶体の先端の直径d(μ
m)の関係が10≦L≦3000、0.1≦d≦60
0、d -2.4×L2.8 ≧5.0×104 の範囲にあること
が重要である。
The present invention will be described in detail below. In the present invention
The conductive rod-shaped single crystal processed body used is shown in Fig. 1 (a).
The aspect ratio formed by the VLS growth method
(Rod length of the rod-shaped single crystal / the tip diameter d) is a rod of 1 to 500
-Shaped single crystal body 1 or the tip alloy part of the rod-shaped single crystal body is removed
At least the side surface of the container 1 has a conductivity of 0.1 to 10 μm.
One coated with film 2 or adjacent conductive rod-shaped single crystal
As shown in Fig. 1 (b) to avoid electrical contact between the work bodies
The thickness of the conductive rod-shaped single crystal processed body 3 excluding the tip.
A structure covered with an insulating film 4 of 0.1 to 10 μm
As shown in FIG. 1C, a substrate 5 on which a rod-shaped single crystal is formed,
It may be integrated, or the substrate may be removed
As shown in FIG. 1 (d), a desired conductive rod-shaped single crystal processed body 3 is desired.
The position of may be embedded and fixed by the insulating material 6.
Then, the fixed surface of the conductive rod-shaped single crystal processed body (for example, the above
The surface of the substrate 5 or the surface embedded and fixed with the insulating material 6) and the tip
To the distance L (μm) and the diameter d (μ
The relationship of m) is 10 ≦ L ≦ 3000, 0.1 ≦ d ≦ 60.
0, d -2.4× L2.8≧ 5.0 × 10FourBe in the range
is important.

【0018】棒状単結晶体の形成法であるVLS(Vapo
r-liquid-Solid)成長法は、R. S.Wagner and W. C. El
lis:Appl. Phys Letters4(1964)89に記載されてい
る。この文献による方法は、Au粒子が載置されたSi単
結晶基板を、SiH4、SiCl4 などのSiを含むガスの雰囲
気中でSi−Au合金の融点以上に加熱し、Si単結晶基板
上のAu粒子載置部分に棒状のSi単結晶をエピタキシャ
ル成長させるものである。
VLS (Vapo) which is a method for forming a rod-shaped single crystal
r-liquid-Solid) growth method is RSWagner and WC El
lis: Appl. Phys Letters 4 (1964) 89. According to the method according to this document, a Si single crystal substrate on which Au particles are placed is heated to a temperature equal to or higher than the melting point of a Si-Au alloy in an atmosphere of a gas containing Si such as SiH4 and SiCl4, and Au on the Si single crystal substrate is heated. A rod-shaped Si single crystal is epitaxially grown on the particle mounting portion.

【0019】この方法はSi単結晶の場合に限らず、他
の単結晶の育成にも応用されている。たとえば、LaB6
結晶の育成はその融点が2530℃と高温で蒸発速度も大き
く、また反応性も高く、必ずしも融液成長には適してい
ない。このような観点から、より低温で結晶成長が可能
なVLS成長が試みられている(Journal of CrystalGr
owth 51(1981)190-194 )。ところで、Au粒子を置く
替わりにフォトリソグラフ法、メッキ法、蒸着法、エッ
チング法などを組み合わせることによりSi基板上にAu
パッドを任意の位置にパターン化しVLS成長を行え
ば、基板上の所望の位置に立った複数の棒状単結晶体を
形成することができ、これを電気特性測定用プローブピ
ン等に使用することができる。
This method is applied not only to the case of Si single crystal, but also to the growth of other single crystals. For example, the growth of a LaB 6 single crystal has a high melting point of 2530 ° C., a high evaporation rate, a high reactivity, and is not necessarily suitable for melt growth. From such a viewpoint, VLS growth capable of crystal growth at lower temperatures has been attempted (Journal of Crystal Gr
owth 51 (1981) 190-194). By the way, instead of placing Au particles, by combining photolithography, plating, vapor deposition, etching, etc.
By patterning the pads at arbitrary positions and performing VLS growth, it is possible to form a plurality of rod-shaped single crystal bodies standing at desired positions on the substrate, and this can be used as probe pins for measuring electrical characteristics. it can.

【0020】本発明の棒状単結晶体を構成するものとし
ては、Si、LaB6 、GaAs、GaP、WO2 、S
iC等であり、特に好ましくは、Si、LaB6 であ
る。これら元素又は化合物と合金をつくるものとして
は、Au、Pt、Ag、Cu、Pd、及びGaであり、
特に好ましくはAu及びPtである。本発明に用いられ
る棒状単結晶体の形状は、電気特性測定時の座屈荷重及
び撓み性等を考慮すると円柱状又はそれに近いものが好
ましく、その直径dは棒状単結晶体の先端で1〜600
μm、より好ましくは5〜300μm、さらに好ましく
は1〜50μmの範囲である。棒状単結晶体の長さは、
10μm以上であり、より好ましくは200μm〜5m
mであり、5mmを越えると、VLS成長法による棒状
単結晶体形成時にキンクやブランチが多数発生する。該
棒状単結晶体のアスペクト比は1〜500が好ましい。
アスペクト比が1未満では棒状単結晶体が短かすぎて、
電気特性測定用プローブピン等に使用できず、500を
越えると作製及び使用に際し作業性が悪いうえに、プロ
ーブピンが破損し易く、座屈荷重が低下し安定な導通が
得られない。また、導電性棒状単結晶加工体の固定面と
先端との距離L(μm)と棒状単結晶体の直径d(μ
m)とが、d-2.4×L2.8 ≧5.0×104 の範囲にあ
るアスペクト比を選択すると適正な限界オーバードライ
ブ量のものが得られるのでさらに好ましい。
The rod-shaped single crystal body of the present invention comprises Si, LaB 6 , GaAs, GaP, WO 2 and S.
iC and the like, and particularly preferably Si and LaB 6 . Alloys with these elements or compounds are Au, Pt, Ag, Cu, Pd, and Ga,
Particularly preferred are Au and Pt. The shape of the rod-shaped single crystal body used in the present invention is preferably a columnar shape or a shape close to it in consideration of the buckling load and the flexibility at the time of measuring electric characteristics, and the diameter d is 1 to 1 at the tip of the rod-shaped single crystal body. 600
μm, more preferably 5 to 300 μm, still more preferably 1 to 50 μm. The length of the rod-shaped single crystal is
10 μm or more, more preferably 200 μm to 5 m
m, and when it exceeds 5 mm, a large number of kinks and branches are generated when the rod-shaped single crystal body is formed by the VLS growth method. The rod-shaped single crystal body preferably has an aspect ratio of 1 to 500.
If the aspect ratio is less than 1, the rod-shaped single crystal is too short,
It cannot be used as a probe pin for measuring electrical characteristics, and if it exceeds 500, workability during manufacture and use is poor, the probe pin is easily damaged, buckling load is reduced, and stable conduction cannot be obtained. Further, the distance L (μm) between the fixed surface of the conductive rod-shaped single crystal processed body and the tip and the diameter d (μ
It is more preferable to select an aspect ratio in which m) is in the range of d −2.4 × L 2.8 ≧ 5.0 × 10 4 because an appropriate limit overdrive amount can be obtained.

【0021】また、VLS成長法にて形成された棒状単
結晶体は、必然的に先端合金部を有するが、半導体集積
回路の電気特性測定用プローブカード等の電気特性測定
用組立物に使用する場合、先端合金部が比較的潰れやす
いことより、先端の変形を小さくするためこれを除去し
たものを使用することがより好ましい。また、複数本の
導電性棒状単結晶加工体の長さ精度を向上させるため
に、先端合金部の除去時に、先端合金部付近の棒状単結
晶体を同時に除去してもよい。先端合金部の除去は、工
程の任意の段階で行うことができる。例えば、(1)V
LS成長法にて棒状単結晶体を形成した後、(2)導電
性膜の形成後、(3)絶縁材料による包埋後等である。
また、任意の工程で先端合金部を除去する際は、前述の
様に同時に棒状単結晶体の一部を除去してもよい。
The rod-shaped single crystal formed by the VLS growth method necessarily has a tip alloy portion, but it is used for an electrical characteristic measuring assembly such as a probe card for measuring the electrical characteristic of a semiconductor integrated circuit. In this case, since the tip alloy part is relatively easily crushed, it is more preferable to use the tip alloy part from which it is removed in order to reduce the deformation. In addition, in order to improve the length accuracy of the plurality of conductive rod-shaped single crystal processed bodies, the rod-shaped single crystal bodies near the tip alloy portion may be simultaneously removed when the tip alloy portion is removed. The removal of the tip alloy portion can be performed at any stage of the process. For example, (1) V
After forming a rod-shaped single crystal by the LS growth method, (2) after forming a conductive film, (3) after embedding with an insulating material, and the like.
Further, when removing the tip alloy portion in any step, a part of the rod-shaped single crystal body may be removed at the same time as described above.

