JPH08304256A - Method and device for measuring adsorbing amount using temperature-compensated constant-volume adsorber - Google Patents

Method and device for measuring adsorbing amount using temperature-compensated constant-volume adsorber

Info

Publication number
JPH08304256A
JPH08304256A JP6387496A JP6387496A JPH08304256A JP H08304256 A JPH08304256 A JP H08304256A JP 6387496 A JP6387496 A JP 6387496A JP 6387496 A JP6387496 A JP 6387496A JP H08304256 A JPH08304256 A JP H08304256A
Authority
JP
Japan
Prior art keywords
adsorption
cell
sample
amount
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6387496A
Other languages
Japanese (ja)
Other versions
JP3027331B2 (en
Inventor
Isao Suzuki
鈴木  勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8063874A priority Critical patent/JP3027331B2/en
Publication of JPH08304256A publication Critical patent/JPH08304256A/en
Application granted granted Critical
Publication of JP3027331B2 publication Critical patent/JP3027331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To measure the gas adsorbing amount of a sample having a smaller surface area by finding the adsorbing amount of an adsorbing cell for sample by compensating the gas adsorbing amount of an adsorbing cell for reference. CONSTITUTION: The dead volume VB of a cell 4 for reference and the differential pressure Dp between the reference side and sample side of the cell 4 are found in advance by using helium. Then, after evacuating a whole system to a vacuum, a stop cock C1 is closed and the pressures Pn(1) in both burets 2 and 3 are measured with a pressure gauge 14 when the burets 2 and 3 are filled with an adsorbing gas. Then the adsorbing gas is expanded in adsorbing cells 4 and 5 by closing stop cocks C3 , C4 , and C2 and opening the stop cock C1 and the differential pressure between the reference and sample sides is measured with a differential pressure gauge 7. The difference between the measured differential pressure and the zero point when the cock C2 is opened is used as a real differential pressure Dpn . When the differential pressure Dpn is obtained by expanding the adsorbing gas in the burets 2 and 3 at the pressure Pn(1) at a temperature T at the n-th adsorbing operation by repeating the operation, a cumulative adsorbing amount is obtained by performing calculation 20 several times based on the differential pressure Dpn . Here, compensation is made by taking the adsorbing amount of the cell 4 which has been ignored in the conventional example into consideration, thus finding the adsorbing amount of the cell 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、3000cm2
下、特に100cm2 以下というような小さな表面積を
有する試料の表面積測定に適した定容吸着量測定方法お
よび装置に関する。
TECHNICAL FIELD The present invention relates to a constant volume adsorption amount measuring method and apparatus suitable for measuring the surface area of a sample having a small surface area of 3000 cm 2 or less, particularly 100 cm 2 or less.

【0002】[0002]

【従来の技術】BET法をはじめとする、定容吸着量測
定法が、主として粒状試料の(比)表面積測定に広く用
いられている。このような表面積測定は、多くが表面反
応として行われる触媒の特性評価のために重要であるの
みならず、各種固体材料のミクロな凹凸あるいは表面の
粗さ(気体吸着量から求めた表面積と幾何学的表面積の
比としての粗さ係数として簡単に判別可能)、その他の
表面性状の判断のために有用な手段となっている。
2. Description of the Related Art The constant volume adsorption amount measuring method including the BET method is widely used mainly for measuring the (specific) surface area of a granular sample. Such surface area measurement is not only important for the characterization of catalysts, which are mostly carried out as surface reactions, but it also involves the microscopic unevenness of various solid materials or the surface roughness (surface area and geometry obtained from the gas adsorption amount). It can be easily discriminated as a roughness coefficient as a ratio of biological surface area), and is a useful means for determining other surface properties.

【0003】ここに、定容吸着量測定法(吸着等温式と
してBET式を用いるBET法が、最も代表的に知られ
ている)とは、温度Tにおいて一定体積の容器(ビュレ
ットと呼び、その体積をVA とする)に閉じこめられた
吸着気体(圧力p1 )を、吸着媒の入った容器(吸着セ
ルと呼び、その体積をVB とする)に膨張させ(圧力p
2 )、その物質収支から吸着量を測定する方法をいう。
図1はそのための装置の概略図を示す。定容吸着量測定
法は汎用性があり、測定感度が高いので、最も一般的な
吸着量測定方法となっている。
Here, the constant volume adsorption amount measuring method (the BET method using the BET equation as an adsorption isotherm is most representatively known) means a container having a constant volume at a temperature T (called a burette, The adsorbed gas (pressure p 1 ) enclosed in the volume V A is expanded into a container (called an adsorption cell, whose volume is V B ) containing the adsorbent (pressure p 1 ).
2 ), a method of measuring the amount of adsorption from the mass balance.
FIG. 1 shows a schematic diagram of an apparatus therefor. The constant volume adsorption amount measurement method is the most general adsorption amount measurement method because it is versatile and has high measurement sensitivity.

【0004】定容吸着量測定法では、吸着量Aは基本的
には次式で計算される。
In the constant volume adsorption amount measuring method, the adsorption amount A is basically calculated by the following equation.

【0005】 A=(22414/RT)(p1 A −p2 (VA +VB )) (1) ここにRは気体定数である。また式(1)の(2241
4/RT)は吸着気体の量を標準状態(0℃、1at
m;STPと略記する)における体積(1モルが224
14STPcm3 に相当する)に換算するための係数で
ある。
A = (22414 / RT) (p 1 VA −p 2 ( VA + V B )) (1) where R is a gas constant. In addition, (2241) in formula (1)
4 / RT is the amount of adsorbed gas in the standard state (0 ° C, 1at)
m; abbreviated as STP) (1 mol is 224
(Corresponding to 14 STP cm 3 ).

【0006】吸着量の圧力依存性(吸着等温線)から表
面を一層覆う吸着量(単分子吸着量と呼ぶ)を決定す
る。この関係は、多くの場合、例えば以下のBET無限
層式により表わされることが知られている。
From the pressure dependence of the adsorption amount (adsorption isotherm), the adsorption amount for further covering the surface (referred to as monomolecular adsorption amount) is determined. It is known that this relationship is often expressed by, for example, the following BET infinite layer equation.

【0007】[0007]

【数1】 ここでx=(p/p0 )は、吸着平衡圧p(=p2 )と
その温度での吸着気体の飽和蒸気圧p0 の比であり、相
対圧と呼ばれる。Aは平衡吸着量、AMLは試料表面を吸
着気体分子の一層が覆う吸着量(単分子吸着量)、Cは
吸着第一層と第二層の吸着熱の差に依存するBET定数
である。
[Equation 1] Here, x = (p / p 0 ) is the ratio of the adsorption equilibrium pressure p (= p 2 ) and the saturated vapor pressure p 0 of the adsorbed gas at that temperature, and is called the relative pressure. A is the equilibrium adsorption amount, A ML is the adsorption amount (single molecule adsorption amount) of one layer of adsorbed gas molecules covering the sample surface, and C is the BET constant that depends on the difference in adsorption heat between the adsorption first layer and the second layer. .

【0008】後で述べるように、上記式(2)から得た
単分子吸着量を得るための直線プロットをBETプロッ
トと呼ぶ。相対圧(x=p/p0 )が0.05から0.
35の範囲においてBETプロットの直線性が良い。得
られた単分子吸着量AMLにその吸着気体分子の断面積を
乗じて試料の表面積を得る。
As will be described later, the linear plot for obtaining the amount of adsorbed single molecule obtained from the above equation (2) is called a BET plot. The relative pressure (x = p / p 0 ) is 0.05 to 0.
In the range of 35, the linearity of the BET plot is good. The surface area of the sample is obtained by multiplying the obtained monomolecular adsorption amount A ML by the cross-sectional area of the adsorbed gas molecule.

【0009】最も標準的なBET法である窒素吸着法
は、液体窒素温度で、窒素を吸着質とする吸着量測定で
あり、p0 は760mmHgである。したがって窒素吸
着法ではp2 =250mmHgまでの吸着量を測定する
が、吸着量が小さな試料に対しては、式(1)の第1項
(p1 A )と第2項p2 (VA +VB )の相対的な差
が小さくなり、吸着量の測定が困難になる。通常の装置
ではVA =VB =50cm3 程度であるので、例えば表
面積1m2 の試料に対しては、式(1)においておおよ
そ130と129の差から1を得ることになる。すなわ
ち吸着量の小さな試料に対してはこのような厳しい引き
算をせざるを得ない。
The nitrogen adsorption method, which is the most standard BET method, is an adsorption amount measurement using nitrogen as an adsorbate at liquid nitrogen temperature, and p 0 is 760 mmHg. Therefore, in the nitrogen adsorption method, the adsorption amount up to p 2 = 250 mmHg is measured, but for the sample with a small adsorption amount, the first term (p 1 VA ) and the second term p 2 (V) of the equation (1) are measured. The relative difference between ( A + V B ) becomes small, which makes it difficult to measure the adsorption amount. Since V A = V B = 50 cm 3 in a normal device, for example, for a sample having a surface area of 1 m 2 , 1 is obtained from the difference between approximately 130 and 129 in the equation (1). That is, such a strict subtraction is unavoidable for a sample having a small adsorption amount.

