JPH08304338A - Operation control method of glue addition quantity into electrolyte in copper electrolytic refining - Google Patents

Operation control method of glue addition quantity into electrolyte in copper electrolytic refining

Info

Publication number
JPH08304338A
JPH08304338A JP13259595A JP13259595A JPH08304338A JP H08304338 A JPH08304338 A JP H08304338A JP 13259595 A JP13259595 A JP 13259595A JP 13259595 A JP13259595 A JP 13259595A JP H08304338 A JPH08304338 A JP H08304338A
Authority
JP
Japan
Prior art keywords
average molecular
molecular weight
glue
copper
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13259595A
Other languages
Japanese (ja)
Inventor
Keichi Ozaki
佳智 尾崎
Naoyuki Tsuchida
直行 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13259595A priority Critical patent/JPH08304338A/en
Publication of JPH08304338A publication Critical patent/JPH08304338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE: To improve the productivity of a product by calculating the relative activity of the glue dissolved in copper electrolytic refining electrolyte from the average molecular weight of the glue, and controlling the relative activity so as to be within a range of a specified value or more. CONSTITUTION: When the average molecular weight of glue in electrolyte is changed, the electrode reaction rate constant (cm/sec) reduces substantially in proportion to the average molecular weight of the glue. Thus, the relative activity of glue in copper electrolytic refining electrolyte is calculated from the average molecular weight of the glue dissolved in the copper electrolytic refining electrolyte, and the relative activity is controlled so as to be within a range of 0.6 or more, preferably, 1.0-1.5. Namely, the electrode reaction rate constant of a copper electrolytic refining electrolyte containing a fixed quantity of glue with different and known average molecular weight is determined. From the relation between the different average molecular weight and the electrode reaction rate contact corresponding thereto, the average molecular weight of a glue with unknown average molecular weight is estimated to determine the relative activity of the glue with unknown average molecular weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅電解精製工程におい
て、銅電解精製電解液(以下、単に「電解液」とい
う。)中に添加したにかわの相対活量を経時的に把握し
て、電解液に対するにかわ添加の適正化を図り、最終的
に電解精製工程の円滑なる進行を管理する方法に関す
る。
The present invention relates to the relative activity of glue added to a copper electrolytic refining electrolytic solution (hereinafter simply referred to as "electrolytic solution") in a copper electrolytic refining step, The present invention relates to a method for optimizing the addition of glue to an electrolytic solution and finally managing the smooth progress of an electrolytic refining process.

【0002】[0002]

【従来の技術】溶製した粗板を陽極に、電解種板を陰極
に配置する銅電解精製において、製品陰極板の外観を向
上させるためににかわが電解液中に添加されている。電
解液中に溶存するにかわの量を求める方法としては、一
般に、電極反応から得られる信号を利用して終点を検知
する電気滴定法として知られるボルタンメトリー法が採
用されている。しかし、得られた結果から濃度依存性を
数式化することは困難であり、電解液に添加されたにか
わの未知なる溶存量を定量的に把握したい場合に利用す
る手段としては、好適な方法とはいえない。上記の難点
を解決する手段として、電解液中に溶存しているにかわ
を適正量に保つために、電解精製工程において電解液に
添加されたにかわの量をハルセル試験などを基にして決
定するとともに、一方では、製品陰極板の仕上がり表面
状態を観察することによって、製品陰極板の製造工程が
管理されている。
2. Description of the Related Art In copper electrolytic refining in which a melted rough plate is used as an anode and an electrolytic seed plate is used as a cathode, glue is added to an electrolytic solution in order to improve the appearance of a product cathode plate. As a method for determining the amount of glue dissolved in the electrolytic solution, a voltammetric method known as an electrotitration method is generally used in which the end point is detected by using a signal obtained from an electrode reaction. However, it is difficult to formulate the concentration dependence from the obtained results, and as a means to be used when quantitatively grasping the unknown dissolved amount of glue added to the electrolytic solution, a suitable method and I can't say. As a means for solving the above-mentioned difficulties, in order to maintain an appropriate amount of glue dissolved in the electrolyte, the amount of glue added to the electrolyte in the electrolytic refining step is determined based on the Hull cell test and the like. On the other hand, the manufacturing process of the product cathode plate is controlled by observing the finished surface state of the product cathode plate.

【0003】しかしながら、この方法では、製品陰極板
の品質改善のために行うはずのにかわの添加量決定が、
製品陰極板が一部にせよ形成された後に行われるので、
添加量決定前に形成された製品陰極板が不良であると、
製品陰極板の生産性に大きな影響を及ぼす。このように
にかわの量を経時的に求めることが研究されているが、
にかわの分子量が大きく影響していることが認められて
きた。にかわは天然の原料から製造される高分子量を持
つ物質であるが、その有効作用には分子量を一定に保つ
ことが重要である。しかし、電解液中では容易に分解さ
れることが知られていて、にかわの製造の際の分子量の
制御は非常に困難である。従って、同一の方法により製
造されるにかわでも、その平均分子量が変化しているこ
とが考えられる。そして、このようなにかわを用いて銅
を電解精製したとき、一定の外観品質を確保するうえ
で、平均分子量が明確に把握できないために、経験的に
複雑な判断を要求されることが多かった。
However, in this method, the addition amount of glue to be determined for improving the quality of the product cathode plate is
Since it is performed after the product cathode plate is formed even if partially,
If the product cathode plate formed before determining the addition amount is defective,
It greatly affects the productivity of the product cathode plate. Although research has been conducted to determine the amount of glue in this way,
It has been recognized that the molecular weight of glue is a significant factor. Although glue is a substance with a high molecular weight produced from natural raw materials, it is important to keep the molecular weight constant for its effective action. However, it is known that it is easily decomposed in an electrolytic solution, and it is very difficult to control the molecular weight during the production of glue. Therefore, even if it is produced by the same method, its average molecular weight may change. And, when electrolytically refining copper using such glue, in order to ensure a certain appearance quality, since the average molecular weight cannot be clearly grasped, empirically complicated judgment was often required. .