【0022】先端合金部の除去は、各種の方法で行なう
ことができ、特に研磨方法により除去することが好まし
い。研磨方法としては、具体的には、研磨パッド又は研
磨砥粒を用いるポリシング加工等がある。研磨パッドと
しては、通常、酸化アルミ、シリコンカーバイト、酸化
クロム等の砥粒が付着したパッドが用いられる。また、
研磨時には、棒状単結晶体の折れ防止等のため棒状単結
晶体を研摩用ワックス等で包埋し研磨することが好まし
い。
The tip alloy portion can be removed by various methods, and it is particularly preferable to remove it by a polishing method. Specific examples of the polishing method include polishing using a polishing pad or polishing abrasive grains. As the polishing pad, a pad to which abrasive grains such as aluminum oxide, silicon carbide and chromium oxide are attached is usually used. Also,
At the time of polishing, it is preferable to embed the rod-shaped single crystal body with polishing wax or the like and polish it in order to prevent the rod-shaped single crystal body from being broken.

【0023】また、VLS成長させるときの基板として
は、成長させる単結晶と同じ材質の単結晶基板、又は絶
縁基板上に成長させようとする単結晶と同じ材質の単結
晶膜を形成した基板等を用いることができる。例えば、
単結晶シリコン基板、単結晶シリコン基板の酸化面に単
結晶Siが形成された基板(SOI基板)等が使用され
る。その他、サファイア等の絶縁材料上に単結晶膜を形
成した基板も使用できるがSOI基板が工業的に容易に
得られるので好ましい。
As the substrate for VLS growth, a single crystal substrate made of the same material as the single crystal to be grown, or a substrate having a single crystal film made of the same material as the single crystal to be grown on an insulating substrate, etc. Can be used. For example,
A single crystal silicon substrate, a substrate in which single crystal Si is formed on the oxidized surface of the single crystal silicon substrate (SOI substrate), or the like is used. In addition, a substrate having a single crystal film formed on an insulating material such as sapphire can be used, but an SOI substrate is industrially easily obtained, which is preferable.

【0024】なお、本発明において、SOI基板上に棒
状結晶を成長させる場合、SOI技術を前提としてい
る。本発明において用いられるSOI技術としては、単
結晶Si基板に酸素イオンを打ち込んで、単結晶領域直
下に酸化領域を形成する方法(SIMOX; Porc.ISIAT
'83 1983 p.1855)、表面酸化された単結晶Si支持基
体の酸化面に単結晶Si基板を熱処理により張り合わせ
る方法(Digest of theIEEE Int. Elec. Devices Meeti
ng(IEDM) 1985 p.684 )等を用いることができる。
In the present invention, the SOI technique is premised on growing a rod-shaped crystal on an SOI substrate. As the SOI technology used in the present invention, a method of implanting oxygen ions in a single crystal Si substrate to form an oxidized region directly under the single crystal region (SIMOX; Porc.ISIAT
'83 1983 p.1855), a method of bonding a single crystal Si substrate to the oxidized surface of a surface-oxidized single crystal Si support substrate by heat treatment (Digest of the IEEE Int. Elec. Devices Meeti
ng (IEDM) 1985 p.684) and the like can be used.

【0025】導電性棒状単結晶加工体はVLS成長法に
て形成された棒状単結晶体の少なくとも側面が厚さ0.
1〜10μmの導電性膜で被覆されたものであり、導電
性膜の厚さが0.1μm以下では導電性膜の破れ、摩擦
による剥がれ等が起こり、10μm以上では、膜の均一
性が得られず、コストも高くなる。特に棒状単結晶体の
先端直径dが1〜50μmである場合、導電性膜の厚さ
はd×0.4μm以下にすることがより好ましい。
The conductive rod-shaped single crystal processed body has a rod-shaped single crystal body formed by the VLS growth method in which at least the side surface has a thickness of 0.
It is coated with a conductive film having a thickness of 1 to 10 μm. When the thickness of the conductive film is 0.1 μm or less, the conductive film is torn or peeled off due to friction. Is not possible, and the cost is high. Particularly when the tip diameter d of the rod-shaped single crystal is 1 to 50 μm, the thickness of the conductive film is more preferably d × 0.4 μm or less.

【0026】この導電性膜の形成は、蒸着法、めっき
法、及びデイ ツプ法等を用いて棒状単結晶体の表面を被
覆する方法で行われる。具体的には、棒状単結晶体にN
i−P又はCr等の下地層をめっき法乃至蒸着法で成膜
し、次に導電性に優れたAu、Au−Ni、Au−C
o、Au−Cr、Au−Cu、Rh等の金属をめっき法
で成膜する方法がある。この導電性膜の表層の材質にP
dを用いると、プローブピン先端部分のめっき膜が成膜
し易く、めっき膜が剥離しにくく、又耐摩耗性が大きく
より好ましい。この導電性膜は棒状単結晶体の少なくと
も側面を被覆しているものであるが、棒状単結晶体の先
端部分も導電性膜で被覆されることがより好ましい。
This conductive film is formed by a method of coating the surface of the rod-shaped single crystal body using a vapor deposition method, a plating method, a dipping method or the like. Specifically, the rod-shaped single crystal body has N
An underlayer such as iP or Cr is formed by a plating method or a vapor deposition method, and then Au, Au-Ni, Au-C having excellent conductivity is formed.
There is a method of forming a film of a metal such as o, Au—Cr, Au—Cu, or Rh by a plating method. The material of the surface layer of this conductive film is P
The use of d is more preferable because the plating film at the tip of the probe pin is easily formed, the plating film is less likely to peel off, and the abrasion resistance is large. The conductive film covers at least the side surface of the rod-shaped single crystal body, but it is more preferable that the tip portion of the rod-shaped single crystal body is also coated with the conductive film.

【0027】棒状単結晶体を成長させる基板上に外部引
出し用配線を形成すれば、この導電性棒状単結晶加工体
はこのまま基板と一体化された状態で電気特性測定用組
立物として使用することができる。これにより、電気特
性測定用組立物の製造を簡略化するだけでなく、複数の
導電性棒状単結晶加工体が精度良く配置された電気特性
測定用組立物の作製が可能となる。更にこの方法による
と、半導体集積回路のバーインテスト等の熱負荷のかか
るテストに使用する際は、VLS成長の基板材料を被測
定物の基板材料と同じに選択することで、熱膨張係数の
違いによる被検査物の端子とプローブピンとの位置ズレ
を大きく改善することができる。導電性棒状単結晶加工
体と基板を一体化した状態で使用しないときは、導電性
単結晶加工体の基部を絶縁材料で包埋することによっ
て、導電性単結晶加工体を補強した状態(図1(d))
で使用することができる。
If the wiring for external extraction is formed on the substrate on which the rod-shaped single crystal is grown, the conductive rod-shaped single crystal processed body can be used as it is as an assembly for measuring electrical characteristics in an integrated state with the substrate. You can This not only simplifies the production of the electrical characteristic measuring assembly, but also enables the production of the electrical characteristic measuring assembly in which a plurality of conductive rod-shaped single crystal processed bodies are accurately arranged. Further, according to this method, when used in a test such as a burn-in test of a semiconductor integrated circuit, which is subject to a heat load, the VLS growth substrate material is selected to be the same as the substrate material of the DUT, so that the difference in thermal expansion coefficient is increased. It is possible to greatly improve the positional deviation between the terminal of the object to be inspected and the probe pin. When the conductive rod-shaped single crystal processed body and the substrate are not used in an integrated state, the conductive single crystal processed body is reinforced by embedding the base of the conductive single crystal processed body with an insulating material (Fig. 1 (d))
Can be used in.