【0010】気体の圧力は温度に比例するので、装置の
温度制御が吸着気体の物質量測定の精度を決定し、それ
が表面積測定の下限を決定する。窒素吸着法による表面
積の測定限界が約1m2 となるのはこのような状況によ
る。
Since the pressure of the gas is proportional to the temperature, the temperature control of the device determines the accuracy of the mass measurement of the adsorbed gas, which in turn determines the lower limit of the surface area measurement. This is the reason why the surface area measurement limit by the nitrogen adsorption method becomes about 1 m 2 .

【0011】このような従来の定容吸着量測定法による
小表面積試料への吸着量測定の温度制御の困難性を緩和
するために、本発明者は、吸着気体の物質量測定の精度
を損なう周囲の温度変化を補償するために工夫された吸
着量測定装置、すなわち温度補償型定容吸着量測定装置
をすでに開発している(Rev.Sci.Instru
m.53(7),1982年7月、1061−1066
頁;「触媒」24(6)1982年、426−429
頁)。図2は、その概念図である。本装置は、差圧計の
左右に体積、形状のほぼ等しい1対の参照用ビュレット
(体積VA )と試料用ビュレット(VA +DVA )およ
び一対の参照用吸着セル(VB )と試料用吸着セル(V
B +DVB )を左右対称に配してある。多少の温度変化
があっても左右対称に配したビュレットおよび吸着セル
内の圧力変化が、一方の圧力変化を相殺する構造を備え
ている。
In order to alleviate the difficulty in controlling the temperature of the adsorption amount measurement on the small surface area sample by the conventional constant volume adsorption amount measurement method, the present inventor impairs the accuracy of the substance amount measurement of the adsorbed gas. An adsorption amount measuring device devised for compensating for ambient temperature change, that is, a temperature compensation type constant volume adsorption amount measuring device has already been developed (Rev. Sci. Instru
m. 53 (7), July 1982, 1061-1066.
Page; "Catalyst" 24 (6) 1982, 426-429.
page). FIG. 2 is a conceptual diagram thereof. The apparatus volume to the left and right differential pressure gauge, a sample substantially equal pair of reference bullet shape (volume V A) as a sample for buret (V A + DV A) and a pair of reference adsorption cell (V B) Adsorption cell (V
B + DV B ) are arranged symmetrically. Even if there is a slight change in temperature, the burettes arranged symmetrically and the pressure change in the adsorption cell cancels one pressure change.

【0012】その際、吸着量を求める式(1)は、次式
(3)のように変形される。
At this time, the equation (1) for obtaining the adsorption amount is transformed into the following equation (3).

【0013】 A=(22414/RT)「(VA +DVA +VB +DVB )Dp−((V A DVB −VB DVA )/(VA +VB ))p1 」 (3) ここにD pは吸着気体膨張後の参照側と試料側の吸着気
体の差圧である。
A = (22414 / RT) “(VA+ DVA+ VB+ DVB) Dp-((V A DVB-VBDVA) / (VA+ VB)) P1(3) Here D p is the adsorbed gas on the reference side and the sample side after expansion of the adsorbed gas
It is the differential pressure of the body.

【0014】装置を限りなく左右対称に作れば、D A
≒DVB ≒0となり、また式(3)の第2項を無視する
事が出来るので、式(3)は、以下の式(3′)のよう
に簡略化される。
If the device is made symmetrical as much as possible, D VA
≒ DVB≈0 and ignores the second term of equation (3)
Therefore, the equation (3) can be expressed as the following equation (3 ′).
It is simplified to.

【0015】 A=(22414/R・T)(VA +VB )D p (3′) すなわち、先に述べた吸着量の測定精度を損なう周囲の
温度変化が補償され、吸着量測定精度が大幅に向上する
ことが期待される。
A = (22414 / R · T) (VA+ VB) D p (3 ') That is, the surroundings that impair the measurement accuracy of the adsorption amount described above
The temperature change is compensated and the adsorption amount measurement accuracy is greatly improved.
It is expected.

【0016】このような温度補償型吸着量測定装置によ
り、液体窒素温度における窒素吸着による表面積測定の
下限が0.03m2 (300cm2 )へと拡大した。表
面積0.03m2 の試料に対しては、式(1)において
実に129.03と129.00の差から0.03を得
ることに相当する。これは、図1の装置を用いる場合に
は、環境温度制御に約0.07℃(=300×(0.0
3/129))の誤差があれば消えてしまう値である。
With such a temperature compensation type adsorption amount measuring apparatus, the lower limit of the surface area measurement by nitrogen adsorption at the liquid nitrogen temperature was expanded to 0.03 m 2 (300 cm 2 ). For a sample having a surface area of 0.03 m 2 , this is equivalent to obtaining 0.03 from the difference between 129.03 and 129.00 in equation (1). This is about 0.07 ° C. (= 300 × (0.0
It is a value that disappears if there is an error of 3/129)).

【0017】他方、N2 よりも飽和蒸気圧p0 の小さい
気体を吸着気体として用いれば、より小さい表面積の測
定も可能になる。何故ならば、単分子層吸着量AMLを求
めるに必要な相対圧0.35を得るために、N2 を吸着
質とした場合には、平衡圧が250mmHgまでの吸着
実験を必要とするが、例えばクリプトン(Kr)を吸着
質とすれば平衡圧0.6mmHgまでで十分である。す
なわち液体窒素温度でのクリプトンの飽和蒸気圧p0
1.8mmHgであるので、相対圧0.35は0.6m
mHgとなる。これにより式(1)の第1項および第2
項が共に小さくなり、測定誤差が小さくなる。
On the other hand, if a gas having a saturated vapor pressure p 0 smaller than N 2 is used as the adsorbed gas, it becomes possible to measure a smaller surface area. This is because, in order to obtain the relative pressure of 0.35 required to determine the adsorption amount A ML of monolayer, when N 2 is used as the adsorbate, an adsorption experiment with an equilibrium pressure of up to 250 mmHg is required. For example, when krypton (Kr) is used as the adsorbate, the equilibrium pressure up to 0.6 mmHg is sufficient. That is, since the saturated vapor pressure p 0 of krypton at the liquid nitrogen temperature is 1.8 mmHg, the relative pressure 0.35 is 0.6 m.
It becomes mHg. As a result, the first term and the second term of the equation (1)
Both terms become smaller and the measurement error becomes smaller.

【0018】たとえばクリプトン吸着により、0.03
2 の表面積を得るためには、式(1)において0.4
8と0.45の差から0.03を得ることになり、窒素
吸着に比較して誤差は大幅に小さくなる。このような観
点から、通常の定容吸着量測定装置においては、蒸気圧
の小さな貴ガスを吸着質とする表面積測定法が従来から
行われ、キセノンおよびクリプトンなどが利用されてき
た。
For example, by krypton adsorption, 0.03
To obtain a surface area of m 2 , 0.4 in equation (1)
From the difference between 8 and 0.45, 0.03 will be obtained, and the error will be significantly smaller than in the case of nitrogen adsorption. From such a viewpoint, in a normal constant volume adsorption amount measuring device, a surface area measuring method using a noble gas having a small vapor pressure as an adsorbate has been conventionally performed, and xenon, krypton or the like has been used.

【0019】[0019]

【発明が解決すべき課題】従って、温度補償型吸着量測
定装置においても、Krのような低蒸気圧吸着気体を用
いることにより、より小さな吸着量測定が可能となり、
したがって小さな表面積測定の可能性が期待される。し
かしながら、実際には、Krを吸着気体として用いて温
度補償型吸着量測定装置により吸着量測定を行い、式
(3)より求めた吸着量のBETプロットは、後述の実
験例にも見られる通り、直線から著しくはずれ、単分子
吸着量AMLを求めることができなかった。
Therefore, even in the temperature compensation type adsorption amount measuring device, a smaller adsorption amount can be measured by using a low vapor pressure adsorption gas such as Kr.
Therefore, the possibility of small surface area measurement is expected. However, in practice, the adsorption amount is measured by the temperature compensation type adsorption amount measuring device using Kr as the adsorption gas, and the BET plot of the adsorption amount obtained from the equation (3) is as shown in the experimental example described later. , And it deviated significantly from the straight line, and the single molecule adsorption amount A ML could not be obtained.

【0020】上述の事情に鑑み、本発明の主要な目的
は、上記のような温度補償型吸着量測定装置を用いてよ
り小さな表面積の試料への吸着量測定を可能とする方法
および装置を提供することを目的とする。
In view of the above-mentioned circumstances, a main object of the present invention is to provide a method and apparatus capable of measuring an adsorption amount on a sample having a smaller surface area by using the temperature compensation adsorption amount measuring device as described above. The purpose is to do.