【0004】[0004]

【発明が解決しようとする課題】本発明は、電解精製処
理を施すに際して、定電位における作用電極の電気量の
時間的変化を測定するクロノクーロメトリー法を用い
て、電解液中に溶存するにかわの平均分子量を把握し、
これにより、製品陰極板の外観性状を良好に管理する手
段を提供して、製品の生産性を向上させることを目的と
する。また、本発明は、電解液中で分解されやすく、ま
た製造時での分子量の制御が困難であるため、その操業
管理が非常に困難であるにかわについて、にかわの平均
分子量により、その電解液中での相対活量を算出し、適
正な相対活量の範囲で電解液中のにかわの添加量を管理
する銅の電解精製方法を行うことを課題とする。
DISCLOSURE OF THE INVENTION In the present invention, when electrolytic refining treatment is performed, the chronocoulometry method for measuring the temporal change of the electric quantity of the working electrode at a constant potential is used. Know the average molecular weight,
Accordingly, it is an object of the present invention to provide a means for satisfactorily controlling the appearance of the product cathode plate and improve the productivity of the product. Further, the present invention is easily decomposed in the electrolytic solution, and because it is difficult to control the molecular weight during production, it is very difficult to manage the operation thereof. It is an object of the present invention to carry out an electrolytic refining method for copper, in which the relative activity in the solution is calculated, and the amount of glue added to the electrolytic solution is controlled within an appropriate relative activity range.

【0005】[0005]

【課題を解決するための手段】本発明では、以下のよう
な方法を用いて上記の課題を解決する。本発明において
は、電解液中のにかわの平均分子量を変化させた場合、
電極反応速度定数kc (cm/sec)はにかわの平均
分子量にほぼ比例して減少することの認識に本発明は基
づいている。銅の電解精製に関しては、電解液に一定量
のにかわを添加することが多いが、その平均分子量が常
に一定であることは不確かなことが多い。本発明におい
て、にかわが銅の電解精製で効果的に働くための要因と
して、その平均分子量が重要であることがわかった。そ
して、この平均分子量を相対活量として表すことによ
り、精製される製品陰極板の品質管理がより向上するこ
とが判明した。具体的には、製品陰極板を一定の品質に
維持するためにはにかわの相対活量が、0.6以上、好
ましくは1.0から1.5になる範囲で電解液中ににか
わを添加すればよいことが本発明により見い出された。
The present invention solves the above-mentioned problems by using the following method. In the present invention, when the average molecular weight of glue in the electrolytic solution is changed,
The present invention is based on the recognition that the electrode reaction rate constant k c (cm / sec) decreases almost in proportion to the average molecular weight of glue. Regarding the electrolytic refining of copper, a certain amount of glue is often added to the electrolytic solution, but it is often uncertain that the average molecular weight is always constant. In the present invention, it was found that the average molecular weight is important as a factor for effectively working the glue in the electrolytic refining of copper. Then, it was found that the quality control of the product cathode plate to be refined was further improved by expressing the average molecular weight as the relative activity. Specifically, in order to maintain the quality of the cathode plate of the product to a certain level, the relative activity of the glue is added to the electrolytic solution in a range of 0.6 or more, preferably 1.0 to 1.5. It has been found according to the invention that this is all that is needed.

【0006】なお、相対活量0.6は、相対活量1.0
のにかわを含む電解液を一度電解精製に使用したとき、
廃液として得られた電解液中のにかわの相対活量に相当
する。本発明では、平均分子量の測定が重要であり、平
均分子量が既知であるにかわを一定量含んだ電解精製用
電解液を用意し、陰極で生じる分極を電気量と時間との
関係として計測し、電圧印加後の特定時間と、前記特定
時間経過時の分極電気量計測値とから、このときの電極
反応速度定数を算出し、その後、にかわの量は同じとし
て、にかわの平均分子量をさらに変化させた複数の電解
液を用意し、これら複数の電解液に対して、前記の分極
電気量計測時に印加したと同じ電圧で電解処理を施し、
前記の特定時間と同一経過時のそれぞれの場合におい
て、それぞれの分極電気量を計測し、これらの計測値か
ら、にかわの平均分子量の異なる3以上の電解液につい
て、これら電解液の電極反応速度定数をそれぞれ算出
し、これらの電極反応速度定数とにかわの平均分子量の
関係から一つの直線回帰式を求めた後、さらに、にかわ
の量は同じにして、にかわの平均分子量が未知の電解液
についての電極反応速度定数を、上記複数の電解液につ
いての電極反応速度定数算出方法と同様にして算出し、
この算出値を前記の直線回帰式に代入し、よって前記未
知のにかわの平均分子量を求める。
The relative activity of 0.6 is the relative activity of 1.0.
When the electrolytic solution containing glue is used once for electrolytic purification,
It corresponds to the relative activity of glue in the electrolytic solution obtained as a waste solution. In the present invention, the measurement of the average molecular weight is important, prepare an electrolytic solution for electrolytic refining containing a certain amount of glue that the average molecular weight is known, and measure the polarization generated at the cathode as a relationship between the amount of electricity and time, From the specific time after the voltage application and the polarization electric quantity measurement value after the specific time has elapsed, the electrode reaction rate constant at this time is calculated, and then, the amount of glue is the same, and the average molecular weight of glue is further changed. Prepared a plurality of electrolytic solutions, and subjecting the plurality of electrolytic solutions to electrolytic treatment at the same voltage as that applied when measuring the polarization electric quantity,
In each case at the same time as the above specific time, the respective polarization electric quantities were measured, and from these measured values, with respect to three or more electrolytic solutions having different average molecular weights of glue, the electrode reaction rate constants of these electrolytic solutions were measured. Respectively, and after obtaining one linear regression equation from the relationship between these electrode reaction rate constants and the average molecular weight of glue, the amount of glue was the same, and the average molecular weight of glue was The electrode reaction rate constant is calculated in the same manner as the electrode reaction rate constant calculation method for the plurality of electrolytic solutions,
This calculated value is substituted into the above-mentioned linear regression equation to obtain the average molecular weight of the unknown glue.