【0028】本発明で導電性棒状単結晶加工体を包埋す
る絶縁材料は、樹脂、ガラス、セラミックス等が使用で
きる。樹脂としては、熱硬化性樹脂及び熱可塑性樹脂で
ある熱硬化性樹脂としては、エポキシ系樹脂、アクリル
系樹脂、シリコン系樹脂、ウレタン系樹脂、ポリイミド
系樹脂等があり、熱可塑性樹脂としては、オレフィン系
樹脂、スチレン系樹脂等がある。特に好ましくは、エポ
キシ系樹脂である。これらの樹脂に無機フィラーを添加
し、用いることができる。無機フィラーとしては、Si
2 、Al2 3 等が用いられる。
As the insulating material for embedding the conductive rod-shaped single crystal processed body in the present invention, resin, glass, ceramics or the like can be used. As the resin, as the thermosetting resin which is a thermosetting resin and a thermoplastic resin, there are an epoxy resin, an acrylic resin, a silicon resin, a urethane resin, a polyimide resin, and the like, and as the thermoplastic resin, Examples include olefin resins and styrene resins. An epoxy resin is particularly preferable. An inorganic filler can be added to these resins and used. As the inorganic filler, Si
O 2 , Al 2 O 3 or the like is used.

【0029】樹脂又はガラス等の絶縁材料による包埋の
厚さ(図1(d)のT)は、特に制限はないが、0.1
〜2000μmが好ましい。その厚さが薄すぎると強度
が不充分であり、厚すぎると導電性棒状単結晶加工体の
先端の位置精度の悪化を招き易く、単結晶加工体の長さ
が長くなりすぎるので製造が困難になる。0.5〜2m
mの厚さが作製上容易であり、また適当な固定強度が得
られのでさらに好ましい。また、Lは10〜3000μ
m、すなわち絶縁材料で包埋された導電性棒状単結晶加
工体の被検査物と接触する側は絶縁材料の表面から10
〜3000μm突出している。10μm未満では導電性
棒状単結晶加工体が破損し易く、3000μmより長い
とオーバードライブ量が多い上に、作製及び使用上作業
しにくいので好ましくない。
The thickness (T in FIG. 1D) of embedding with an insulating material such as resin or glass is not particularly limited, but is 0.1.
˜2000 μm is preferred. If the thickness is too thin, the strength is insufficient, and if it is too thick, the position accuracy of the tip of the conductive rod-shaped single crystal processed body tends to be deteriorated, and the length of the single crystal processed body becomes too long, which makes it difficult to manufacture. become. 0.5-2m
A thickness of m is more preferable because it is easy to manufacture and an appropriate fixing strength can be obtained. Also, L is 10 to 3000 μ
m, that is, the side of the conductive rod-shaped single crystal processed body embedded with the insulating material that contacts the object to be inspected is 10 from the surface of the insulating material.
-3000 μm is projected. If it is less than 10 μm, the electroconductive rod-shaped single crystal processed body is easily damaged, and if it is longer than 3000 μm, the amount of overdrive is large and it is difficult to manufacture and use, which is not preferable.

【0030】また、本発明による導電性棒状単結晶加工
体の端部を被検査物に圧接した状態を図1(e)に示す
が、導電性棒状単結晶加工体は圧接方向の荷重に応じて
変形する。この変形量δをオーバードライブ量という。
荷重を増加していくと、初期は荷重と変形量は比例して
変化するが、やがて荷重が一定となり遂には破壊に至
る。この時のドライブ量を限界オーバードライブ量(δ
max )といい、この時の荷重を座屈荷重という。更に、
図1(f)に示す様に、導電性棒状単結晶加工体は基板
又は絶縁材料面に対して(ここでは基板5を図示してあ
る)、80゜〜90゜の角度で固定されていることが好
ましい。これにより、半導体集積回路の測定表面と導電
性棒状単結晶加工体が、80゜〜90゜の角度で接触す
るようになり、例えば本発明の導電性棒状単結晶加工体
をプローブカードのプローブピンとして使用する場合、
プローブピンの寿命が長くなる。また、プローブピンの
位置精度がよく、特に高密度、微細なプローブカード用
の電気特性測定用組立物として顕著な効果がある。更
に、80゜以上90゜未満の角度で傾斜している場合は
撓み方向が同方向であり、撓み量が大きくてもプローブ
ピン同士の接触がないので確実な導通を得ることができ
る。
Further, FIG. 1 (e) shows a state in which the end portion of the conductive rod-shaped single crystal processed body according to the present invention is pressed against the object to be inspected. The conductive rod-shaped single crystal processed body depends on the load in the pressing direction. To transform. This deformation amount δ is called an overdrive amount.
When the load is increased, the load and the amount of deformation change in proportion to each other in the initial stage, but eventually the load becomes constant and finally the fracture occurs. The drive amount at this time is the limit overdrive amount (δ
max ) and the load at this time is called buckling load. Furthermore,
As shown in FIG. 1 (f), the conductive rod-shaped single crystal processed body is fixed at an angle of 80 ° to 90 ° with respect to the surface of the substrate or the insulating material (here, the substrate 5 is shown). It is preferable. As a result, the measurement surface of the semiconductor integrated circuit and the conductive rod-shaped single crystal processed body come into contact with each other at an angle of 80 ° to 90 °. For example, the conductive rod-shaped single crystal processed body of the present invention is attached to the probe pin of the probe card. When used as
Longer probe pin life. Further, the probe pin has good positional accuracy, and is particularly effective as an electrical characteristic measuring assembly for a high density and fine probe card. Further, when the angle of inclination is 80 ° or more and less than 90 °, the bending directions are the same, and even if the bending amount is large, there is no contact between the probe pins and reliable conduction can be obtained.

【0031】基板上に形成された導電性単結晶加工体の
基部を絶縁材料で包埋した後、基板を除去して絶縁材料
で固定された導電性単結晶加工体を、電気特性測定用組
立物として使用する場合、図2に示す様に、外部引出し
用配線基板9とを接合して使用することが好ましい。図
2(a)に、導電性棒状単結晶加工体の端部を配線基板
の配線8に接合して作製した電気特性測定用組立物の概
略図を示し、図2(b)に、その断面図を示す。
After the base of the conductive single crystal processed body formed on the substrate is embedded with an insulating material, the substrate is removed and the conductive single crystal processed body fixed with the insulating material is assembled into an assembly for measuring electrical characteristics. When it is used as a product, it is preferable to use it by joining it to a wiring board 9 for external drawing as shown in FIG. FIG. 2 (a) shows a schematic view of an electrical characteristic measuring assembly produced by joining the end portion of the conductive rod-shaped single crystal processed body to the wiring 8 of the wiring board, and FIG. 2 (b) shows a cross section thereof. The figure is shown.

【0032】次に本発明の導電性単結晶加工体を用いた
電気特性測定用組立物の製造方法について説明する。絶
縁材料として樹脂を用いて導電性棒状単結晶加工体を包
埋する場合の製造方法を図3に従って以下に説明する。
Next, a method for manufacturing an assembly for measuring electrical characteristics using the processed conductive single crystal of the present invention will be described. A manufacturing method in the case of embedding a conductive rod-shaped single crystal processed body using a resin as an insulating material will be described below with reference to FIG.

【0033】導電性棒状単結晶加工体3が存在する基板
5上に、該導電性棒状単結晶加工体の基部及びその周辺
が露出されるような形状の堰板10を配置する(図3
(a))。次に該導電性棒状単結晶加工体の基部及びそ
の周辺の基板面の露出された部分を固定材料11で覆い
硬化させ、該導電性棒状単結晶加工体を固定する(図3
(b))。このまま基板と一体の状態で基板に外部引出
し用の配線を形成して電気特性測定用組立物として使用
することもできるが、この基板を除去した後(図3
(c))、別途作製した配線基板9とを接続して使用し
てもよい(図3(d))。
On the substrate 5 on which the conductive rod-shaped single crystal processed body 3 is present, the barrier plate 10 having a shape such that the base of the conductive rod-shaped single crystal processed body and its periphery is exposed (FIG. 3).
(A)). Next, the base of the conductive rod-shaped single crystal processed body and the exposed portion of the substrate surface around the base are covered with the fixing material 11 and cured to fix the conductive rod-shaped single crystal processed body (FIG. 3).
(B)). It is also possible to form the wiring for external drawing on the substrate as it is in a state of being integrated with the substrate and use it as an electrical characteristic measuring assembly, but after removing the substrate (see FIG. 3).
(C)) Alternatively, the wiring board 9 manufactured separately may be connected and used (FIG. 3 (d)).