【0021】[0021]

【課題を解決するための手段】本発明者が上述の目的で
更に研究した結果、上述した温度補償型吸着量測定装置
に、特に低蒸気圧吸着気体を用いた場合に見られるBE
Tプロットの非直線性の原因は、約10cm2 以下とい
うような小表面積試料への吸着量測定に際しては、30
0cm2 以上というような試料表面積測定では殆ど問題
とならなかった参照用吸着セル(例えば内表面積が15
2 程度)への吸着気体の吸着量が無視できなくなるこ
とにあることがわかった。そして、このような参照用吸
着セルへの吸着気体の吸着量を補償することにより、1
cm2 というような小表面積試料についてまで、正確な
表面積測定が可能になることが見出された。
SUMMARY OF THE INVENTION
As a result of further research, the temperature compensation type adsorption amount measuring device described above
Especially when using low vapor pressure adsorption gas
The cause of T-plot non-linearity is about 10 cm2Below
When measuring the amount of adsorption to such a small surface area sample,
0 cm2Almost no problem in measuring the sample surface area
Reference adsorption cell that did not become (for example, the internal surface area is 15
m2 The adsorption amount of adsorbed gas to
I found out that And such a reference sucker
By compensating for the amount of adsorbed gas in the cell
cm2Even for small surface area samples such as
It has been found that surface area measurements are possible.

【0022】すなわち、本発明の試料の小表面積試料へ
の適用に適した吸着量測定方法は、互いに体積および形
状のほぼ等しい一対の参照用ビュレットと、試料用ビュ
レットとを左右対称に配置し、該両ビュレットに、また
互いに体積および形状のほぼ等しい参照用吸着セルと、
試料用吸着セルとをそれぞれ結合し、更に該両ビュレッ
トに導入可能に結合された吸着気体供給源と、該両ビュ
レット内部の圧力を測定可能な圧力計とを有してなる温
度補償型定容吸着装置を用い、一旦両ビュレット内に導
入した吸着気体を、更に、それぞれの吸着セルへ膨張・
吸着せしめた後、生じた両ビュレット間の差圧に基づい
て、吸着気体の吸着量を求めるに際して、参照用吸着セ
ルに対する吸着量を補償して試料用吸着セルに対する吸
着量を求めることを特徴とする。
That is, the adsorption amount measuring method suitable for applying the sample of the present invention to a small surface area sample is such that a pair of reference burettes and a sample burette, which have substantially the same volume and shape, are arranged symmetrically to each other. A reference adsorption cell having substantially the same volume and shape as each other on the both burettes;
A temperature-compensated constant volume comprising an adsorption gas supply source, which is connected to each of the adsorption cells for a sample, and is further connected so as to be able to be introduced into the both bullets, and a pressure gauge capable of measuring the pressure inside the both bullets. Using the adsorption device, the adsorption gas once introduced into both burettes is further expanded into each adsorption cell.
After adsorbing, when determining the adsorption amount of the adsorption gas based on the generated pressure difference between the two burettes, the adsorption amount for the reference adsorption cell is compensated to obtain the adsorption amount for the sample adsorption cell. To do.

【0023】また本発明の吸着量測定装置は、上述の温
度補償型吸着量測定装置と;両ビュレット内に導入され
た吸着気体圧力と、その後両吸着セル内にそれぞれ膨張
ならびに吸着せしめられた吸着気体の両ビュレット間差
圧とより、参照用吸着セルに対する吸着量を補償しつ
つ、試料用吸着セルへの吸着量を求めるように配置した
計算装置と;からなることを特徴とする。
Further, the adsorption amount measuring device of the present invention comprises the above-mentioned temperature compensation type adsorption amount measuring device; the adsorption gas pressure introduced into both burettes, and the adsorption which is then expanded and adsorbed in both adsorption cells, respectively. And a calculation device arranged to obtain the adsorption amount to the sample adsorption cell while compensating the adsorption amount to the reference adsorption cell based on the pressure difference between both burettes of the gas.

【0024】[0024]

【実施例】以下、本発明の吸着量測定方法および装置
を、その好ましい実施例について、図面を参照しつつ、
より具体的に説明する。
The preferred embodiments of the adsorption amount measuring method and apparatus of the present invention will be described below with reference to the drawings.
This will be described more specifically.

【0025】図3は、本発明の好ましい一実施例にかか
る温度補償型吸着量測定装置を用いる吸着量測定装置の
概略配置図である。
FIG. 3 is a schematic layout diagram of an adsorption amount measuring device using a temperature compensation type adsorption amount measuring device according to a preferred embodiment of the present invention.

【0026】(装置系)装置本体10は、内径6mmの
パイレックスガラス配管1と、ストップコックC1〜C
6(およびC11〜C19)とよりなり、更に配管11
を通じて気体導入系に、配管12を通じて直接に、また
配管13を通じ低圧用の隔膜型圧力計14を介して真空
系VAC1に連結し、更には配管15を通じて高圧用の
水銀圧力計16に連結されている。配管1内のストップ
コックC1、C2、C3及び差圧計7の隔膜で区画され
る部分により、参照用ビュレット2が形成され、同じく
配管1内のストップコックC1、C2、C4および差圧
計7の隔膜で区画される部分により試料用ビュレット3
が形成される。また参照用ビュレット2および試料用ビ
ュレット3には、それぞれストップコックC1を介し
て、参照用吸着セル4および吸着媒5aを収容する試料
用吸着セル5に連結される。測定に際し、これら吸着セ
ル4および5は、一般に液体窒素を満たしたデュワー瓶
6中に収容される。また温度補償性を向上させるため
に、ビュレット2および3、ならびに吸着セル4および
5はできる限り左右対称に配置するとともに、両者を接
近させて配置することが好ましい。参照用ビュレット2
と試料用ビュレット3とは、ストップコックC2により
区画され、また両ビュレットの間には、ストップコック
C5およびC6を介して差圧計7が設けられている。
(Apparatus system) The apparatus main body 10 comprises a Pyrex glass pipe 1 having an inner diameter of 6 mm and stopcocks C1 to C
6 (and C11 to C19), and piping 11
Through the pipe 12, directly through the pipe 12, through the pipe 13 through the low pressure diaphragm type pressure gauge 14 to the vacuum system VAC 1, and through the pipe 15 through the high pressure mercury pressure gauge 16. There is. A reference buret 2 is formed by the portions of the pipe 1 which are partitioned by the stopcocks C1, C2, C3 and the diaphragm of the differential pressure gauge 7, and the diaphragms of the stopcocks C1, C2, C4 and the differential pressure gauge 7 also in the pipe 1 are formed. Burette for sample 3 depending on the part partitioned by
Is formed. The reference buret 2 and the sample buret 3 are connected to the reference adsorption cell 4 and the sample adsorption cell 5 containing the adsorbent 5a via the stop cock C1, respectively. During the measurement, the adsorption cells 4 and 5 are generally housed in a Dewar bottle 6 filled with liquid nitrogen. Further, in order to improve the temperature compensability, it is preferable that the burettes 2 and 3 and the adsorption cells 4 and 5 are arranged symmetrically as much as possible and the both are arranged close to each other. Bullet for reference 2
The sample bullet 3 and the sample bullet 3 are partitioned by a stop cock C2, and a differential pressure gauge 7 is provided between both bullets via stop cocks C5 and C6.

【0027】また圧力計14および差圧計7の出力は、
積算及び/またはA/D変換のための変換器18および
19をそれぞれ介して、後述の吸着量ならびに表面積計
算のための計算機20に入力される。
The outputs of the pressure gauge 14 and the differential pressure gauge 7 are
It is input to a calculator 20 for calculating an adsorption amount and a surface area, which will be described later, via converters 18 and 19 for integration and / or A / D conversion, respectively.

【0028】更にビュレット2および3ならびに差圧計
7はアルミ箔で覆う等、輻射を防ぐとともに、参照系お
よび試料系の温度差を極小とすることが好ましい。
Further, it is preferable that the burettes 2 and 3 and the differential pressure gauge 7 are covered with aluminum foil to prevent radiation and to minimize the temperature difference between the reference system and the sample system.

【0029】(吸着量測定)正確な表面積計算のための
吸着量測定を行うには、吸着平衡圧を変化させるのに、
ある平衡圧での吸着量を得た後、脱離操作を行なわず、
さらに吸着気体を導入して連続して吸着実験を行う、積
算吸着方式を採ることが望ましい。
(Measurement of Adsorption Amount) To measure the adsorption amount for accurate surface area calculation, the adsorption equilibrium pressure is changed.
After obtaining the adsorption amount at a certain equilibrium pressure, without performing the desorption operation,
Furthermore, it is desirable to adopt an integrated adsorption method in which an adsorption gas is introduced and continuous adsorption experiments are performed.

【0030】測定は以下の3段階の操作からなるが、後
に第2段階を省くことができることが明らかになる。
The measurement consists of the following three steps of operation, but it will be clear later that the second step can be omitted.