【0007】本発明にかかる銅電解精製方法では、銅電
解精製電解液中に溶存するにかわの平均分子量から銅電
解精製電解液中のにかわの相対活量を算出し、当該相対
活量が0.6以上、好ましくは1.0から1.5になる
範囲に管理する。具体的には、平均分子量Mwが相異な
る平均分子量既知のにかわを一定量含んだ銅電解精製電
解液の電極反応速度定数kc (cm/sec)を求め、
前記相異なる平均分子量Mwと、これに対応する電極反
応速度定数kc (cm/sec)との関係から得られた
関係式kc =A(logMw)+Bを用いて、平均分子
量未知のにかわの平均分子量Mwを推定し、平均分子量
既知の一つのにかわ平均分子量の対数Cを基準として、
平均分子量未知のにかわのlogMwをa=(logM
w)/Cに代入することにより、平均分子量未知のにか
わの相対活量aを決定する。
In the copper electrolytic refining method according to the present invention, the relative activity of the glue in the copper electrolytic refining electrolytic solution is calculated from the average molecular weight of the glue dissolved in the copper electrolytic refining electrolytic solution, and the relative activity of the glue is 0. It is controlled to be 6 or more, preferably 1.0 to 1.5. Specifically, the electrode reaction rate constant k c (cm / sec) of a copper electrolytically refined electrolytic solution containing a certain amount of glue having a known average molecular weight and different average molecular weights Mw is obtained,
Using the relational expression k c = A (logMw) + B obtained from the relationship between the different average molecular weights Mw and the corresponding electrode reaction rate constants k c (cm / sec), the average molecular weight unknown Estimating the average molecular weight Mw, based on the logarithm C of one glue average molecular weight of known average molecular weight,
The logMw of glue whose average molecular weight is unknown is a = (logM
The relative activity a of glue whose average molecular weight is unknown is determined by substituting it into w) / C.

【0008】[0008]

【作用】電極反応速度定数kC (cm/sec)は、に
かわを一定量含んだ電解液中における、銅の電解精製の
際に陰極で生じる分極を、電気量(c)と時間(se
c)の関係として測定するクロノクーロメトリー法を用
いてを求める。電気量Q(c)は次式(数1)で表され
る。
The electrode reaction rate constant k C (cm / sec) is defined as the amount of electricity (c) and time (se) of the polarization generated at the cathode during electrolytic refining of copper in an electrolytic solution containing a certain amount of glue.
is calculated using the chronocoulometry method, which measures as the relationship of c). The quantity of electricity Q (c) is expressed by the following equation (Equation 1).

【0009】[0009]

【数1】 [Equation 1]

【0010】数1において、n:銅イオンの価数、F:
ファラデー定数(c/mol)、A:カソードの面積
(cm2)、kC :電極反応速度定数(cm/se
c)、cO:銅濃度(mol/cm3)、t:時間(se
c)、π:円周率である。また、λは、次式(数2)お
よび式(数3)として表される係数(sec1/2)であ
る。
In Equation 1, n: valence of copper ion, F:
Faraday constant (c / mol), A: cathode area (cm 2 ), k C : electrode reaction rate constant (cm / se)
c), c O : copper concentration (mol / cm 3 ), t: time (se
c), π: circular constant. Further, λ is a coefficient (sec 1/2 ) expressed by the following equation (Equation 2) and equation (Equation 3).

【0011】[0011]

【数2】 [Equation 2]

【0012】[0012]

【数3】 (Equation 3)

【0013】数2および数3において、kC゜:平衡電位
E=E゜ における還元方向の拡散係数、DOおよびDR
酸化体および還元体の拡散係数、α:移動係数、ζ:界
面動電位、na:銅イオンの価数、R:気体定数、T:
絶対温度、E:起電力、E゜:標準起電力である。測定
した電気量Q(c)と時間の平方根(sec1/2 )のプ
ロットを直接回帰するとその直接の傾きは、次式(数
4)となる。
In equations (2) and (3), k C °: diffusion coefficient in the reducing direction at equilibrium potential E = E °, D O and D R :
Diffusion coefficient of oxidant and reductant, alpha: transfer coefficient, zeta: kinetic potential, n a: the valence of copper ions, R: gas constant, T:
Absolute temperature, E: electromotive force, E °: standard electromotive force. When the plot of the measured quantity of electricity Q (c) and the square root of time (sec 1/2 ) is directly regressed, the direct slope becomes the following equation (Equation 4).