【0034】この際、上記工程で得られた導電性棒状単
結晶加工体を包埋している絶縁材料の配線基板側の端
部、好ましくは端面にそのまま、又は金バンプをつけて
から、或いは、導電性棒状単結晶加工体の端部が若干突
出するように絶縁材料をエッチングした後、導電性棒状
単結晶加工体の端面にそのまま、又は金バンプをつけて
から、配線基板の配線に接合し、図3(d)の様な電気
特性測定用組立物を得る。
At this time, the end of the insulating material, which embeds the electroconductive rod-shaped single crystal processed body obtained in the above step, on the wiring board side, preferably the end surface as it is, or after attaching a gold bump, or , After the insulating material is etched so that the end of the conductive rod-shaped single crystal processed body is slightly projected, the end surface of the conductive rod-shaped single crystal processed body is left as it is, or after the gold bump is attached, it is bonded to the wiring of the wiring board. Then, an electrical characteristic measuring assembly as shown in FIG. 3D is obtained.

【0035】ここで堰板を使用して固定材料で固定する
のは、堰板を使用せず固定材料のみで固定しようとする
と、固定材料の粘度によって、プローブピン間に充填さ
れなかったり、逆にプローブピン先端へ這い上がったり
外部へ流出するなどの問題がある。この堰板の材質とし
ては、化学的に安定で補強効果の高いものであればよ
い。例えば、エポキシ樹脂やポリイミド樹脂、ポリフェ
ニレンオキサイド(PPO)などの耐熱性樹脂やガラ
ス、セラミックスなどの絶縁材料が使用できる。
Here, the reason why the dam plate is used for fixing with a fixing material is that if the dam plate is not used and only the fixing material is used for fixing, the space between probe pins may not be filled or the reverse may occur due to the viscosity of the fixing material. There are problems such as crawling up to the tip of the probe pin and flowing out to the outside. The barrier plate may be made of any material that is chemically stable and has a high reinforcing effect. For example, heat-resistant resin such as epoxy resin, polyimide resin, polyphenylene oxide (PPO), or insulating material such as glass or ceramics can be used.

【0036】これらの方法で、絶縁材料で包埋された導
電性棒状単結晶加工体の配線基板と接触する側の端部を
樹脂硬化物の面から突出させるのは、配線基板の配線と
確実な接合を図るためである。その突出長さは10〜1
00μmが好ましい。10μm未満では配線基板の配線
との接合が難しく、100μmより大きいと位置ずれを
起こしやすく、いずれの場合においても導電性棒状単結
晶加工体と配線基板との導通不良が発生し製造の歩留ま
りを悪化させる。
In these methods, it is ensured that the end of the conductive rod-shaped single crystal processed body embedded with the insulating material on the side in contact with the wiring board is projected from the surface of the resin cured product and the wiring of the wiring board. This is to achieve proper joining. The protruding length is 10-1
00 μm is preferable. If it is less than 10 μm, it is difficult to bond it to the wiring of the wiring board, and if it is more than 100 μm, it is likely to cause a positional deviation, and in any case, a conduction defect between the conductive rod-shaped single crystal processed body and the wiring board occurs and the manufacturing yield deteriorates. Let

【0037】また、本発明の一つである導電性棒状単結
晶加工体と外部引き出し用配線を有する半導体チップか
らなる電気特性測定用組立物は、狭ピッチで配置されて
いる導電性棒状単結晶加工体の外部との導通をとり易く
すること、被検査物と同じ材料のSiやGaAs等の基
板にLSI加工技術を用いて容易に作ることができる。
特にウェハーの状態で複数の被検査物を同時に測定する
マルチタイプのプローブカードにおいて外部引き出し用
配線の配置が困難な場合、該半導体チップのを配線を多
層化するこで容易に対応することができる。
Further, an assembly for measuring electrical characteristics, which is one of the present invention, comprising a conductive rod-shaped single crystal processed body and a semiconductor chip having wiring for external extraction is a conductive rod-shaped single crystal arranged at a narrow pitch. It is possible to easily establish electrical continuity with the outside of the processed body, and it is possible to easily form a substrate made of the same material as the inspection object, such as Si or GaAs, by using an LSI processing technique.
Particularly in the case of a multi-type probe card that simultaneously measures a plurality of objects to be inspected in the state of a wafer, when it is difficult to arrange the wiring for external extraction, it is possible to easily deal with it by forming the wiring of the semiconductor chip in multiple layers. .

【0038】[0038]

【実施例】以下実施例により本発明を詳細に説明する。The present invention will be described in detail with reference to the following examples.