【0031】[1]死容積の測定(前記式(3)におけ
るVB とDVB の測定) (1)参照用ビュレット2、配管13および圧力計14
を真空排気した後、ストップコックC1、C2、C5、
C11およびC16を閉じる。参照用吸着セル4、参照
用ビュレット2および圧力計14に一定量のヘリウム
(He)を入れ、その圧力を圧力計14で読んで、p1
とする。それを、コックC1を開いて参照用吸着セルに
膨張させ、その圧力をp2 とする。ヘリウムの吸着量は
実質的に無視できるので、参照用吸着セルの容積VB
B =VO((p1 /p2 )−1)と評価される。ここ
にVO は、C1、C2、C5、C11、C16および圧
力計14の隔膜で区画された体積である。
[1] Measurement of dead volume (measurement of V B and DV B in the above formula (3)) (1) Reference bullet 2, pipe 13 and pressure gauge 14
After evacuating, the stopcocks C1, C2, C5,
Close C11 and C16. A certain amount of helium (He) was put into the reference adsorption cell 4, the reference buret 2 and the pressure gauge 14, the pressure was read by the pressure gauge 14, and p 1
And The cock C1 is opened to expand it into the reference adsorption cell, and its pressure is set to p 2 . Since the amount of helium adsorbed can be substantially ignored, the volume V B of the reference adsorption cell is evaluated as V B = V O ((p 1 / p 2 ) −1). Here V O is the volume that is defined by C1, C2, C5, C11, C16 and a pressure gauge 14 septa.

【0032】(2)参照用吸着セル4、試料用吸着セル
5、参照用ビュレット2および試料用ビュレット3を真
空排気し、ストップコックC1を閉じる。両ビュレット
にヘリウムを充たし、その圧力pを読む。ストップコッ
クC3、C4および参照側と試料側を隔てるストップコ
ックC2を閉じ、ストップコックC1を開いて、ヘリウ
ムを両吸着セルに膨張させる。この際参照側と試料側の
差圧の表示を差圧計7により読む。本例で用いた差圧計
7(Celesco Sokken製「P90DL」)
の表示は、左右の差圧が零であっても、雰囲気の圧力に
よってその表示が変化するので、C2を開いて圧力の表
示(零点)を読み、先の差圧の読みとの差が真の差圧D
pを与える。ヘリウムは吸着しないので、ヘリウムの物
質収支から、DVB を未知数とする次式を得る。
(2) The reference adsorption cell 4, the sample adsorption cell 5, the reference bullet 2 and the sample bullet 3 are evacuated, and the stopcock C1 is closed. Fill both bullets with helium and read the pressure p. The stopcocks C3 and C4 and the stopcock C2 separating the reference side and the sample side are closed, the stopcock C1 is opened, and helium is expanded into both adsorption cells. At this time, the display of the differential pressure between the reference side and the sample side is read by the differential pressure gauge 7. Differential pressure gauge 7 used in this example ("P90DL" manufactured by Celesco Sokken)
Since the display changes according to the pressure of the atmosphere even if the left and right differential pressure is zero, open C2 and read the pressure display (zero point), and the difference from the previous differential pressure reading is true. Differential pressure D
give p. Since helium is not adsorbed, the following equation with DV B as an unknown is obtained from the mass balance of helium.

【0033】 (VA +DVA +VB +DVB )(VA +VB )Dp=(VA DVB −VB DVA )p (4) 差圧Dpの絶対値が大きい場合は、参照用吸着セルある
いは試料用吸着セルの上部にガラス無垢棒などを入れ
て、差圧Dp(したがってDVB )の絶対値ができるだ
け小さくなるよう調節する。
(V A + DV A + V B + DV B ) (V A + V B ) Dp = (V A DV B −V B DV A ) p (4) When the absolute value of the differential pressure Dp is large, the reference adsorption A solid glass rod or the like is put on the upper part of the cell or the sample adsorption cell and adjusted so that the absolute value of the differential pressure Dp (and therefore DV B ) becomes as small as possible.

【0034】[2]予備吸着実験 通常の吸着量測定法により、吸着実験に使用する吸着気
体(例えばKr)を用いて、参照用吸着セルおよび試料
用吸着セルに対する大まかな吸着等温線AR (p)およ
びAS (p)を決定する。BET無限吸着式(前記式
(2))を採用する場合は、単分子吸着量AMLおよびB
ET定数Cを、参照系(AMLR およびCR)および試料
系(AMLS およびCS )について、それぞれ決定すれば
良い。
[2] Preadsorption Experiment Using the adsorption amount used in the adsorption experiment (for example, Kr) by the usual adsorption amount measuring method, the rough adsorption isotherm A R (for the adsorption cell for reference and the adsorption cell for sample A R ( p) and A S (p) are determined. When the BET infinite adsorption formula (formula (2)) is adopted, the amount of adsorbed single molecule A ML and B
The ET constant C may be determined for the reference system (A MLR and C R ) and the sample system (A MLS and C S ) respectively.

【0035】[3]吸着実験 全系を真空排気後、ストップコックC1を閉じ、両ビュ
レットに吸着気体を充たし、その圧力pn (1)を読
む。ストップコックC3、C4およびC2を閉じた後、
ストップコックC1を開き、吸着気体を両吸着セルに膨
張させる。一旦差圧を読んだ後、ストップコックC2を
開き零点を読む。先の差圧との差が真の差圧Dpn を与
える。その後ストップコックC1を閉じ、このような操
作を繰り返し、積算吸着操作を行なう。
[3] Adsorption Experiment After evacuation of the entire system, the stop cock C1 is closed, both burets are filled with adsorption gas, and the pressure p n (1) is read. After closing the stopcocks C3, C4 and C2,
The stop cock C1 is opened and the adsorbed gas is expanded into both adsorption cells. After reading the differential pressure, open the stopcock C2 and read the zero point. The difference between the previous differential pressure give a true differential pressure Dp n. After that, the stop cock C1 is closed, and such an operation is repeated to perform the integrated adsorption operation.

【0036】このような状況でのn回目の吸着操作にお
いて、温度T、圧力pn (1)のビュレット内の吸着気
体を吸着セルに膨張させて、差圧Dpn を得た場合のn
回目の吸着量A′n は次式で与えられる。
[0036] In the n-th adsorption operation in this situation, the temperature T, and a suction gas in the burette is expanded to adsorption cell pressure p n (1), when obtaining the differential pressure Dp n n
Adsorption amount A 'n times th is given by the following equation.

【0037】 A′n =(22414/RT)[(VA +DVA )pn (1)+(VB +D VB )pn-1−(VA +DVA +VB +DVB )(pn (2)−Dpn )] (5) ここにpn (2)は吸着気体膨張後の参照用吸着セルに
おける圧力であり、pn-1 は両方の吸着セルに前回に残
っていた吸着気体の圧力である。
[0037] A 'n = (22414 / RT ) [(V A + DV A) p n (1) + (V B + D V B) p n-1 - (V A + DV A + V B + DV B) (p n (2) -Dp n)] ( 5) where p n (2) in is the pressure in the reference adsorption cell after adsorption gas expansion, p n-1 is both adsorbed gas remaining in the previous adsorption cells Is the pressure of.

【0038】上記pn (2)は、従来は参照用吸着セル
への吸着を無視したので、容易に計算できた。しかし本
法では参照用吸着セルに対する吸着量を考慮して、それ
を次式から得る。
The above-mentioned p n (2) can be easily calculated because the adsorption to the reference adsorption cell is neglected conventionally. However, in this method, the adsorption amount for the reference adsorption cell is taken into consideration and is obtained from the following equation.

【0039】 (22414/RT)[VA n (1)+VB n-1 −(VA +VB )pn (2)]=AR (pn (2))−AR (pn-1 ) (6) ここにAR (pn (2))は参照用吸着セルに対する等
温吸着量であり、クリプトン吸着に対してはBET無限
層式(前記式(2))が採用できる。
(22414 / RT) [V A p n (1) + V B p n −1 − (V A + V B ) p n (2)] = A R (p n (2)) − A R (p n-1 ) (6) where A R (p n (2)) is the isothermal adsorption amount for the reference adsorption cell, and for the krypton adsorption, the BET infinite layer equation (the above equation (2)) can be adopted. .

【0040】すなわちAMLR およびCR は既知であり、
n=1においては、n−1に相当する全ての項は零であ
る。p1 (1)は測定によって得られるので、式(6)
の右辺に式(2)を代入すると未知数p1 (2)に関す
る方程式を得る。そこでNewton法により、p
1 (2)を求めることが出来る。また後述する方法でp
1が求まるので、同様にp2 (2)に関する方程式を与
えるので、p2 (2)が求まる。従って順次p
3 (2)、p4 (2)・・・、すなわちpn (2)が求
まる。
That is, A MLR and C R are known,
At n = 1, all terms corresponding to n-1 are zero. Since p 1 (1) is obtained by measurement, equation (6)
Substituting equation (2) into the right-hand side of, an equation for the unknown p 1 (2) is obtained. Therefore, by the Newton method, p
1 (2) can be obtained. Also, p
Since 1 is obtained, as well as it provides the equation for p 2 (2), p 2 (2) is obtained. Therefore, p
3 (2), p 4 (2) ..., That is, p n (2) is obtained.