【0014】[0014]

【数4】 [Equation 4]

【0015】求めた回帰式において、回帰式が時間軸と
交わる点、すなわち、時間ti の平方根(sec1/2
の点においては、Q=0となり、λは次式(数5)から
の定数として求められる。λおよびその他の定数を式
(数4)に代入することにより電極反応速度定数(cm
/sec)が求められる。
In the obtained regression equation, the point where the regression equation intersects the time axis, that is, the square root of the time t i (sec 1/2 )
At the point, Q = 0, and λ is obtained as a constant from the following equation (Equation 5). By substituting λ and other constants into the equation (Equation 4), the electrode reaction rate constant (cm
/ Sec) is required.

【0016】[0016]

【数5】 (Equation 5)

【0017】ここで、分極の測定条件は、印加電位−1
50(mV)、サンプリング時間は20、50、20
0、500(msec)とするのが最適であることが本
発明により見い出された。クロノクーロメトリー法で
は、陰極で生じる分極を電気量と時間との関係として計
測し、電極にある一定の電位を与え、その際に流れる電
流を積分して、電荷を時間の関数として測定する電気分
析化学的手法をとる。電気量に関し、電荷を実際に測定
するには、ポテンシオ/ガルバノスタットに接続したデ
ジタルオシロスコープを使用し、電極に電圧を印加した
ときの一定時間内での電流を測定し、それぞれの時間内
に測定された電流の平均値を算出する。さらに、この算
出電流と時間との関係から電気量Q(c)を求める。こ
の電気量Q(c)は後述の式(数6)で表される。
Here, the measurement conditions of polarization are applied potential -1
50 (mV), sampling time is 20, 50, 20
It was found by the present invention that the optimum value is 0,500 (msec). In the chronocoulometry method, the polarization generated at the cathode is measured as the relationship between the amount of electricity and time, a certain electric potential is applied to the electrode, the current flowing at that time is integrated, and the electric charge is measured as a function of time. Take a chemical approach. To actually measure the electric charge in terms of the amount of electricity, use a digital oscilloscope connected to a potentio / galvanostat, measure the current within a fixed time when voltage is applied to the electrodes, and measure within each time. Calculate the average value of the applied current. Further, the quantity of electricity Q (c) is obtained from the relationship between the calculated current and time. This quantity of electricity Q (c) is expressed by the following equation (Equation 6).

【0018】本発明にては、電圧印加後の特定時間と、
前記特定時間経過時の分極電気量計測値とから、この場
合における電極反応速度定数を算出し、その後、にかわ
の平均分子量をさらに変化させた複数の電解液を用意
し、これら複数の電解液に対して、前記の分極電気量計
測時に印加したと同じ電圧で電解処理を施し、前記の特
定時間と同一経過時のそれぞれの場合において、それぞ
れの分極電気量を計測し、これらの計測値から、にかわ
の平均分子量の異なる複数の電解液について、これら電
解液の電極反応速度定数をそれぞれ算出し、これらの電
極反応速度定数とにかわの平均分子量の関係から一つの
直線回帰式を求めた後、さらに、にかわの平均分子量未
知なる電解液についての電極反応速度定数を、上記複数
の電解液についての電極反応速度定数算出方法と同様に
して算出し、この算出値を前記の直線回帰式に代入し、
よって電解液中の溶存するにかわの未知なる平均分子量
を求めることで、電解精製中の電解液に溶存するにかわ
の平均分子量を経時的に計測可能にする。そして、これ
をにかわ添加管理の基礎とする。
In the present invention, the specific time after the voltage application,
From the measured value of the polarization electric quantity after the specific time has elapsed, the electrode reaction rate constant in this case is calculated, and then a plurality of electrolytic solutions in which the average molecular weight of the glue is further changed are prepared, and these multiple electrolytic solutions are used. On the other hand, electrolytic treatment is performed at the same voltage applied at the time of measuring the polarization electric quantity, and in each case at the same time as the specific time, each polarization electric quantity is measured, and from these measured values, For a plurality of electrolytic solutions having different average molecular weights of glue, the electrode reaction rate constants of these electrolytes were respectively calculated, and after obtaining one linear regression equation from the relationship between these electrode reaction rate constants and the average molecular weight of glue, , The average reaction weight of the glue, the electrode reaction rate constant for the electrolytic solution is unknown in the same manner as the electrode reaction rate constant calculation method for the plurality of electrolytic solutions, Assign values to linear regression equation of the,
Therefore, by obtaining the unknown average molecular weight of the dissolved glue in the electrolytic solution, the average molecular weight of the dissolved glue in the electrolytic solution during electrolytic refining can be measured over time. And this is the basis of the glue addition control.

【0019】[0019]

【実施例】【Example】

(電極反応速度定数の測定)次の段階で測定および計算
を行う。 (1)にかわの溶存量が一定で、平均分子量が既知の電
解液を少なくとも3種、望ましくは4種以上用意する。 (2)後述の式(数6)において、電気量Q(c)が時
間tの平方根の一次式であることに注目し、これらの電
解液に対し、電圧印加後少なくとも3点、望ましくは4
点以上の特定時間における電気量を測定し、それぞれの
電解液に対し電気量と時間の平方根の回帰式を求める。 (3)各電解液に対し前記回帰式の比例定数から、後述
の式(数6)のλを計算する。 (4)計出されたλに基づいて後述の式(数7)から各
電解液の電極反応速度定数kc を計算する。 (5)前記少なくとも3種、望ましくは4種以上の電解
液について求められた電極反応速度kc を各電解液のに
かわの平均分子量に対しプロットし、平均分子量検量線
とする。
(Measurement of Electrode Reaction Rate Constant) Measurement and calculation are performed in the next stage. (1) Prepare at least 3 types, preferably 4 or more types of electrolytes having a fixed amount of glue and a known average molecular weight. (2) Paying attention to the following equation (Equation 6), the quantity of electricity Q (c) is a linear equation of the square root of the time t, and at least 3 points, preferably 4 points, are applied to these electrolytic solutions after voltage application.
The amount of electricity at a specific time above the point is measured, and the regression equation of the square root of the amount of electricity and time is calculated for each electrolyte. (3) For each electrolytic solution, λ of the equation (Equation 6) described below is calculated from the proportional constant of the regression equation. (4) Based on the measured λ, the electrode reaction rate constant k c of each electrolytic solution is calculated from the equation (7) described later. (5) Plot the electrode reaction rates k c obtained for at least 3 types, preferably 4 or more types of electrolytic solutions, against the average molecular weight of the glue of each electrolytic solution to obtain an average molecular weight calibration curve.