【0039】(実施例1及び比較例1)単結晶Si基板
16の酸化膜(SiO2 )17に単結晶Si18が形成
されたSOI基板上に、フォトリソグラフィー法を用い
て、配線基板と同じパターン形状のAu蒸着膜19を
0.03μmの厚さで形成した(図4(a))。次に、
強酸のエッチング液(HF/HNO3 /CH3 COOH
の混合液)を使用して、露出している部分のSiをエッ
チング除去し、その後、Au蒸着膜19をエッチング液
(KI/I/H2 Oの混合液)で取り除いた(図4
(b))。そして、棒状単結晶体を成長させる所定の位
置に、フォトリソグラフィー法を用い、棒状単結晶体と
同じ形状のAu下地膜20を0.03μmの厚さで形成
し、その上に同形状のAuパッド21を2μm無電解め
っきで形成した(図4(c))。これを反応管内で95
0℃に加熱し、四塩化珪素と水素の混合ガスを流し、棒
状単結晶体22を得た。この場合、直径30μmのAu
パッドを60μmのピッチで300個配置した(図では
3個のみ図示してある)。VLS成長は、棒状単結晶体
22の長さが1.5mmになるまで約6時間行ったが、
そのときの先端の直径は9μmで長さはちょうど1.5
mmであった。次に、研磨用ワックス24を棒状単結晶
体22が埋まるまで流し込み、固化させた(図4
(d))。この棒状単結晶体のSi−Au合金23側を
湿式研磨し、Si−Au合金23を除去して更に棒状単
結晶体の先端がつくる面を平坦化した後、アセトンで研
磨用ワックス24を除去した。得られた棒状単結晶体の
長さは1000±2μmで長さの精度は良好でり、また
その先端の直径は10μmであった。次に、Siが露出
している部分のみに選択的にNi−P下地膜25を無電
解めっきで0.5μm成膜し、そのNi−P下地膜25
の表面に電解めっきでAu膜26を2μm成膜し、さら
に最表面のPd膜27を0.5μm電解めっきで形成し
て(図4(e))、表1のNo.2、4、1112
導電性棒状単結晶加工体を作製した( は比較例を示
す、以下同様)。更に、アスペクト比、Auパッドの直
径、ピッチ、成長時間、及び導電性膜のNi−P、A
u、Pdの膜厚を変えて、同様の導電性棒状単結晶加工
体(表1のNo.7、14)を作製した。そして更に、
最外層にPdめっきを施さずに、アスペクト比、Auパ
ッドの直径、ピッチ、成長時間、及び導電性膜の膜厚を
変えて同様の導電性棒状単結晶加工体(表1のNo.
3、5、6、8、15)を作製した。また表1のNo.
1、10は、導電性膜をAuの蒸着膜のみで作製し
た。導電性棒状単結晶加工体のサイズが同じである表1
のNo.2とNo.3は最外層のPdめっきの有無だけ
の相違であるが、これらの導電性棒状単結晶加工体を配
線基板と接合させ、電気特性測定用組立物を作製し、耐
久性試験を行ったところ、最外層にPdめっきを施した
No.2は耐久性がNo.3と比較して数倍に向上する
ことが確認された。尚この耐久性試験は、導電性棒状単
結晶加工体と被測定物のAu蒸着膜とをオーバードライ
ブ10μmでコンタクトさせ、導電性棒状単結晶加工体
の先端めっき膜の剥離が何万回のコンタクトで起こるか
を判断した。
Example 1 and Comparative Example 1 The same pattern as the wiring board was formed on the SOI substrate in which the single crystal Si 18 was formed on the oxide film (SiO 2 ) 17 of the single crystal Si substrate 16 by using the photolithography method. The Au vapor deposition film 19 having a shape was formed to a thickness of 0.03 μm (FIG. 4A). next,
Strong acid etchant (HF / HNO 3 / CH 3 COOH
Si) of the exposed portion is removed by etching, and then the Au deposition film 19 is removed by an etching solution (mixed solution of KI / I / H 2 O) (FIG. 4).
(B)). Then, at a predetermined position where the rod-shaped single crystal is grown, an Au base film 20 having the same shape as the rod-shaped single crystal is formed with a thickness of 0.03 μm by using a photolithography method, and the Au-shaped film having the same shape is formed thereon. The pad 21 was formed by 2 μm electroless plating (FIG. 4 (c)). 95 in the reaction tube
The mixture was heated to 0 ° C. and a mixed gas of silicon tetrachloride and hydrogen was flowed to obtain a rod-shaped single crystal body 22. In this case, Au with a diameter of 30 μm
300 pads were arranged at a pitch of 60 μm (only three pads are shown in the figure). VLS growth was carried out for about 6 hours until the rod-shaped single crystal 22 had a length of 1.5 mm.
At that time, the diameter of the tip is 9 μm and the length is just 1.5.
mm. Next, the polishing wax 24 was poured into the rod-shaped single crystal body 22 until it was filled and solidified (FIG. 4).
(D)). The Si-Au alloy 23 side of this rod-shaped single crystal is wet-polished, the Si-Au alloy 23 is removed, the surface formed by the tip of the rod-shaped single crystal is further flattened, and then the polishing wax 24 is removed with acetone. did. The length of the obtained rod-shaped single crystal was 1000 ± 2 μm, the length accuracy was good, and the diameter of the tip was 10 μm. Next, the Ni—P underlayer film 25 is selectively formed in a thickness of 0.5 μm by electroless plating only on the exposed portion of Si.
An Au film 26 of 2 μm is formed on the surface of the No. 2 by electroplating, and a Pd film 27 of the outermost surface is further formed by 0.5 μm of electroplating (FIG. 4 (e)). 2, 4, 11 and 12 conductive rod-shaped single crystal processed bodies were produced ( Indicates a comparative example, and the same applies hereinafter). Furthermore, the aspect ratio, the diameter of the Au pad, the pitch, the growth time, and the Ni-P, A of the conductive film.
Similar conductive rod-shaped single crystal processed bodies (Nos. 7 and 14 in Table 1) were produced by changing the film thicknesses of u and Pd. And further,
The same conductive rod-shaped single crystal processed body (No. 1 in Table 1) was formed by changing the aspect ratio, the diameter of the Au pad, the pitch, the growth time, and the thickness of the conductive film without applying Pd plating to the outermost layer.
3, 5, 6, 8, 15 ) were produced. In addition, No. 1 in Table 1
In Nos. 1, 9 and 10 , the conductive film was formed only by the vapor deposition film of Au. The conductive rod-shaped single crystal processed bodies have the same size Table 1
No. 2 and No. Although 3 is the difference only in the presence or absence of Pd plating of the outermost layer, these conductive rod-shaped single crystal processed bodies were joined to a wiring board to prepare an assembly for measuring electrical characteristics, and a durability test was conducted. No. with Pd plating on the outermost layer No. 2 has durability. It was confirmed that it was improved several times as compared with 3. In this durability test, the conductive rod-shaped single crystal processed body and the Au vapor-deposited film of the object to be measured were brought into contact with each other with an overdrive of 10 μm, and the tip plating film of the conductive rod-shaped single crystal processed body was peeled tens of thousands of times. I decided what would happen in.

【0040】[0040]

【表1】 また、表1のNo.1〜No.15の導電性棒状単結晶
加工体を上述したように配線基板と接合させ、電気特性
測定用組立物を作製し、その他の特性を以下の方法で評
価した結果を表2に示す。また、単結晶の直径が0.0
5μm、長さが50μmの導電性棒状単結晶加工体を作
製したが、導電性膜がきちんと形成できなかった。単結
晶の直径が650μmのものは、長さを5000μmに
しても d -2.4×L2.8が 4.0×103 と小さく、限界オーバ
ードライブ量が小さく、信頼性の低いものしか得られな
かった。
[Table 1]In addition, No. 1 to No. 15 conductive rod-shaped single crystals
The processed body is bonded to the wiring board as described above, and the electrical characteristics
Make a measurement assembly and evaluate other characteristics by the following methods.
The results obtained are shown in Table 2. The diameter of the single crystal is 0.0
Create a conductive rod-shaped single crystal processed product with a length of 5 μm and a length of 50 μm
However, the conductive film could not be formed properly. Single bond
If the crystal diameter is 650 μm, the length should be 5000 μm.
Even d -2.4× L2.8Is 4.0 x 103And small, over the limit
-The amount of drive is small, and you can obtain only low reliability.
won.

【0041】[0041]

【表2】 [Table 2]

【0042】(限界オーバードライブ量)本実施例にお
ける電気特性測定用組立物に荷重を印可し、最初のプロ
ーブピンが破壊するまでの押し込み量を測定し、その値
を限界オーバードライブ量とした。ここで、この限界オ
ーバードライブ量はデジタル変位計(精度±1μm)を
用いて測定した。 (位置精度)プローブピン先端の位置を光学顕微鏡で測
定し、設計値に対する位置ズレ量を求めた。 (高さ精度)プローブピン先端の高さを光学顕微鏡で測
定し、ピン先端が作る平面をもとめて、その平面からの
ズレの最大を高さ精度とした。 (プローブピンの変形)前述したプローブピンの限界オ
ーバードライブ量測定器でプローブピンに10μmのオ
ーバードライブを伴うような座屈変形を10回作用させ
た後、顕微鏡で変形の有無を調べた。 (プローブピンの表面性)走査型電子顕微鏡(SEM)
を用いプローブピン側面のめっき膜の欠陥の有無を判断
した。 (プローブピン間の短絡)絶縁体であるアルミナの板を
ピンに押し当て、10μmのオーバードライブを加えた
状態で、異なるプローブピン間の絶縁状態が保たれてい
るかを市販のマルチメータで抵抗を測定することにより
判断した。このときプローブピン間の抵抗が1MΩ以下
の時ピン同士が接触し電気的に短絡したと判断した。 (導通試験)市販のマルチメータを用い、ピン先端と配
線基板の配線が導通が取れているかを抵抗値で判断し
た。この抵抗値が50Ω以上のとき導通無しと判断し
た。
(Limit Overdrive Amount) A load was applied to the electrical characteristic measuring assembly in this example, and the pushing amount until the first probe pin was broken was measured, and the value was taken as the limit overdriving amount. Here, this limit overdrive amount was measured using a digital displacement meter (accuracy ± 1 μm). (Position Accuracy) The position of the tip of the probe pin was measured with an optical microscope, and the amount of positional deviation from the design value was obtained. (Height accuracy) The height of the probe pin tip was measured with an optical microscope, the plane formed by the pin tip was determined, and the maximum deviation from that plane was defined as the height accuracy. (Deformation of Probe Pin) After the probe pin was subjected to buckling deformation 10 times with overdriving of 10 μm by the above-mentioned limit overdrive measuring device for probe pin, the presence or absence of deformation was examined with a microscope. (Surface property of probe pin) Scanning electron microscope (SEM)
The presence or absence of defects in the plating film on the side surface of the probe pin was determined by using. (Short circuit between probe pins) Alumina plate, which is an insulator, is pressed against the pins to check if insulation between different probe pins is maintained with a 10 μm overdrive. It was judged by measuring. At this time, when the resistance between the probe pins was 1 MΩ or less, it was determined that the pins were in contact with each other and were electrically short-circuited. (Conductivity test) Using a commercially available multimeter, it was judged from the resistance value whether the tip of the pin and the wiring of the wiring board were electrically connected. When this resistance value was 50Ω or more, it was determined that there was no conduction.