【0041】また零点測定に際し、参照用吸着セル内の
圧力と試料用吸着セル内の圧力が等しくなる。すなわち
参照用吸着セルの圧力はpR (=pn (2))からDp
R 増加してpn となり、試料用吸着セルの圧力はp
S (=pn (2)−Dpn )からDpS 増加してpn
なる。その際参照用吸着セルおよび試料用吸着セル内で
新たな吸着が起こる。それらの吸着をそれぞれDAR
よびDAS とすると、それらは次式で与えられる。
When measuring the zero point, the pressure in the reference adsorption cell becomes equal to the pressure in the sample adsorption cell. That is, the pressure of the reference adsorption cell is calculated from p R (= p n (2)) to Dp
R increases to pn , and the pressure in the sample adsorption cell is p
The p n from S (= p n (2) -Dp n) increases Dp S. At that time, new adsorption occurs in the reference adsorption cell and the sample adsorption cell. Letting their adsorption be DA R and DA S , respectively, they are given by:

【0042】 (22414/RT)[(VA +DVA +VB +DVB )pS +(VA +VB )pR ] =(22414/RT)[(2VA +2VB +DVA +DVB )pn )] +DAR +DAS (7) pS +DpS =pR +DpR =pn (8) これらの吸着量の補正量は窒素吸着の場合のように、高
い圧力での吸着実験ではほとんど無視できるが、低圧で
の実験では相対的に大きくなる。
[0042] (22414 / RT) [(V A + DV A + V B + DV B) p S + (V A + V B) p R] = (22414 / RT) [(2V A + 2V B + DV A + DV B) p n )] + DA R + DA S (7) p S + Dp S = p R + Dp R = pn (8) The correction amount of these adsorption amounts can be almost ignored in adsorption experiments at high pressure, as in the case of nitrogen adsorption. However, it is relatively large in low pressure experiments.

【0043】また零点測定の際の新たな吸着DAS およ
びDAR は試料側および参照側に対する吸着等温式を使
って次式から得る。
Further, new adsorptions DA S and DA R at the time of measuring the zero point are obtained from the following equations using the adsorption isotherms for the sample side and the reference side.

【0044】 DAR =AR (pR +DpR )−AR (pR ) (9) DAS =AS (pS +DpS )−AS (pS ) (10) 前述した方法で、pn (2)が求まると、第n回目の吸
着操作に関するpR およびpS が決定される。従って式
(7)と式(8)は既知パラメータを含むn回目の吸着
操作に関するDpS およびDpR に関する連立方程式で
あるのでNewton法で容易に解くことができ、更に
式(8)〜(10)よりpn 、DAR およびDAS が決
定される。
DA R = A R (p R + Dp R ) -A R (p R ) (9) DA S = A S (p S + Dp S ) -A S (p S ) (10) By the method described above, When p n (2) is obtained, p R and p S for the n-th adsorption operation are determined. Therefore, since the equations (7) and (8) are simultaneous equations regarding Dp S and Dp R regarding the n-th adsorption operation including the known parameters, they can be easily solved by the Newton's method, and further equations (8) to (10) ), P n , DA R and DA S are determined.

【0045】積算吸着量An は次式のように前回までの
積算吸着量ΣA′n と吸着量の補正量ΣDAS の和で与
えられる。
The accumulated adsorption amount A n is given by the sum of the accumulated adsorption amount ΣA ′ n up to the previous time and the adsorption amount correction amount ΣDA S as in the following equation.

【0046】 An =Σ(A′n +DAS ) (11) またその場合の平衡圧はpn である。A n = Σ (A ′ n + DA S ) (11) Further, the equilibrium pressure in that case is p n .

【0047】すなわち、上記計算過程は、計算機20
(本例ではNEC製9801DAを使用)に導入された
測定値pn (1)、Dpn から式(2)および式(5)
〜式(10)を用いて、pn (2)(従ってA′n )お
よびDAR およびDAS を求め、これらから、pn およ
び式(11)により積算吸着量An を求める計算に集約
される。
That is, the calculation process is performed by the computer 20.
(In this example, NEC 9801DA is used.) Measured values p n (1) and Dp n are used to calculate equation (2) and equation (5).
~ Equation (10) is used to find pn (2) (hence A'n ) and DA R and DA S , and from these, the calculation is carried out to find the cumulative adsorption amount A n by pn and Equation (11). To be done.

【0048】(単分子吸着量および表面積計算)上記に
おいて、各相対圧x(=pn /p0 )における積算吸着
量A(=An )のデータが得られると、例えばBET無
限層式である前記式(2)を変形して得た次式(12) x/A(1−x)=1/(AMLC)+x・(C−1)/(AMLC) (12) に従い、各相対圧に対し、x/A(1−x)=p/A
(p0 −p)のプロット(BETプロット、例えば後述
の例についての図4、図6等)を行い、その切片1/A
ML・Cおよび勾配(C−1)/AML・Cから、単分子吸
着量AML(単位STPcm3 )およびBET定数Cが求
められる。
(Calculation of Single Molecule Adsorption and Surface Area)
At each relative pressure x (= pn/ P0) Integrated adsorption
Quantity A (= An) Data is obtained, for example, without BET
The following equation (12) obtained by transforming the equation (2), which is a layered equation, x / A (1-x) = 1 / (AMLC) + x ・ (C-1) / (AMLC) According to (12), x / A (1-x) = p / A for each relative pressure
(P0-P) plot (BET plot, for example
4 and 6) for the example of FIG.
MLC and slope (C-1) / AML・ From C, single molecule absorption
Wear AML(Unit STP cm3 ) And BET constant C
Can be

【0049】求められた単分子吸着量AMLから、下式に
より試料の表面積S(cm2 )が求められる。
Amount of adsorbed single molecule AMLFrom the following formula
More sample surface area S (cm2 ) Is required.

【0050】 S=a×10-16 ×(AML/22414)×6.02×1023 (13) ここでaは、吸着気体1分子の断面積であり、Krの場
合には23(Å2 )が用いられる。
S = a × 10 −16 × (A ML /22414)×6.02×10 23 (13) where a is the cross-sectional area of one molecule of the adsorbed gas, and in the case of Kr, it is 23 (Å 2 ) is used.

【0051】(吸着量測定の実施例)本実施例では、図
3の装置を用い直径1mmのボールベアリング用鋼球5
aに対する液体窒素温度におけるクリプトン(液体窒素
温度における飽和蒸気圧p0=1.8mmHg)の吸着
を行い、約1cm2 の表面積測定が可能であることを確
認した。
(Example of Measurement of Adsorption Amount) In this example, a steel ball 5 for ball bearing having a diameter of 1 mm was prepared by using the apparatus shown in FIG.
It was confirmed that krypton (saturated vapor pressure p 0 = 1.8 mmHg at liquid nitrogen temperature) at a liquid nitrogen temperature was adsorbed to a and surface area of about 1 cm 2 could be measured.

【0052】参照用吸着セルおよび試料用吸着セルに対
する吸着等温線としてはBET無限層式(式(2))を
採用した。すなわち、上記式(6)〜式(10)におけ
るAR 、AS としては予備実験で得られた単分子吸着量
MLR 、AMLS およびBET定数CR およびCS を導入
して式(12)のBET直線式より得た値を用いた。予
め得られた空の参照側吸着セルおよび空の試料側吸着セ
ルに対する通常法によるクリプトンの単分子吸着量A
MLR およびAMLS は、ともに2.50×10-4STPc
3 であり、BET定数CR およびCS は12であっ
た。これらを使って得た空の試料用吸着セルに対する液
体窒素温度におけるクリプトン吸着のBETプロットを
図4に示した。このBETプロットの切片および勾配か
ら得た試料用吸着セルに対するクリプトンの単分子吸着
量AMLは2.54×10-4STPcm3 であった。
As the adsorption isotherm for the reference adsorption cell and the sample adsorption cell, the BET infinite layer system (equation (2)) was adopted. That is, as A R and A S in the above formulas (6) to (10), the monomolecular adsorption amounts A MLR , A MLS and BET constants C R and C S obtained in the preliminary experiment are introduced to obtain the formula (12). The value obtained from the BET linear equation of (1) was used. Single-molecule adsorption amount A of krypton by the conventional method for the empty reference side adsorption cell and empty sample side adsorption cell obtained in advance
Both MLR and A MLS are 2.50 × 10 -4 STPc
m 3 and the BET constants C R and C S were 12. The BET plot of the krypton adsorption at the liquid nitrogen temperature for the empty sample adsorption cell obtained using these is shown in FIG. The monomolecular adsorption amount A ML of krypton on the adsorption cell for sample obtained from the intercept and the gradient of this BET plot was 2.54 × 10 −4 STPcm 3 .