【0020】[0020]

【数6】 (Equation 6)

【0021】数6において、n:銅イオンの価数、F:
ファラデー定数(c/mol)、A:陰極の面積(cm
2)、kC:電極反応速度定数(cm/sec)、cO
定数、t:時間(sec)、π:円周率である。なお、
λは、次式(数7)および式(数8)として表される係
数(単位:秒の平方根)である。
In Equation 6, n: valence of copper ion, F:
Faraday constant (c / mol), A: cathode area (cm)
2 ), k C : Electrode reaction rate constant (cm / sec), c O :
A constant, t: time (sec), and π: circular constant. In addition,
λ is a coefficient (unit: square root of second) represented by the following equations (Equation 7) and Equation (Equation 8).

【0022】[0022]

【数7】 (Equation 7)

【0023】[0023]

【数8】 (Equation 8)

【0024】数7および数8において、kC゜:平衡電位
E=E゜ における還元方向の拡散係数、DOおよびDR
酸化体および還元体の拡散係数、α:移動係数、ζ:界
面動電位、na:銅イオンの価数、R:気体定数、T:
絶対温度、E:起電力、E゜:標準起電力である。上記
の電気量Q(c)と、サンプリング時間の平方根(秒の
平方根)とのプロットを直線回帰すると、その直線の傾
きは次式(数9)のようになる。
In equations (7) and (8), k C °: diffusion coefficient in the reducing direction at equilibrium potential E = E °, D O and D R :
Diffusion coefficient of oxidant and reductant, alpha: transfer coefficient, zeta: kinetic potential, n a: the valence of copper ions, R: gas constant, T:
Absolute temperature, E: electromotive force, E °: standard electromotive force. When the above-mentioned plot of the electric quantity Q (c) and the square root of the sampling time (square root of seconds) is linearly regressed, the slope of the straight line is given by the following equation (Equation 9).

【0025】[0025]

【数9】 [Equation 9]

【0026】このようにして求めた回帰式において、回
帰式が時間軸と交わる点(時間t1の平方根)において
は、Q=0となり、λは式(数10)から定数として求
められる。
In the regression equation thus obtained, Q = 0 at the point where the regression equation intersects the time axis (square root of time t 1 ), and λ is obtained as a constant from equation (Equation 10).

【0027】[0027]

【数10】 [Equation 10]

【0028】ここで、λおよびその他の定数を式(数
7)に代入することにより、電極反応速度定数kc (c
m/sec)が求められる。このようにして、平均分子
量が既知量のにかわを一定量溶存させた複数の電解液そ
れぞれの電極反応速度定数kc (cm/sec)を求め
る。次いで、以上のように求めた複数の電極反応速度定
数kc (cm/sec)を直線回帰することによりにか
わの平均分子量曲線を求め、次に、にかわの平均分子量
が未知の電解液についての電極反応速度定数kc (cm
/sec)を求め、上記の溶存濃度曲線に照らして、電
解液中に溶存するにかわ濃度を定量する。また、この場
合、測定試料の採取時間は、20、50、200、50
0(msec)とすることが、より好ましい結果を招く
ものであることが明らかになった。
Here, by substituting λ and other constants into the equation (7), the electrode reaction rate constant k c (c
m / sec) is required. In this way, the electrode reaction rate constant k c (cm / sec) of each of a plurality of electrolytic solutions in which a certain amount of glue having a known average molecular weight is dissolved is determined. Then, an average molecular weight curve of the glue is obtained by linearly regressing the plurality of electrode reaction rate constants k c (cm / sec) obtained as described above, and then an electrode for an electrolytic solution of which the average molecular weight of the glue is unknown Reaction rate constant k c (cm
/ Sec), and the glue concentration dissolved in the electrolytic solution is quantified in light of the above-mentioned dissolved concentration curve. Further, in this case, the sampling time of the measurement sample is 20, 50, 200, 50.
It has been clarified that setting 0 (msec) leads to more preferable results.

【0029】(電解液中のにかわの平均分子量と電極反
応速度定数の関係)平均分子量の異なる平均分子量既知
のにかわを含んだ電解液の電極反応速度定数kc(cm
/sec) を上記のような方法で測定した。その結果
を電極反応速度定数kc (cm/sec)と平均分子量
Mwの関係として図1に示す。図1から、Kc =A(l
ogMw)+Bの関係式が認められる。
(Relationship between average molecular weight of glue in electrolytic solution and electrode reaction rate constant) Electrode reaction rate constant k c (cm) of electrolytic solution containing glue having different average molecular weight and known average molecular weight.
/ Sec) was measured by the method as described above. The results are shown in FIG. 1 as the relationship between the electrode reaction rate constant k c (cm / sec) and the average molecular weight Mw. From FIG. 1, K c = A (l
The relational expression of (ogMw) + B is recognized.