【0043】(実施例2)単結晶Si基板5上の棒状単
結晶体を成長させる所定の位置に、フォトリソグラフィ
ー法を用い、棒状単結晶体と同じ形状のAu下地膜20
を0.03μmの厚さで形成し、その上に同形状のAu
パッド21を2μm無電解めっきで形成した(図5
(a))。このSi基板5をHF/HNO3 /CH3
OOHの混合液を用いてエッチングしてSiのメサ形状
28を作りその上に金パッド21が載っている形状とし
た(図5(b))。これを反応管内で950℃に加熱
し、四塩化珪素と水素の混合ガスを流し、棒状単結晶体
22を得た。この場合、直径35μmのAuパッドを6
0μmのピッチで300個配置し(図では3個のみ図示
してある)、またVLS成長させた棒状単結晶体22の
長さは2500μmで、先端の直径は24μmであっ
た。次に、研磨用ワックス24を棒状単結晶体22が埋
まるまで流し込み、固化させた(図5(c))。この棒
状単結晶体のSi−Au合金23側を湿式研磨し、Si
−Au合金23を除去して更に棒状単結晶体の先端がつ
くる面を平坦化した後、アセトンで研磨用ワックス24
を除去した(図5(d))。得られた棒状単結晶体の長
さは2000±2μmで、またその先端の直径は25μ
mであった。その後、棒状単結晶体のNi−P下地膜2
5を無電解めっきで0.5μm成膜し、そのNi−P下
地膜25の表面に電解めっきでAu膜26を4μm成膜
し、さらに最表面のPd膜27を0.5μm電解めっき
で形成した(図5(e))。次に、図5の様にして得ら
れた導電性棒状単結晶加工体の基板上に、図3(ここで
は棒状単結晶体と導電性膜は導電性棒状単結晶加工体3
として図示してある)で示す様に、導電性棒状単結晶加
工体3の基部及びその周辺が露出される様な形状の堰板
10を配置した(図3(a))。この板は半硬化のエポ
キシ樹脂で作製し、基板上に未硬化のエポキシ樹脂で接
着した。次いで、導電性針上単結晶体3の基部及び、堰
板10の間に露出された部分に未硬化のエポキシ樹脂か
らなる固定材料を塗布する。次いでこのエポキシ樹脂を
加熱、硬化させ硬化物11を作製した(図3(b))。
この場合のエポキシ樹脂組成物は、ビスフェノールA型
エポキシ樹脂100gに、メチルテトラヒドロ無水フタ
ル酸80g、2.4.6−トリスフェノール2g、カオ
リンクレー粉100gを配合して作った。堰板に使用す
る半硬化のエポキシ樹脂は前述のエポキシ樹脂組成物を
オーブン中で100℃、50分の条件で硬化させて作
り、また未硬化のエポキシ樹脂を塗布してから全体の加
熱硬化は100℃、5時間の条件で行った。このときの
エポキシ樹脂面から突出している導電性棒状単結晶加工
体の長さは1000μmであった。次に、湿式研磨を用
いてSi基板5を研磨除去した(図3(c))。このと
きエポキシ樹脂の厚さは約1000μmであり、また光
学顕微鏡による測定でエポキシ樹脂面から導電性棒状単
結晶加工体の下端部は50μm突出していた。この導電
性棒状単結晶加工体の下部端面と配線基板9上の配線8
とを接着させて、表3のNo.25に示す電気特性測定
用組立物を作ることができた(図3(d))。同様の方
法でアスペクト比、Auパッド直径、ピッチ、成長時
間、導電性膜の厚さ及び成膜方法を変更して表3に示す
導電性棒状単結晶加工体を作製した。
(Example 2) At a predetermined position where a rod-shaped single crystal body is grown on the single-crystal Si substrate 5, a photolithography method is used, and an Au base film 20 having the same shape as the rod-shaped single crystal body is used.
With a thickness of 0.03 μm, on which Au of the same shape is formed.
The pad 21 was formed by 2 μm electroless plating (FIG. 5).
(A)). This Si substrate 5 is HF / HNO 3 / CH 3 C
Etching was performed using a mixed solution of OOH to form a mesa shape 28 of Si and a gold pad 21 was placed on the mesa shape 28 (FIG. 5B). This was heated to 950 ° C. in a reaction tube and a mixed gas of silicon tetrachloride and hydrogen was caused to flow to obtain a rod-shaped single crystal body 22. In this case, 6 Au pads with a diameter of 35 μm are used.
300 pieces were arranged at a pitch of 0 μm (only three pieces are shown in the figure), and the VLS-grown rod-shaped single crystal body 22 had a length of 2500 μm and a tip diameter of 24 μm. Next, the polishing wax 24 was poured into the rod-shaped single crystal body 22 until it was filled and solidified (FIG. 5C). The Si-Au alloy 23 side of this rod-shaped single crystal body was wet-polished to obtain Si.
After removing the Au alloy 23 and flattening the surface formed by the tip of the rod-shaped single crystal body, the polishing wax 24 is added with acetone.
Was removed (FIG. 5 (d)). The rod-shaped single crystal obtained had a length of 2000 ± 2 μm, and the tip diameter was 25 μm.
It was m. After that, the rod-shaped single crystal Ni-P base film 2
5 is deposited by electroless plating to a thickness of 0.5 μm, an Au film 26 is deposited on the surface of the Ni—P undercoat film 25 by electrolytic plating to a thickness of 4 μm, and an outermost Pd film 27 is deposited by 0.5 μm by electrolytic plating. (Fig. 5 (e)). Next, on the substrate of the conductive rod-shaped single crystal processed body obtained as shown in FIG. 5, the conductive rod-shaped single crystal processed body 3 (here, the rod-shaped single crystal body and the conductive film is the conductive rod-shaped single crystal processed body 3 is formed).
(Fig. 3A), a barrier plate 10 having a shape such that the base portion of the conductive rod-shaped single crystal processed body 3 and the periphery thereof are exposed is arranged (Fig. 3A). The plate was made of semi-cured epoxy resin and adhered onto the substrate with uncured epoxy resin. Next, a fixing material made of an uncured epoxy resin is applied to the base portion of the conductive needle-like single crystal body 3 and the portion exposed between the barrier plates 10. Next, this epoxy resin was heated and cured to prepare a cured product 11 (FIG. 3 (b)).
The epoxy resin composition in this case was made by mixing 100 g of bisphenol A type epoxy resin with 80 g of methyltetrahydrophthalic anhydride, 2 g of 2.4.6-trisphenol, and 100 g of kaolin clay powder. The semi-cured epoxy resin used for the barrier plate is made by curing the above-mentioned epoxy resin composition in an oven at 100 ° C. for 50 minutes, and after applying the uncured epoxy resin, the entire heat curing is not performed. It was performed at 100 ° C. for 5 hours. At this time, the length of the conductive rod-shaped single crystal processed body protruding from the epoxy resin surface was 1000 μm. Next, the Si substrate 5 was removed by polishing using wet polishing (FIG. 3C). At this time, the thickness of the epoxy resin was about 1000 μm, and the lower end portion of the conductive rod-shaped single crystal processed body was projected by 50 μm from the epoxy resin surface as measured by an optical microscope. The lower end face of this conductive rod-shaped single crystal processed body and the wiring 8 on the wiring substrate 9
And No. 3 in Table 3 are adhered to each other. The electrical characteristic measuring assembly shown in FIG. 25 could be produced (FIG. 3 (d)). By the same method, the aspect ratio, the Au pad diameter, the pitch, the growth time, the thickness of the conductive film and the film forming method were changed to prepare the conductive rod-shaped single crystal processed body shown in Table 3.

【0044】[0044]

【表3】 [Table 3]

【0045】これらを配線基板と接合して電気特性測定
用組立物を作製した。これらについて実施例1と同様の
方法で評価した結果、表4に示す結果が得られた。
These were joined to a wiring board to prepare an assembly for measuring electrical characteristics. As a result of evaluating these in the same manner as in Example 1, the results shown in Table 4 were obtained.