【0053】この際参照用吸着セルに対するクリプトン
の吸着量を考慮しないと(すなわちAMLR =0として計
算すると)、BETプロットが直線から著しくはずれ
(図5)、事実上単分子吸着量を求めることが出来なか
った。おそらくそれより飽和蒸気圧の小さなキセノン吸
着によるBETプロットではもっと顕著なずれとなろ
う。
At this time, if the adsorption amount of krypton to the reference adsorption cell is not taken into consideration (that is, calculated with A MLR = 0), the BET plot deviates significantly from the straight line (FIG. 5), and the adsorption amount of the single molecule is practically obtained. I couldn't. Perhaps the BET plot due to the adsorption of xenon, which has a lower saturated vapor pressure, will have a more marked shift.

【0054】また鋼球50個入りの試料用吸着セルに対
するクリプトン吸着のBETプロットを図6に示した。
図6の切片および勾配から、鋼球50個入り試料用吸着
セルに対するクリプトンの単分子吸着量AMLが得られ
る。
A BET plot of krypton adsorption for a sample adsorption cell containing 50 steel balls is shown in FIG.
From the intercept and the gradient of FIG. 6, the adsorption amount A ML of krypton for a sample adsorption cell containing 50 steel balls can be obtained.

【0055】試料用吸着セルに対する単分子吸着量AML
の算出において、予め得られたAR(p)およびA
S (p)を使用した。しかしAMLは使用したA
S (p)、すなわちAMLS には殆ど依存しなかった(図
7)。すなわちAMLの計算には、AMLS の概算値で事足
りることが分かる。
Amount of single molecule adsorbed on the sample adsorption cell A ML
In the calculation of A R (p) and A obtained in advance
S (p) was used. But A ML used A
It was almost independent of S (p), that is, A MLS (Fig. 7). That is, it can be seen that the approximate value of A MLS is sufficient for the calculation of A ML .

【0056】またAML−AMLR は、AMLR に殆どよらな
かった(図8)。ただし余りにも小さなAMLR 値を使用
すると先に述べたようにBETプロットの直線性が悪く
なり、AMLに対する信頼性が欠ける。AML−AMLR は、
参照用吸着セルへの吸着量を基準にして試料用吸着セル
への吸着量を測定することを意味する。試料に対する吸
着量は、試料入り試料用吸着セルに対する吸着量と、空
の試料用吸着セルに対する吸着量との差であり、それら
はいずれもAMLR を基準に得られることになる。
Further, A ML -A MLR was hardly dependent on A MLR (FIG. 8). However, if an A MLR value that is too small is used, the linearity of the BET plot becomes poor as described above, and the reliability for A ML is lacking. A ML- A MLR is
It means that the adsorption amount to the sample adsorption cell is measured on the basis of the adsorption amount to the reference adsorption cell. The adsorption amount for the sample is the difference between the adsorption amount for the sample-containing sample adsorption cell and the adsorption amount for the empty sample adsorption cell, and both are obtained based on A MLR .

【0057】直径1mmの鋼球が50,100,150
個入った試料用吸着セルに対するクリプトンの単分子吸
着量AMLと鋼球の個数の関係を図9に示した。切片が空
の試料用吸着セルに対する単分子吸着量に相当し、勾配
は鋼球単位個数あたりの単分子吸着量に相当する。この
勾配はその鋼球1万個に対する通常の吸着量測定装置に
よるクリプトン吸着量から得た値と一致した。すなわち
鋼球50,100,150個に対するクリプトンの単分
子吸着量は鋼球1万個からの得た計算値と一致した。鋼
球50個の単分子吸着量(AML−AMLR )は0.27S
TPcm3 となり、その表面積は、式(13)より1.
7cm2 と計算された。これは、幾何学的に計算された
鋼球の表面積(1.57cm2 )とほぼ一致し、本法に
より1cm2 程度の表面積測定が可能であることが明ら
かとなった。
Steel balls having a diameter of 1 mm are 50, 100, 150
The relationship between the number of monomolecular adsorption A ML and steel balls of krypton for pieces containing the sample for adsorption cell shown in FIG. The slice corresponds to the amount of adsorbed monomolecule to the empty adsorption cell for sample, and the gradient corresponds to the amount of adsorbed monomolecule per unit number of steel balls. This gradient coincided with the value obtained from the amount of krypton adsorbed by the usual adsorption amount measuring device for 10,000 steel balls. That is, the amount of monomolecular adsorption of krypton on 50, 100, 150 steel balls was in agreement with the calculated value obtained from 10,000 steel balls. Adsorption amount (A ML -A MLR ) of 50 steel balls is 0.27S
TPcm 3 , and the surface area was 1.
It was calculated to be 7 cm 2 . This is almost in agreement with the geometrically calculated surface area of the steel ball (1.57 cm 2 ), and it was revealed that the surface area of about 1 cm 2 can be measured by this method.

【0058】(変形例)上記において、図3以下の図面
を参照して、温度補償型吸着量測定装置を用いる本発明
の小表面積試料への適用に適した吸着量測定方法および
装置を、その好ましい一実施例について説明した。しか
しながら、本発明の範囲内で上記した実施例は、各種変
形して実施可能であることが理解できよう。特に、上記
実施例における、式(5)以降の計算過程は、理論的正
確性を期するために厳密な計算を可能とするものではあ
るが、温度補償型吸着量測定装置の装置特性を考慮すれ
ば、実際的な測定精度を維持した範囲内で多くの簡略化
が可能である。以下は、そのような変形のいくつかの例
を示すものである。
(Modification) In the above description, referring to the drawings starting from FIG. 3, an adsorption amount measuring method and device suitable for application to a small surface area sample of the present invention using a temperature compensation type adsorption amount measuring device will be described. A preferred embodiment has been described. However, it will be understood that the embodiments described above can be implemented in various modifications within the scope of the present invention. In particular, although the calculation process of the equation (5) and the subsequent steps in the above-described embodiment enables rigorous calculation for the sake of theoretical accuracy, the device characteristics of the temperature compensation type adsorption amount measuring device are taken into consideration. If so, many simplifications are possible within a range in which the practical measurement accuracy is maintained. The following are some examples of such variations.

【0059】(1)表面積測定のみならず、参照用吸着
セルおよび試料用吸着セルに対する吸着等温線、A
R (pR )およびAS (pS )、を変更するだけであら
ゆる吸着量測定に適用できる。特に参照用吸着セルにも
多量の吸着が起こる水の吸着量測定には本発明が有効で
あろう。
(1) Not only the surface area measurement but also the adsorption isotherm for the reference adsorption cell and the sample adsorption cell, A
It can be applied to any adsorption amount measurement only by changing R (p R ) and A S (p S ). The present invention is particularly effective for measuring the adsorption amount of water in which a large amount of adsorption occurs in the reference adsorption cell.

【0060】(2)吸着温度は液体窒素温度に限らな
い。
(2) The adsorption temperature is not limited to the liquid nitrogen temperature.

【0061】(3)装置全体をガラス製でなく、金属製
とすることは、もちろん可能である。
(3) Of course, it is possible to make the entire device from metal rather than glass.

【0062】(4)圧力計としては、隔膜型圧力計14
と、差圧計7の組合せを用いたが、これら圧力計の形式
は任意であり、水銀圧力計の代わりに、大気圧まで測定
可能な隔膜型圧力計を利用することもできる。また参照
系と、試料系とに、それぞれ別個の圧力計を配すること
もできる。これにより、参照用吸着セルおよび試料吸着
セルの吸着等温線を予め得る操作(上記[2]予備吸着
実験)の代わりに、本吸着実験中に、参照系と試料系の
それぞれにおいて吸着気体の膨張前後の圧力を測定し、
R (p)およびAS (p)を同時に測定することも可
能である。
(4) As the pressure gauge, a diaphragm type pressure gauge 14
Although a combination of the differential pressure gauge 7 and the differential pressure gauge 7 is used, the type of these pressure gauges is arbitrary, and a diaphragm type pressure gauge capable of measuring up to atmospheric pressure may be used instead of the mercury pressure gauge. Separate pressure gauges may be provided for the reference system and the sample system. As a result, instead of the operation of previously obtaining the adsorption isotherms of the reference adsorption cell and the sample adsorption cell (above [2] preliminary adsorption experiment), the expansion of the adsorption gas in each of the reference system and the sample system during the main adsorption experiment. Measure the front and back pressure,
It is also possible to measure A R (p) and A S (p) simultaneously.

【0063】(5)差圧計7として零点の補正の必要の
ないものを用いることにより、吸着操作後にストップコ
ックC2を開いて、差圧計7の零点を補正する操作が不
要になり、これに伴い、前記式(7)〜(10)の計算
が不要となる(DAR ≒DAS ≒0)。
(5) By using the differential pressure gauge 7 that does not require the zero correction, the operation of opening the stopcock C2 after the suction operation to correct the zero of the differential pressure gauge 7 becomes unnecessary. The calculation of the equations (7) to (10) is unnecessary (DA R ≈DA S ≈0).