【0030】(実験条件) 印加電位: −150(mV) サンプリング時間: 20、50、200、500(m
sec) 銅濃度: 7.82×10-4(mol/cm
3) カソード面積: 4(cm2) 液温: 60(℃) にかわ濃度: 3(mg/l) にかわの種類および平均分子量: A:1292563 B:1212362 C:993571 D:146704 E:36053
(Experimental conditions) Applied potential: -150 (mV) Sampling time: 20, 50, 200, 500 (m
sec) Copper concentration: 7.82 × 10 −4 (mol / cm
3 ) Cathode area: 4 (cm 2 ) Liquid temperature: 60 (° C) Glue concentration: 3 (mg / l) Glue type and average molecular weight: A: 12926563 B: 1212362 C: 993571 D: 146704 E: 36053

【0031】図1の関係式は、次式のように表される。 kc=−(6.39×10-4)logMw+8.47×
10-3 この式において、kc :電極反応速度定数(cm/se
c)、Mw:平均分子量であり、相関係数はR=0.8
95である。ここで、平均分子量未知のにかわの電極反
応速度定数kc(cm/sec) を上記式に代入するこ
とにより、平均分子量がlogMwとして求まる。
The relational expression of FIG. 1 is expressed as the following expression. k c = − (6.39 × 10 −4 ) logMw + 8.47 ×
10 −3 In this formula, k c : electrode reaction rate constant (cm / se
c), Mw: average molecular weight, correlation coefficient R = 0.8
95. Here, the average molecular weight is obtained as logMw by substituting the electrode reaction rate constant k c (cm / sec) of glue whose average molecular weight is unknown into the above equation.

【0032】(電解液中のにかわの平均分子量と相対活
量の関係)にかわの相対活量を、平均分子量既知のにか
わ、例えば銅の電解精製における評価が定まっているに
かわ(平均分子量Mw=36053)を基準(1.0
0)として求める。すなわち、相対活量aは、 a=(logMw)/(log36053)=(log
Mw)/4.56 となる。従って、にかわの平均分子量Mwが分かれば、
当該式より、このにかわの相対活量が求まる。
(Relationship between the average molecular weight and relative activity of glue in the electrolytic solution) The relative activity of glue is known glue of which the average molecular weight is known, for example, glue for electrolytic refining of copper has been determined (average molecular weight Mw = 36053). ) As standard (1.0
0). That is, the relative activity a is a = (logMw) / (log36053) = (log
Mw) /4.56. Therefore, if the average molecular weight Mw of glue is known,
From this formula, the relative activity of this glue can be obtained.

【0033】(製品陰極板の品質とにかわの相対活量の
関係)電解液中に、種々の相対活量を持つにかわを添加
して、電解精製を行った場合に得られた製品陰極板の外
観評価点および不良率の一覧を表1に示す。外観評価点
とは、製品陰極板の各面を9分割し、5段階(特に悪い
もの1点←普通のもの3点→特に良いもの5点)に目視
判定したものである。一枚の製品陰極板で90点満点と
なる。
(Relationship between Quality of Product Cathode Plate and Relative Activity of Glue) In the electrolytic solution, glues having various relative activities were added to the electrolytic solution to carry out electrolytic refining. Table 1 shows a list of appearance evaluation points and defect rates. The appearance evaluation points are obtained by dividing each surface of the product cathode plate into 9 parts and visually observing them in 5 stages (1 point for particularly bad ← 3 points for normal → 5 points for particularly good). One product cathode plate gives a maximum of 90 points.

【0034】(電解精製条件) 電流密度: 307〜324(A/m2) 銅濃度: 46〜54(g/l) 硫酸濃度: 184〜192(g/l) 液温: 60(℃) 陽極: 1015×1015×36(mm) 陰極: 1050×1070×0.7(mm) 陰極枚数: 23〜27(枚) 電解槽: 3000×1250×1360(mm)(Electrolytic refining conditions) Current density: 307 to 324 (A / m 2 ) Copper concentration: 46 to 54 (g / l) Sulfuric acid concentration: 184 to 192 (g / l) Liquid temperature: 60 (° C) Anode : 1015 x 1015 x 36 (mm) Cathode: 1050 x 1070 x 0.7 (mm) Number of cathodes: 23 to 27 (sheets) Electrolytic cell: 3000 x 1250 x 1360 (mm)

【0035】[0035]

【表1】 相対活量 製品陰極板外観評価点(点) 製品陰極板不良率(%) 2.0 74 20.5 1.5 73 0 1.0 72 0 0.5 65 26.1[Table 1] Relative activity Product cathode plate appearance evaluation point (point) Product cathode plate defective rate (%) 2.0 74 20.5 1.5 73 0 1.0 1.0 72 0 0.5 65 26.1

【0036】表1より、製品陰極板を一定の品質に維持
した上、さらに不良率を抑え、外観評価点を高く維持す
るためには、電解液中でのにかわの相対活量を1〜1.
5の範囲に維持すればよいことがわかる。
From Table 1, in order to maintain the quality of the product cathode plate to a certain level, to further suppress the defective rate and maintain the appearance evaluation point at a high level, the relative activity of the glue in the electrolytic solution is 1 to 1. .
It can be seen that the range of 5 should be maintained.

【0037】[0037]

【発明の効果】本発明によれば、電解液中で分解されや
すく、また製造時での分子量の制御が困難であるため、
その操業管理が非常に困難であるにかわの添加量を、に
かわの平均分子量により、その電解液中での相対活量を
算出し、その相対活量が0.6以上、好ましくは1.0
から1.5になる範囲で電解液中のにかわを管理する銅
の電解精製方法を行うことが可能となる。また、この方
法を用いることにより、従来の経験的な判断に基づく管
理方法に比較して容易かつ定量的な管理方法となること
は明白である。
According to the present invention, since it is easily decomposed in an electrolytic solution and it is difficult to control the molecular weight during production,
The amount of glue added, whose operation control is very difficult, is calculated as the relative activity in the electrolytic solution according to the average molecular weight of glue, and the relative activity is 0.6 or more, preferably 1.0.
It becomes possible to carry out the electrolytic refining method of copper in which the glue in the electrolytic solution is controlled within the range from 1.5 to 1.5. Further, it is obvious that the use of this method makes it easier and more quantitative than the conventional management method based on empirical judgment.

【図面の簡単な説明】[Brief description of drawings]

【図1】銅電解液における電極反応速度定数とにかわの
平均分子量の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an electrode reaction rate constant in a copper electrolytic solution and an average molecular weight of glue.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅電解精製電解液中に溶存するにかわの
平均分子量から銅電解精製電解液中のにかわの相対活量
を算出し、当該相対活量が0.6以上になる範囲に管理
する銅電解精製方法。
1. The relative activity of the glue in the copper electrolytically refined electrolytic solution is calculated from the average molecular weight of the glue dissolved in the copper electrolytically refined electrolytic solution, and the relative activity is controlled to be 0.6 or more. Copper electrolytic refining method.
【請求項2】 平均分子量Mwが相異なる平均分子量既
知のにかわを一定量含んだ銅電解精製電解液の電極反応
速度定数kc (cm/sec)を求め、前記相異なる平
均分子量Mwと、これに対応する電極反応速度定数kc
(cm/sec)との関係から得られた関係式kc =A
(logMw)+Bを用いて、平均分子量未知のにかわ
の平均分子量Mwを推定し、平均分子量既知の一つのに
かわ平均分子量の対数Cを基準として、平均分子量未知
のにかわのlogMwをa=(logMw)/Cに代入
することにより、平均分子量未知のにかわの相対活量a
を決定することを特徴とする請求項1に記載の方法。
2. An electrode reaction rate constant k c (cm / sec) of a copper electrolytically refined electrolytic solution containing a certain amount of glue having a known average molecular weight and different average molecular weights Mw, and the average molecular weights Mw different from each other are calculated. Electrode reaction rate constant k c corresponding to
Relational expression k c = A obtained from the relationship with (cm / sec)
Using (logMw) + B, the average molecular weight Mw of glue of unknown average molecular weight is estimated, and the logMw of glue of unknown average molecular weight is a = (logMw) based on the logarithm C of one glue average molecular weight of known average molecular weight. By substituting in / C, the relative activity a of glue of unknown average molecular weight a
The method according to claim 1, characterized in that
【請求項3】 平均分子量未知のにかわを一定量含んだ
電解液中における銅の電解精製の際に、陰極で生じる分
極を、電気量(c)と時間(sec)の関係として測定
するクロノクーロメトリー法を用いて、印加電位−15
0(mV)で測定し、電圧印加後20、50、200、
500(msec)での時間(sec)と電気量(c)
とより、電極反応速度定数kc (cm/sec)を求め
て、電極反応速度定数と平均分子量の関係式を得ること
を特徴とする請求項2に記載の方法。
3. Chronocoulometry for measuring the polarization generated at the cathode as a relation between electric quantity (c) and time (sec) during electrolytic refining of copper in an electrolytic solution containing a fixed amount of glue having an unknown average molecular weight. Applied potential -15
Measured at 0 (mV), after applying voltage 20, 50, 200,
Time (sec) and quantity of electricity (c) at 500 (msec)
3. The method according to claim 2, wherein an electrode reaction rate constant k c (cm / sec) is obtained from the above to obtain a relational expression between the electrode reaction rate constant and the average molecular weight.
【請求項4】 にかわの溶存量が一定で、にかわの平均
分子量が既知である銅電解精製電解液を用意し、陰極で
生じる分極を電気量と時間との関係として計測し、電圧
印加後の特定時間と、前記特定時間経過時の分極電気量
計測値とから、この場合における電極反応速度定数を算
出し、その後、にかわの溶存量を同じにして、平均分子
量を変化させた複数の銅電解精製電解液を用意し、これ
ら複数の銅電解精製電解液に対して、前記の分極電気量
計測時に印加したのと同じ電圧で電解処理を施し、前記
の特定時間と同一経過時のそれぞれの場合において、そ
れぞれの分極電気量を計測し、これらの計測値から、に
かわの平均分子量の異なる複数の銅電解精製電解液につ
いて、当該銅電解精製電解液の電極反応速度定数をそれ
ぞれ算出し、これらの電極反応速度定数とにかわの平均
分子量の関係から一つの直線回帰式を求めた後、さら
に、にかわの平均分子量が未知なる銅電解精製電解液に
ついての電極反応速度定数を、上記複数の銅電解精製電
解液についての電極反応速度定数算出方法と同様にして
算出し、この電極反応速度定数と前記の直線回帰式とに
基づいて、前記未知なる平均分子量を求めることを特徴
とする銅電解精製電解液中のにかわの平均分子量定量方
法。
4. A copper electrolytically refined electrolytic solution in which the amount of glue dissolved is constant and the average molecular weight of glue is known, the polarization generated at the cathode is measured as a relationship between the amount of electricity and time, and after voltage application. From the specific time and the measured value of the polarization electric quantity after the specific time has elapsed, the electrode reaction rate constant in this case is calculated, and then the dissolved amount of the glue is made the same, and a plurality of copper electrolyzers having different average molecular weights are calculated. Purified electrolytic solution is prepared, electrolytic treatment is applied to these plural electrolytic electrolytic purified electrolytic solutions of copper at the same voltage as that applied at the time of polarization electric quantity measurement, and in each case of the same elapsed time as the specific time. In measuring the respective polarization electric quantity, from these measured values, for a plurality of copper electrolytic purification electrolytic solution having different average molecular weight of glue, the electrode reaction rate constant of the copper electrolytic purification electrolytic solution is calculated, respectively, After obtaining one linear regression equation from the relationship between the electrode reaction rate constant and the average molecular weight of glue, further, the electrode reaction rate constant for the copper electrolytic purification electrolytic solution unknown average molecular weight of glue, the copper electrolysis Calculated in the same manner as the electrode reaction rate constant calculation method for the purified electrolytic solution, based on the electrode reaction rate constant and the linear regression equation, the copper electrolytic purification electrolysis characterized by determining the unknown average molecular weight A method for determining the average molecular weight of glue in a liquid.
【請求項5】 銅電解精製性能および平均分子量が既知
の銅電解精製電解液の平均分子量の対数に対し、被測定
対象の銅電解精製電解液で求めた平均分子量の対数の比
を相対活量とし、当該相対活量を0.6以上に管理する
銅電解精製方法。
5. The relative activity of the ratio of the logarithm of the average molecular weight obtained with the copper electrolytically refined electrolytic solution to be measured to the logarithm of the average molecular weight of the copper electrolytically refined electrolytic solution whose copper electrolytic purification performance and average molecular weight are known. And a copper electrolytic refining method for controlling the relative activity to 0.6 or more.
JP13259595A 1995-05-08 1995-05-08 Operation control method of glue addition quantity into electrolyte in copper electrolytic refining Pending JPH08304338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13259595A JPH08304338A (en) 1995-05-08 1995-05-08 Operation control method of glue addition quantity into electrolyte in copper electrolytic refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13259595A JPH08304338A (en) 1995-05-08 1995-05-08 Operation control method of glue addition quantity into electrolyte in copper electrolytic refining

Publications (1)

Publication Number Publication Date
JPH08304338A true JPH08304338A (en) 1996-11-22

Family

ID=15085022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13259595A Pending JPH08304338A (en) 1995-05-08 1995-05-08 Operation control method of glue addition quantity into electrolyte in copper electrolytic refining

Country Status (1)

Country Link
JP (1) JPH08304338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105149A1 (en) * 2010-02-23 2011-09-01 パンパシフィック・カッパー株式会社 Electrolytic copper refining device, and electrolytic copper refining method using same
AU2011213808B2 (en) * 2010-09-29 2014-06-12 Pan Pacific Copper Co., Ltd. Glue supplying apparatus and glue supplying method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105149A1 (en) * 2010-02-23 2011-09-01 パンパシフィック・カッパー株式会社 Electrolytic copper refining device, and electrolytic copper refining method using same
JP2011174113A (en) * 2010-02-23 2011-09-08 Pan Pacific Copper Co Ltd Electrolytic refiner for copper and electrolytic refining method for copper using the same
AU2011219212B2 (en) * 2010-02-23 2012-11-22 Pan Pacific Copper Co., Ltd. Copper electrorefining equipment and copper electrorefining method using the same
AU2011213808B2 (en) * 2010-09-29 2014-06-12 Pan Pacific Copper Co., Ltd. Glue supplying apparatus and glue supplying method

Similar Documents

Publication Publication Date Title
Meyer Cathodic processes on passive zirconium
Lander Further studies on the anodic corrosion of lead in H 2 SO 4 solutions
Fleischmann et al. The anodic oxidation of solutions of plumbous salts. Part 1.—The kinetics of deposition of α-lead dioxide from acetate solutions
Siegenthaler et al. Voltammetric investigation of lead adsorption on Cu (111) single crystal substrates
JPS62273444A (en) Method of analyzing additive concentration
Mell et al. Amperometric response enhancement of the immobilized glucose oxidase enzyme electrode
Alvarez et al. Potential of zero total charge of palladium modified Pt (111) electrodes in perchloric acid solutions
Mishra et al. Kinetics and mechanism of electroless deposition of copper
GB2024865A (en) Method for control of electrowinning of zine
JP2002506531A (en) Method for measuring additives in electroplating baths
Taguchi et al. Analysis for electrolytic oxidation and reduction of PbSO4/Pb electrode by electrochemical QCM technique
JPH08304338A (en) Operation control method of glue addition quantity into electrolyte in copper electrolytic refining
US4153521A (en) Method of automatic control and optimization of electrodeposition conditions
Neshkova et al. Ion-selective electrodes with sensors of electrolytically plated chalcogenide coatings: Part I. Copper ion-selective electrode based on plated copper selenide
US5124011A (en) Cyclic voltammetry
Loucka The reasons for the loss of activity of titanium-ruthenium dioxide anodes in sulphuric acid media
JP3407285B2 (en) Method for determining additives in electrolyte
MacHardy et al. The diffusion coefficient of Cu (II) ions in sulfuric acid–aqueous and methanesulfonic acid–methanol solutions
Biegler et al. Influence of oxygen reduction in the electrowinning of zinc
US4589960A (en) Activated metal anodes and a process for making them
CA2087801C (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
Hill The kinetics of the initial corrosion of copper in aqueous solutions
US2206026A (en) Method for determining the coating weight of tin on tin plates
Newby et al. Discharge Mechanism of the V 2 O 5 Electrode
De Greef et al. Electrochemical dissolution of tin in methanesulphonic acid solutions