【0046】[0046]

【表4】 [Table 4]

【0047】(実施例3)図6で示す様に、実施例1
(表1のNo.2)で得られた導電性棒状単結晶加工体
の外部配線との接続部分にマスキングテープ29を貼り
(図6(a))、ポリイミドの前駆体であるポリアミッ
ク酸の溶液30の入ったシャーレ31に、導電性棒状単
結晶加工体の先端を上にして、導電性棒状単結晶加工体
の3分の1の長さが浸る程度にして放置した(図6
(b))。すると表面張力により溶液はピンの先端へと
這い上がるが(図6(c))、その先端から約100μ
mくらいまで溶液が這い上がった時点で溶液から取り出
し、マスキングテープ29を剥して加熱硬化(250
℃、30分)させた(図6(d))。このようにして導
電性棒状単結晶加工体の表面には0.1μmの厚さのポ
リイミドの絶縁膜32が形成され、この方法で表1のN
o.4に示す導電性棒状単結晶加工体を作製することが
できた。また、同様の方法でポリアミック酸の濃度を変
え、表1のNo.6、8に示す導電性棒状単結晶加工体
を作製した。この方法は実施例2にも適用することがで
きる。実施例2の場合は、得られた導電性棒状単結晶加
工体に堰板を配置する前に前述の方法を用いて絶縁膜を
形成する。尚この場合は配線が施されていないためマス
キングテープは不要である。その後は、堰板を実施例2
と同様に配置し、以下同様のプロセスを実施して先端部
を除く部分が絶縁された導電性棒状単結晶加工体(表3
のNo.15、20、26〜29)を作ることができ
た。この様にして得られた導電性棒状単結晶加工体を配
線基板と接合して電気特性測定用組立物作製し、実施例
1と同じ方法で評価した結果、表2及び表4に示す結果
が得られた。
(Embodiment 3) As shown in FIG.
(No. 2 in Table 1) A masking tape 29 is attached to a portion of the conductive rod-shaped single crystal processed body that is connected to the external wiring (FIG. 6A), and a solution of a polyamic acid that is a precursor of polyimide. The conductive rod-shaped single crystal processed body was left in a Petri dish 31 containing 30 with the tip thereof facing upward so that one-third of the length of the conductive rod-shaped single crystal processed body was immersed (FIG. 6).
(B)). Then, the solution crawls to the tip of the pin due to surface tension (Fig. 6 (c)), but about 100μ from the tip.
When the solution has climbed up to about m, it is taken out of the solution, the masking tape 29 is peeled off, and heat curing (250
(° C, 30 minutes) (FIG. 6 (d)). Thus, the polyimide insulating film 32 having a thickness of 0.1 μm is formed on the surface of the conductive rod-shaped single crystal processed body.
o. The electrically conductive rod-shaped single crystal processed body shown in FIG. 4 could be produced. In addition, by changing the concentration of polyamic acid by the same method, No. 1 in Table 1 was changed. The conductive rod-shaped single crystal processed bodies shown in Nos. 6 and 8 were produced. This method can also be applied to the second embodiment. In the case of Example 2, the insulating film is formed by using the above-described method before disposing the dam plate on the obtained conductive rod-shaped single crystal processed body. In this case, no masking tape is required because no wiring is provided. After that, a weir plate was used in Example 2.
The same process as above is performed, and the same process is performed thereafter, and the conductive rod-shaped single crystal processed body (Table 3
No. 15, 20, 26-29) could be made. The conductive rod-shaped single crystal processed body thus obtained was joined to a wiring board to prepare an assembly for measuring electric characteristics, and the assembly was evaluated by the same method as in Example 1. As a result, the results shown in Tables 2 and 4 were obtained. Was obtained.

【0048】(実施例4)導電性棒状単結晶加工体と外
部引き出し用配線を有する半導体チップとからなる電気
特性測定用組立物の実施例を図11を参照して以下に説
明する。図7(a)は本実施例で得られた該電気特性測
定用組立物の概略図であり、図7(b)はその断面図で
ある。導電性棒状単結晶加工体3は実施例2と同様の方
法で作った。このときの導電性棒状単結晶加工体のピッ
チは50μmで5mm角内に合計600本作製した(図
7では16本のみ図示してある)。外部引き出し配線用
半導体チップ33はSi基板にLSI製造技術で作製
し、配線34は2層構造で作製した。この半導体チップ
は45mm角の大きさで、配線の幅は導電性棒状単結晶
加工体と接続する方の巾が25μmで、引き出し側の巾
を127μmとした。この様にして作製した導電性棒状
単結晶加工体と上述の外部引き出し用配線を有する半導
体チップを接合して電気特性測定用組立物を作ることが
できた。この半導体チップを用いることで、導電性棒状
単結晶加工体と外部配線との接続が容易になり、信頼性
の高い高密度のプローブピンを有する電気測定用組立物
を作製することができた。
(Embodiment 4) An embodiment of an assembly for measuring electrical characteristics, which is composed of a conductive rod-shaped single crystal processed body and a semiconductor chip having a wiring for external extraction, will be described below with reference to FIG. FIG. 7A is a schematic view of the electrical characteristic measuring assembly obtained in this example, and FIG. 7B is a sectional view thereof. The conductive rod-shaped single crystal processed body 3 was produced in the same manner as in Example 2. At this time, the conductive rod-shaped single crystal processed body had a pitch of 50 μm, and a total of 600 pieces were produced within a 5 mm square (only 16 pieces were shown in FIG. 7). The external lead wiring semiconductor chip 33 was manufactured on a Si substrate by an LSI manufacturing technique, and the wiring 34 was manufactured in a two-layer structure. This semiconductor chip had a size of 45 mm square, and the width of the wiring was 25 μm for connecting to the conductive rod-shaped single crystal processed body, and the width on the extraction side was 127 μm. The electrically conductive rod-shaped single crystal processed body produced in this manner and the semiconductor chip having the above-mentioned wiring for external extraction could be joined together to make an electrical characteristic measuring assembly. By using this semiconductor chip, the conductive rod-shaped single crystal processed body was easily connected to the external wiring, and an electrical measurement assembly having highly reliable and high-density probe pins could be manufactured.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
破損し難く、被検査体と位置精度よく接触させることが
でき、被検査体と十分な導通がはかれる導電性棒状単結
晶加工体、さらには所望の位置に精度よく、高密度に形
成された該導電性棒状単結晶加工体、及びこれらの導電
性棒状単結晶加工体を用いた電気特性測定用組立物を提
供することが可能となった。また、本発明の導電性棒状
単結晶加工体は上記実施例に限定されるものでなく、プ
ローブカード用のみならず、微小真空デバイスや電子
銃、或いは走査型トンネル顕微鏡や原子間力顕微鏡をは
じめとする走査型プローブ顕微鏡のプローブ等の用途に
も効果的に使用できるものであった。
As described above, according to the present invention,
A conductive rod-shaped single crystal processed body that is hard to be damaged and can be brought into contact with an object to be inspected with high positional accuracy, and has sufficient electrical continuity with the object to be inspected. It has become possible to provide a conductive rod-shaped single crystal processed body, and an assembly for measuring electric characteristics using these conductive rod-shaped single crystal processed bodies. Further, the electroconductive rod-shaped single crystal processed body of the present invention is not limited to the above-mentioned embodiment, and is not limited to a probe card, and includes a micro vacuum device, an electron gun, a scanning tunneling microscope and an atomic force microscope. The present invention can be effectively used as a probe of a scanning probe microscope.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の導電性棒状単結晶加工体の一実
施例を示す図である。
FIG. 1 is a view showing an example of a conductive rod-shaped single crystal processed body of the present invention.

【図2】図2は本発明の電気特性測定用組立物の一実施
例を示す図である。
FIG. 2 is a view showing an embodiment of the electrical property measuring assembly of the present invention.

【図3】図3は本発明の電気特性測定用組立物の製造工
程の一実施例を示す図である。
FIG. 3 is a diagram showing an embodiment of a manufacturing process of the electrical characteristic measuring assembly of the present invention.

【図4】図4は本発明の電気特性測定用組立物の製造工
程の一実施例を示す図である。
FIG. 4 is a diagram showing an embodiment of a manufacturing process of the electrical characteristic measuring assembly of the present invention.

【図5】図5は本発明の電気特性測定用組立物の製造工
程の一実施例を示す図である。
FIG. 5 is a diagram showing an embodiment of a manufacturing process of the electrical characteristic measuring assembly of the present invention.

【図6】図6は本発明の電気特性測定用組立物の製造工
程の一実施例を示す図である。
FIG. 6 is a view showing an embodiment of the manufacturing process of the electrical characteristic measuring assembly of the present invention.

【図7】図7は本発明の電気特性測定用組立物の一実施
例を示す図である。
FIG. 7 is a view showing an embodiment of the electrical property measuring assembly of the present invention.

【符号の説明】[Explanation of symbols]

1;棒状単結晶体 2;導電性膜 3;導電性棒状単結晶加工体 4;絶縁膜 5;基板 6;絶縁材料 7;被測定物 8;配線 9;配線基板 10;堰板 11;絶縁材料からなる固定材料 12;エポキシ硬化物 13;高分子化合物フィルム 16;単結晶Si基板 17;Si酸化膜 18;単結晶Si 19;Au蒸着膜 20;Au下地膜 21;Auパッド 22;棒状単結晶体 23;Si−Au合金 24;研磨用ワックス 25;NiP下地膜 26;Au膜 27;Pd膜 28;メサ形状 29;マスキングテープ 30;ポリアミック酸溶液 31;シャーレ 32;ポリイミド絶縁膜 33;外部引き出し配線用半導体チップ 34;配線 DESCRIPTION OF SYMBOLS 1; Rod-shaped single crystal body 2; Conductive film 3; Conductive rod-shaped single crystal processed body 4; Insulating film 5; Substrate 6; Insulating material 7; DUT 8; Wiring 9; Wiring board 10; Dam plate 11; Insulation Fixing material 12; epoxy cured material 13; polymer compound film 16; single crystal Si substrate 17; Si oxide film 18; single crystal Si 19; Au deposition film 20; Au base film 21; Au pad 22; rod-shaped single Crystalline body 23; Si-Au alloy 24; Polishing wax 25; NiP base film 26; Au film 27; Pd film 28; Mesa shape 29; Masking tape 30; Polyamic acid solution 31; Petri dish 32; Polyimide insulating film 33; External Leader wiring semiconductor chip 34; wiring

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 VLS成長法にて形成されたアスペクト
比1〜500の棒状単結晶体又はその先端合金部を除去
した棒状単結晶体の少なくとも側面が0.1〜10μm
の厚さの導電性膜で被覆されてなる導電性棒状単結晶加
工体の固定面と先端との距離L(μm)と該棒状単結晶
体の直径d(μm)が以下の範囲にあることを特徴とす
る導電性棒状単結晶加工体。 10≦L≦3000、0.1≦d≦600、d-2.4×L
2.8 ≧5.0×104
1. A rod-shaped single crystal having an aspect ratio of 1 to 500 formed by a VLS growth method or a rod-shaped single crystal having its tip alloy portion removed has at least a side surface of 0.1 to 10 μm.
The distance L (μm) between the fixed surface and the tip of the conductive rod-shaped single crystal processed body coated with a conductive film having a thickness of 5 mm and the diameter d (μm) of the rod-shaped single crystal are within the following ranges: A conductive rod-shaped single crystal processed body characterized by: 10 ≦ L ≦ 3000, 0.1 ≦ d ≦ 600, d −2.4 × L
2.8 ≥ 5.0 x 10 4
【請求項2】 導電性棒状単結晶加工体が絶縁材料で固
定されてなる請求項1記載の導電性棒状単結晶加工体。
2. The conductive rod-shaped single crystal processed body according to claim 1, wherein the conductive rod-shaped single crystal processed body is fixed with an insulating material.
【請求項3】 絶縁材料の厚みが0.1μm〜2000
μmである請求項2記載の導電性棒状単結晶加工体。
3. The insulating material has a thickness of 0.1 μm to 2000 μm.
The conductive rod-shaped single crystal processed product according to claim 2, which has a thickness of μm.
【請求項4】 導電性膜の少なくとも表面がPd である
ことを特徴とする請求項1記載の導電性棒状単結晶加工
体。
4. The conductive rod-shaped single crystal processed body according to claim 1, wherein at least the surface of the conductive film is Pd.
【請求項5】 棒状単結晶体の直径dが1〜50μmで
あって、その導電性膜の厚さtがd×0.4μm以下で
ある請求項1記載の導電性棒状単結晶加工体。
5. The processed conductive rod-shaped single crystal according to claim 1, wherein the diameter d of the rod-shaped single crystal is 1 to 50 μm, and the thickness t of the conductive film is d × 0.4 μm or less.
【請求項6】 その表面が、少なくともその先端面を除
いて厚さ0.1〜10μmの絶縁膜により被覆されてな
る請求項1記載の導電性棒状単結晶加工体。
6. The electroconductive rod-shaped single crystal processed product according to claim 1, wherein the surface thereof is covered with an insulating film having a thickness of 0.1 to 10 μm except at least the front end face thereof.
【請求項7】 請求項1記載の導電性棒状単結晶加工体
と外部引き出し用配線を有する回路基板とからなること
を特徴とする電気特性測定用組立物。
7. An electrical characteristic measuring assembly comprising the conductive rod-shaped single crystal processed body according to claim 1 and a circuit board having a wiring for external drawing.
【請求項8】 回路基板が半導体チップである請求項7
記載の電気特性用組立物。
8. The circuit board is a semiconductor chip.
Assembly for electrical properties as described.
JP11310595A 1995-05-11 1995-05-11 Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body Pending JPH08304456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11310595A JPH08304456A (en) 1995-05-11 1995-05-11 Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11310595A JPH08304456A (en) 1995-05-11 1995-05-11 Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body

Publications (1)

Publication Number Publication Date
JPH08304456A true JPH08304456A (en) 1996-11-22

Family

ID=14603621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11310595A Pending JPH08304456A (en) 1995-05-11 1995-05-11 Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body

Country Status (1)

Country Link
JP (1) JPH08304456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191257A (en) * 2012-03-14 2013-09-26 Toshiba Corp Multi-probe, recorder, and method for manufacturing multi-probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191257A (en) * 2012-03-14 2013-09-26 Toshiba Corp Multi-probe, recorder, and method for manufacturing multi-probe

Similar Documents

Publication Publication Date Title
US7032307B2 (en) Method for fabricating a probe pin for testing electrical characteristics of an apparatus
US7652492B2 (en) Integrated compound nano probe card
US7656174B2 (en) Probe cassette, semiconductor inspection apparatus and manufacturing method of semiconductor device
JP4527267B2 (en) Contactor manufacturing method
US8044511B2 (en) Function element and function element mounting structure
JP4741949B2 (en) Inspection probe
US5903161A (en) Electrically conductive rod-shaped single crystal product and assembly for measuring electrical properties employing such product, as well as processes for their production
JP2796070B2 (en) Method of manufacturing probe card
JP3550157B2 (en) Manufacturing method of circuit measurement terminals
JP3222179B2 (en) Circuit measuring terminal and method of manufacturing the same
JP3128199B2 (en) Inspection probe
US8305102B2 (en) Probe card, method for manufacturing probe card, and prober apparatus
JPH08304456A (en) Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body
JP3379699B2 (en) Prober manufacturing method
KR100233698B1 (en) Electrically conductive rod-shaped single crystal product and assembly for measuring electrical properties employing such product, as well as processes for their production
JP3156874B2 (en) Circuit measuring terminal and method of manufacturing the same
JP3456541B2 (en) Conductive needle-shaped single crystals and embedded objects
JPH0733596A (en) Needle single crystal composite
JPH05215774A (en) Terminal for measuring circuit and manufacture thereof
JPH11271358A (en) Circuit board and its manufacture, and probe card
JPH08122363A (en) Probe pin structural body and its manufacture
JPH0733598A (en) Processed product of needle single crystal and its production
JP3589436B2 (en) Circuit board, method for manufacturing the same, and probe card using the same
JPH11251376A (en) Manufacture of circuit board
JPH11246995A (en) Circuit board and probe card using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040310