【0064】(6)図7および図8に示すように、AML
の計算値は、本質的にはAR (p)およびAS (p)、
すなわちAMLR およびAMLS の値に依存しなかった。し
たがって、それらを求めるための実験操作(上記[2]
予備吸着実験)を省略し、AMLR については、幾何学的
表面積の1.5倍程度の値を用い、CR については10
程度の値を使用することにより、本質的な測定精度の低
下を招くことなく計算をも簡単化することができる。ま
たAMLS およびCS については、概算値を用いるか、あ
るいはそれらを繰り返し計算で求めることが可能であ
る。クリプトンより蒸気圧の高い吸着質の吸着実験で
は、DAR およびDAS は高々A′n の0.1%程度で
あり、それらを無視する(式(7)−式(10)の計算
を省略する)ことも可能である。しかしキセノンについ
ては無視できない可能性もある。
(6) As shown in FIGS. 7 and 8, A ML
The calculated value of is essentially A R (p) and A S (p),
That is, it did not depend on the values of A MLR and A MLS . Therefore, the experimental procedure for obtaining them (see [2] above)
The preliminary adsorption experiment) was omitted, a value of about 1.5 times the geometric surface area was used for A MLR , and 10 for C R.
By using the value of the degree, the calculation can be simplified without incurring a substantial decrease in measurement accuracy. Further, for A MLS and C S , it is possible to use approximate values or obtain them by repeated calculation. In an adsorption experiment of an adsorbate having a vapor pressure higher than that of krypton, DA R and DA S are about 0.1% of A ′ n at most, and they are ignored (calculation of formula (7) -formula (10) is omitted. It is also possible. However, it may not be possible to ignore xenon.

【0065】(7)差圧計7において、小さな差圧を正
確に測定するため、変換器19により積算してその平均
値を用いる構成とすることが好ましいが、要求される測
定精度によっては、このような積算器は不要であり、あ
るいは計算機20内での内部計算でカバーすることもで
きる。
(7) In the differential pressure gauge 7, in order to accurately measure a small differential pressure, it is preferable that the differential pressure gauge 7 is integrated by the converter 19 and the average value thereof is used. However, depending on the required measurement accuracy, this Such an integrator is not necessary, or can be covered by internal calculation in the computer 20.

【0066】(8)上記実施例においては、ストップコ
ックの操作は手動により行ったが、自動化も可能であ
る。吸着セルの上部に可動蛇腹管等を備えることによ
り、DpあるいはDVB を自動的に極小にすることも可
能である。また計測圧力の入力はAD変換器を通して行
ったが、手動入力も可能である。
(8) In the above embodiment, the stop cock was manually operated, but it can be automated. It is also possible to automatically minimize Dp or DV B by providing a movable bellows tube or the like on the upper part of the adsorption cell. Although the measurement pressure was input through the AD converter, manual input is also possible.

【0067】(9)吸着気体としては、10cm2 以下
の表面積測定には、液体窒素温度におけるKr(p0
1.8mmHg)、Xe(P0 =0.001mmHg)
および液体酸素温度におけるXe(p0 =0.05mm
Hg)等が好ましい。また10cm2 〜1000cm
2 の表面積測定には上記吸着質の他、液体窒素温度にお
けるCH4 (p0 =10mmHg)および液体酸素温度
におけるCH4 (p0=80mmHg)が好ましい。1
000cm2 以上の表面積測定には、上記吸着質の他液
体窒素温度におけるN 2 (p0 =760mmHg)およ
びAr(p0 =200mmHg)、ドライアイス温度に
おけるCO2 (p0 =760mmHg)および氷点にお
けるn−C4 10(p0 =760mmHg)が使用でき
る。
(9) Adsorption gas is 10 cm2Less than
For surface area measurement, Kr (p0=
1.8 mmHg), Xe (P0= 0.001 mmHg)
And Xe (p at liquid oxygen temperature0= 0.05mm
Hg) and the like are preferable. 10 cm2 ~ 1000 cm
2In addition to the above adsorbates, the surface area of
CHFour(P0= 10 mmHg) and liquid oxygen temperature
In CHFour(P0= 80 mmHg) is preferable. 1
000 cm2For measuring the surface area above
N at body nitrogen temperature 2(P0= 760 mmHg) and
And Ar (p0= 200mmHg), at dry ice temperature
CO in2(P0= 760 mmHg) and freezing point
NCFourHTen(P0= 760mmHg) can be used
It

【0068】(10)また、上記例においては、方程式
(5)、(6)および連立方程式(7)、(8)の解法
としてNewton法を用いたが、通常のパーソナルコ
ンピュータへの適用に適した他の数値計算法の適用もも
ちろん可能である。
(10) In the above example, the Newton's method is used as the solution of the equations (5) and (6) and the simultaneous equations (7) and (8), but it is suitable for application to an ordinary personal computer. Of course, other numerical calculation methods can be applied.

【0069】(11)特に10-1mmHgあるいはそれ
以下というような低圧での吸着に際しては、吸着セルの
死容積あるいは吸着量を、熱浸透の効果を考慮して、補
正することもできる(Isao Suzuki他、J.
Catal.,155、163−165頁(1995
年)参照)。
(11) Especially when adsorbing at a low pressure of 10 -1 mmHg or less, the dead volume or adsorption amount of the adsorption cell can be corrected in consideration of the effect of heat permeation (Isao). Suzuki et al., J.
Catal. , 155 , 163-165 (1995)
Year))).

【0070】[0070]

【発明の効果】上述したように、本発明の温度補償型吸
着量測定装置を用いる表面積測定方法および装置によれ
ば、特に窒素より本質的に小なる飽和蒸気圧を有する吸
着気体との組合せにより、10cm2 以下というような
小さな表面積を有する試料の表面積が正確に測定可能に
なり、また試料の表面性状の正確な判定も可能となる。
As described above, according to the surface area measuring method and apparatus using the temperature compensation type adsorption amount measuring apparatus of the present invention, the combination with the adsorption gas having a saturated vapor pressure which is substantially smaller than that of nitrogen is particularly effective. The surface area of a sample having a small surface area of 10 cm 2 or less can be accurately measured, and the surface property of the sample can be accurately determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】定容吸着装置の模式図。FIG. 1 is a schematic diagram of a constant volume adsorption device.

【図2】温度補償型定容吸着装置の模式図。FIG. 2 is a schematic diagram of a temperature compensation type constant volume adsorption device.

【図3】本発明の吸着装置の一実施例の概略構成図。FIG. 3 is a schematic configuration diagram of an embodiment of an adsorption device of the present invention.

【図4】空の試料用吸着セルに対するクリプトン吸着の
BETプロット(参照用吸着セルに対する単分子吸着量
MLR =2.5×10-4STPcm3 )。
FIG. 4 is a BET plot of krypton adsorption on an empty sample adsorption cell (monomolecular adsorption amount A MLR = 2.5 × 10 −4 STPcm 3 on a reference adsorption cell).

【図5】空の試料用吸着セルに対するクリプトン吸着の
BETプロット(参照用吸着セルに対する単分子吸着量
MLR =0)。
FIG. 5 is a BET plot of krypton adsorption with respect to an empty sample adsorption cell (monomolecular adsorption amount A MLR = 0 with respect to a reference adsorption cell).

【図6】鋼球50個入りの試料用吸着セルに対するクリ
プトン吸着のBETプロット(参照用吸着セルに対する
単分子吸着量AMLR =2.5×10-4STPcm3
FIG. 6 is a BET plot of krypton adsorption with respect to a sample adsorption cell containing 50 steel balls (monomolecular adsorption amount A MLR = 2.5 × 10 −4 STPcm 3 with respect to a reference adsorption cell).

【図7】鋼球50個入り試料用吸着セルに対するクリプ
トンの単分子吸着量AMLと使用したAMLS の関係を示す
グラフ。
FIG. 7 is a graph showing the relationship between the adsorbed amount of single molecule of krypton A ML and the used amount of A MLS in the adsorption cell for a sample containing 50 steel balls.

【図8】鋼球50個入り吸着セルの(AML−AMLR )と
使用したAMLR の関係を示すグラフ。
FIG. 8 is a graph showing the relationship between (A ML −A MLR ) of the adsorption cell containing 50 steel balls and the used A MLR .

【図9】鋼球入り試料用吸着セルに対するクリプトンの
単分子吸着量AMLと鋼球の個数の関係を示すグラフ。
FIG. 9 is a graph showing the relationship between the adsorption amount of krypton monomolecules A ML and the number of steel balls in the adsorption cell for a sample containing steel balls.

【符号の説明】[Explanation of symbols]

1:ガラス配管 2:参照用ビュレット 3:試料用ビュレット 4:参照用吸着セル 5:試料用吸着セル 5a:吸着媒 6:デュワー瓶 7:差圧計 10:吸着装置本体 11、12、13:ガラス配管 14:圧力計 18、19:変換器 20:計算機 C1〜C6、C11〜C19:ストップコック 1: Glass pipe 2: Reference burette 3: Sample burette 4: Reference adsorption cell 5: Sample adsorption cell 5a: Adsorption medium 6: Dewar bottle 7: Differential pressure gauge 10: Adsorption device body 11, 12, 13: Glass Piping 14: Pressure gauge 18, 19: Converter 20: Calculator C1 to C6, C11 to C19: Stopcock

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに体積および形状のほぼ等しい一対
の参照用ビュレットと、試料用ビュレットとを左右対称
に配置し、該両ビュレットに、また互いに体積および形
状のほぼ等しい参照用吸着セルと、試料用吸着セルとを
それぞれ結合し、更に該両ビュレットに導入可能に結合
された吸着気体供給源と、該両ビュレット内部の圧力を
測定可能な圧力計とを有してなる温度補償型定容吸着装
置を用い、一旦両ビュレット内に導入した吸着気体を、
更に、それぞれの吸着セルへ膨張・吸着せしめた後、生
じた両ビュレット間の差圧に基づいて、吸着気体の吸着
量を求めるに際して、参照用吸着セルに対する吸着量を
補償して試料用吸着セルに対する吸着量を求めることを
特徴とする試料の吸着量測定方法。
1. A pair of reference burettes having substantially the same volume and shape, and a sample buret, which are symmetrically arranged, are arranged symmetrically in both burets, and a reference adsorption cell having substantially the same volume and shape, and a sample. Temperature-compensated constant volume adsorption comprising an adsorption gas supply source which is connected to each of the burettes and is capable of being introduced into both burettes, and a pressure gauge capable of measuring the pressure inside the burettes. Using the device, the adsorbed gas once introduced into both bullets,
Furthermore, after expanding and adsorbing to each adsorption cell, when determining the adsorption amount of the adsorbed gas based on the generated differential pressure between both burettes, the adsorption amount for the reference adsorption cell is compensated and the sample adsorption cell is compensated. A method for measuring the amount of adsorption of a sample, characterized in that the amount of adsorption is determined.
【請求項2】 互いに体積および形状のほぼ等しい一対
の参照用ビュレットと、試料用ビュレットとを対称に配
置し、該両ビュレットに、また互いに体積および形状の
ほぼ等しい参照用吸着セルと、試料用吸着セルとをそれ
ぞれ結合し、更に該両ビュレットに導入可能に結合され
た吸着気体供給源と、該両ビュレット内部の圧力を測定
する圧力計とを有してなる温度補償型定容吸着装置と;
両ビュレット内に導入された吸着気体圧力と、その後両
吸着セル内にそれぞれ膨張ならびに吸着せしめられた吸
着気体の両ビュレット間差圧とより、参照用吸着セルに
対する吸着量を補償しつつ、試料用吸着セルへの吸着気
体吸着量を求めるように配置した計算装置と;からなる
ことを特徴とする試料の吸着量測定装置。
2. A pair of reference burettes having substantially the same volume and shape and a sample buret are arranged symmetrically, and a reference adsorption cell having substantially the same volume and shape with each other is provided in both burets. A temperature-compensated constant volume adsorption device comprising an adsorption gas supply source, which is connected to each of the adsorption cells, and is further connected to both of the burettes so as to be able to be introduced, and a pressure gauge for measuring the pressure inside the burettes. ;
The pressure of the adsorbed gas introduced into both burettes and the differential pressure between the two burettes of the adsorbed gas that has been expanded and adsorbed in the two adsorption cells, respectively, compensates the adsorption amount for the reference adsorption cell and A device for measuring the amount of adsorbed gas in an adsorption cell;
【請求項3】 吸着気体供給源が液体窒素温度における
2 (飽和蒸気圧:760mmHg)より本質的に小な
る飽和蒸気圧を有する吸着気体の供給源である請求項2
に記載の装置。
3. The adsorbed gas source is a source of an adsorbed gas having a saturated vapor pressure substantially lower than N 2 (saturated vapor pressure: 760 mmHg) at a liquid nitrogen temperature.
An apparatus according to claim 1.
【請求項4】 前記両ビュレット内部の圧力を測定する
圧力計が、参照用ビュレット内部の圧力測定のための圧
力計と、参照用ビュレットと試料用ビュレットとの間に
連結された差圧計との組合せよりなる請求項2または3
に記載の装置。
4. A pressure gauge for measuring the pressure inside the both bullets comprises a pressure gauge for measuring the pressure inside the reference bullet and a differential pressure gauge connected between the reference bullet and the sample bullet. Claim 2 or 3 consisting of a combination
An apparatus according to claim 1.
JP8063874A 1995-03-02 1996-02-27 Adsorption amount measuring method and apparatus using temperature-compensated constant volume adsorption apparatus Expired - Fee Related JP3027331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8063874A JP3027331B2 (en) 1995-03-02 1996-02-27 Adsorption amount measuring method and apparatus using temperature-compensated constant volume adsorption apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6671395 1995-03-02
JP7-66713 1995-03-02
JP8063874A JP3027331B2 (en) 1995-03-02 1996-02-27 Adsorption amount measuring method and apparatus using temperature-compensated constant volume adsorption apparatus

Publications (2)

Publication Number Publication Date
JPH08304256A true JPH08304256A (en) 1996-11-22
JP3027331B2 JP3027331B2 (en) 2000-04-04

Family

ID=26405012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8063874A Expired - Fee Related JP3027331B2 (en) 1995-03-02 1996-02-27 Adsorption amount measuring method and apparatus using temperature-compensated constant volume adsorption apparatus

Country Status (1)

Country Link
JP (1) JP3027331B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819816B2 (en) * 2004-09-30 2011-11-24 クラウストハーラー・ウムベルトテヒニーク−インスティトゥート・ゲーエムベーハー(クーテック−インスティトゥート) Biogas measuring apparatus and method for measuring volume of biogas
JP2016061615A (en) * 2014-09-16 2016-04-25 学校法人早稲田大学 Adsorption characteristic measuring apparatus
JP2016080634A (en) * 2014-10-21 2016-05-16 国立研究開発法人産業技術総合研究所 Adsorption characteristics measuring apparatus
WO2021033701A1 (en) * 2019-08-19 2021-02-25 マイクロトラック・ベル株式会社 Gas adsorption amount measurement device and gas adsorption amount measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819816B2 (en) * 2004-09-30 2011-11-24 クラウストハーラー・ウムベルトテヒニーク−インスティトゥート・ゲーエムベーハー(クーテック−インスティトゥート) Biogas measuring apparatus and method for measuring volume of biogas
JP2016061615A (en) * 2014-09-16 2016-04-25 学校法人早稲田大学 Adsorption characteristic measuring apparatus
JP2016080634A (en) * 2014-10-21 2016-05-16 国立研究開発法人産業技術総合研究所 Adsorption characteristics measuring apparatus
WO2021033701A1 (en) * 2019-08-19 2021-02-25 マイクロトラック・ベル株式会社 Gas adsorption amount measurement device and gas adsorption amount measurement method
JP2021032591A (en) * 2019-08-19 2021-03-01 マイクロトラック・ベル株式会社 Gas adsorption quantity measurement device and gas adsorption quantity measurement method

Also Published As

Publication number Publication date
JP3027331B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US6981426B2 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
US3349625A (en) Adsorption measuring apparatus and method
McHaffie et al. CCVIII.—The adsorption of water from the gas phase on plane surfaces of glass and platinum
Shkolin et al. Measurement of carbon-nanotube adsorption of energy-carrier gases for alternative energy systems
US5744699A (en) Method and apparatus for adsorption measurement using temperature-compensated constant-volume adsorption apparatus
US5408864A (en) Method of determining the amount of gas adsorbed or desorbed from a solid
US5360743A (en) Method for measuring a sample sorption and a sample cell void volume and wall adsorption using an adsorbate gas
JP3027331B2 (en) Adsorption amount measuring method and apparatus using temperature-compensated constant volume adsorption apparatus
Vidal et al. Measurement of physical adsorption of gases at high pressure
Fomkin et al. Measurement of adsorption of methane at high pressures for alternative energy systems
Emmett A new method for measuring the surface areas of finely divided materials and for determining the size of particles
Denoyel et al. Microcalorimetric methods for studying vapour adsorption and wetting of powders
US5646335A (en) Wickless temperature controlling apparatus and method for use with pore volume and surface area analyzers
Warowny et al. Generalized equations of the Burnett PVT methods for adsorbing gases
Pendleton et al. Gas adsorption data uncertainty and propagation analyses
Shkolin et al. Method to measure the deformation of nanoporous materials induced by the adsorption of gases and vapors
Lowell et al. Vacuum Volumetric Measurement (Manometry)
Reeves et al. Some low-pressure measurements of the isothermals of xenon between 0 and 40 C and the normal density of the gas
Nakai et al. High precision volumetric gas adsorption apparatus
Flapper et al. Gravimetric measurements of gas adsorption on zeolites at low temperatures
Yanazawa et al. Precision evaluation in kr adsorption for small bet surface area measurements of less than 1 m2
RU2766188C1 (en) Methods and test bench for measuring deformation of granules of nanoporous materials, stimulated by adsorption or temperature by dilatometric method
Sun et al. Viscosity of ammonia at high temperature and pressure
Young et al. Vacuum micromanometer
Benado et al. Water activity calculation by direct measurement of vapor pressure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees