JPH08304219A - Device and method for inspecting heat exchanger tube of heat exchanger - Google Patents

Device and method for inspecting heat exchanger tube of heat exchanger

Info

Publication number
JPH08304219A
JPH08304219A JP11422495A JP11422495A JPH08304219A JP H08304219 A JPH08304219 A JP H08304219A JP 11422495 A JP11422495 A JP 11422495A JP 11422495 A JP11422495 A JP 11422495A JP H08304219 A JPH08304219 A JP H08304219A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
heat transfer
transfer tube
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11422495A
Other languages
Japanese (ja)
Inventor
Isamu Tomita
勇 冨田
Isayoshi Miyamoto
勲佳 宮本
Makoto Sakai
信 酒井
Tetsuo Obara
哲夫 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11422495A priority Critical patent/JPH08304219A/en
Publication of JPH08304219A publication Critical patent/JPH08304219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To detect very small through holes by acquiring ultrasonic waves generated by the differential pressure of a fluid caused by the leakage of outside air into a heat exchanger tube when the tube is evacuated with an acquisition sensor before the ultrasonic waves are absorbed into the tubesheet of the tube. CONSTITUTION: Since both ends of a heat exchanger tube 14 are plugged up with acquisition sensor-side closing plugs 17 and 18 and the inside of the tube 14 is maintained at a high vacuum by operating a vacuum pump 24, outside air blows in the tube 14 when a leaking section 40 exists. An acquisition sensor 16 provided in the tube 14 measures ultrasonic waves. Since leakage inspections are performed by acquiring the ultrasonic waves, the inspections are hardly affected by low-frequency ambient noise and the sensitivity of the inspections can be set at a high level. Then, the ultrasonic waves are acquired by means of a high-sensitivity ultrasonic-wave detector 28 which can selectively detect ultrasonic waves of a specific frequency and the position, size, etc., of a sound producing or leaking point are quantitatively measured and recorded with a receiver 30 or recorder 32 by converting the ultrasonic waves into an electric current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発電所に設置される発
電設備用の熱交換器に使用される伝熱管に欠陥部が生じ
たか否かを検査する熱交換器の伝熱管の検査方法に係
り、特に伝熱管に生じた欠陥部からの蒸気の漏洩を検査
する熱交換器の伝熱管の検査装置及びその方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a heat transfer tube of a heat exchanger for inspecting whether or not a defective portion has occurred in a heat transfer tube used in a heat exchanger for power generation equipment installed in a power plant. In particular, the present invention relates to a heat transfer tube inspection apparatus and method for inspecting steam leakage from a defective portion generated in the heat transfer tube.

【0002】[0002]

【従来の技術】火力及び原子力発電設備等に用いられて
いる熱交換器は、運転開始後の伝熱管の信頼性の確認試
験として、気圧または水圧試験の代りに渦電流探傷試験
が行われている。また、特開昭55−87933 号公報に記載
のように、二重配管の外部管に気体を送り込み、内部管
の洩れ音を検出して配管の漏洩位置を検出する方法があ
る。
2. Description of the Related Art Heat exchangers used in thermal power and nuclear power generation facilities are subjected to an eddy current flaw detection test instead of an air pressure or water pressure test as a test for confirming the reliability of a heat transfer tube after the start of operation. There is. Further, as described in JP-A-55-87933, there is a method of feeding gas into the outer pipe of the double pipe and detecting the leak sound of the inner pipe to detect the leak position of the pipe.

【0003】[0003]

【発明が解決しようとする課題】従来の技術のうち渦電
流探傷検査方法では、伝熱管の表面傷,凹凸などの変
形,内面浸蝕及び表面に付着している異物などについて
は敏感に反応を示すが、貫通穴に対しては鈍感であり、
検出感度を高めインジケーションが出やすい条件で検査
しても、その検査結果が凹凸などの変形によるものか、
貫通漏洩欠陥によるものか、又は、伝熱管外表面に異物
が接触しているものかなど、判定が非常に難しい問題点
がある。又、渦電流式傷検査方法では、伝熱管内に一本
ずつ探触子を挿入し走査させるので検査に多くの時間を
要する、伝熱管のU−ベンド部に探触子を走査させるこ
とはできず、洩れなどの位置の特定はできない問題点が
ある。又、特開昭55−87933 号公報に記載の方法は、二
重管の外側管に気体を封入し内側管に探触子を挿入して
走査させ、音波を検出して漏洩を発見する方法である
が、熱交換器の配置位置,役割などによって圧力を保持
する為の弁が系統内に設置されておらず、外部より気体
を封入することは系統運用上難しい問題点がある。又、
伝熱管の欠陥検査に音波を利用する場合、伝熱管に伝わ
る音波が管板に吸収されて減衰したり、周囲の暗騒音を
拾うことが懸念される。
Among the conventional techniques, the eddy current flaw detection method is sensitive to surface scratches on the heat transfer tube, deformation such as irregularities, inner surface erosion, and foreign matter adhering to the surface. However, it is insensitive to through holes,
Even if you inspect under the condition that detection sensitivity is raised and indication is likely to appear, whether the inspection result is due to deformation such as unevenness,
There is a problem that it is very difficult to determine whether it is due to a through leakage defect or a foreign substance is in contact with the outer surface of the heat transfer tube. Further, in the eddy current flaw inspection method, since the probes are inserted into the heat transfer tubes one by one and scanned, it takes a lot of time for inspection. It is not possible to scan the U-bend portion of the heat transfer tubes with the probes. There is a problem that it is not possible to specify the position such as leakage. Further, the method described in JP-A-55-87933 is a method of enclosing a gas in the outer tube of a double tube and inserting a probe into the inner tube for scanning to detect sound waves and detect leakage. However, the valve for holding the pressure is not installed in the system depending on the arrangement position and role of the heat exchanger, and enclosing gas from the outside is a problem in system operation. or,
When a sound wave is used for defect inspection of the heat transfer tube, there is a concern that the sound wave transmitted to the heat transfer tube is absorbed by the tube plate and attenuated, or ambient background noise is picked up.

【0004】このように、伝熱管の運転後の欠陥検出手
段として、従来の渦電流探傷試験で管外部からの原因に
よる打痕,表面傷、または腐食等については十分な評価
を得ているが、微小な貫通穴に対しては鈍感であり、高
感度に設定し過ぎると、欠陥として評価に値しないもの
までインジケーションとして検出され判定を困難にする
という問題があった。系統内に於ける熱交換器の配置位
置及び系統運用上の制約もあり、気体または液体を使わ
ず微小な貫通穴を検出できる方法が要求されている。
As described above, as the defect detecting means after the operation of the heat transfer tube, the conventional eddy current flaw detection test has sufficiently evaluated the dents, surface scratches, corrosion, etc. due to the causes from the outside of the tube. However, it is insensitive to minute through holes, and if the sensitivity is set too high, there is a problem in that even defects not worthy of evaluation are detected as indications, making determination difficult. There is also a restriction on the arrangement position of the heat exchanger in the system and the system operation, and a method capable of detecting minute through holes without using gas or liquid is required.

【0005】本発明の目的は、気体または液体を使わ
ず、微小な貫通穴を検出できる熱交換器の伝熱管の検査
方法を提供することである。
An object of the present invention is to provide a method for inspecting a heat transfer tube of a heat exchanger which can detect minute through holes without using gas or liquid.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱交換器の伝熱管の検査装置は、熱交換器
に使用される伝熱管に生じた漏洩部の有無を検査する熱
交換器伝熱管の検査装置において、前記伝熱管の管端部
から空気を吸引する手段と,超音波捕捉センサと,該捕
捉センサにより検出される漏洩部からの空気漏洩を位置
及び大きさを特定する手段を備えたことを特徴とするも
のである。
In order to achieve the above object, a heat transfer tube inspection apparatus for a heat exchanger according to the present invention inspects a heat transfer tube used in a heat exchanger for the presence of a leak portion. In a heat exchanger heat transfer tube inspection device, a means for sucking air from the tube end of the heat transfer tube, an ultrasonic trapping sensor, and an air leak from a leaking portion detected by the trapping sensor are positioned and sized. It is characterized by having means for specifying.

【0007】又、前記吸引手段は、複数の捕捉センサと
これらと専用ホースを介して接続される切替ヘッダーを
有することを特徴とするものである。又、前記吸引手段
の一端に前記捕捉センサが形成され、前記捕捉センサは
伝熱管壁に密着するテーパー形状の閉止栓を有すること
を特徴とするものである。
Further, the suction means has a plurality of capture sensors and a switching header connected to these via a dedicated hose. Further, the trapping sensor is formed at one end of the suction means, and the trapping sensor has a taper-shaped closure plug that is in close contact with the wall of the heat transfer tube.

【0008】又、検査方法は、熱交換器に使用される伝
熱管の漏洩部の有無を検査する熱交換器伝熱管の検査方
法において、前記伝熱管の管端部から空気を吸引し、前
記漏洩部からの空気漏洩を超音波で検出することを特徴
とするものである。
Further, the inspection method is a heat exchanger heat exchanger tube inspection method for inspecting the presence or absence of a leak portion of the heat exchanger tube used in the heat exchanger, in which air is sucked from the end of the heat exchanger tube, It is characterized in that air leakage from the leaking portion is detected by ultrasonic waves.

【0009】又、熱交換器に使用される伝熱管に生じた
漏洩部の有無を検査する熱交換器伝熱管の検査方法にお
いて、前記伝熱管の管端部から空気を吸引し、前記漏洩
部からの空気漏洩を超音波で少なくとも2ヵ所で検出し
て、前記漏洩部の位置を特定することを特徴とするもの
である。又、前記捕捉センサが伝熱管の内周に均等に位
置するように複数個配置されていることを特徴とするも
のである。又、前記特定する手段が、特定周波数の選択
検出可能な感音検知器であることを特徴とするものであ
る。
Further, in the inspection method of the heat exchanger heat transfer tube for inspecting the presence or absence of a leak portion generated in the heat transfer tube used in the heat exchanger, air is sucked from the tube end portion of the heat transfer tube to cause the leakage portion. It is characterized in that the position of the leaked portion is specified by detecting the air leakage from the at least two places by ultrasonic waves. Further, a plurality of the trapping sensors are arranged so as to be evenly located on the inner circumference of the heat transfer tube. Further, the specifying means is a sound sensor which can selectively detect a specific frequency.

【0010】[0010]

【作用】上記のように構成しているので、伝熱管内を真
空にして外気の洩込み時の流体差圧によって発生する超
音波を、管板に吸収される前に捕捉センサで捉えて検査
することができ、渦電流による磁力の変化を利用する方
法に比較して、漏洩部の漏洩の有無を確実に捉えること
ができる。
With the above-mentioned structure, the inside of the heat transfer tube is evacuated and the ultrasonic waves generated by the fluid pressure difference when the outside air leaks are captured and inspected by the capture sensor before being absorbed by the tube sheet. Therefore, the presence or absence of leakage at the leakage portion can be reliably grasped as compared with the method of utilizing the change in magnetic force due to the eddy current.

【0011】又、漏洩部よりの空気の噴出圧を効果的に
利用し、洩れ音を超音波で捉えているため、周囲の暗騒
音の影響を避けることができる。又、長手方向について
は伝熱管の両端,周方向については円周方向についてそ
れぞれ超音波を測定し、その差で比例案分することがで
きるため、伝熱管の長手方向の漏洩部については音源よ
りの音圧の配分により検出し、周方向については感音検
知器を円周方向に走査させ、音圧が最大となる点を探す
ことができるため、洩れ位置の特定を行うことができ
る。
Further, since the jet pressure of air from the leaking portion is effectively used and the leak sound is captured by ultrasonic waves, the influence of ambient background noise can be avoided. Also, ultrasonic waves are measured at both ends of the heat transfer tube in the longitudinal direction and in the circumferential direction of the circumferential direction, and proportional difference can be calculated based on the difference between them. It is possible to specify the leak position because the sound pressure detector detects the distribution of the sound pressure, and in the circumferential direction, the sound sensor is scanned in the circumferential direction to find the point where the sound pressure is maximum.

【0012】すなわち、伝熱管内に捕捉センサを取り付
け、伝熱管内を真空にして漏洩部の噴出圧を高めて超音
波を発生させ、高感度の超音波感知器で計測しているの
で、漏洩穴の位置,大きさ等を定量的に計測することが
でき、信頼性の高い計測が行える。漏洩位置は両管端よ
りそれぞれの感度を測定し、その感度差により容易に求
めることができる。超音波を捉えて漏洩検査を行うの
で、周囲の雑音である低周波の騒音の影響を受けないた
め、高い感度設定での検査が可能となる。
That is, since a trapping sensor is installed in the heat transfer tube, the inside of the heat transfer tube is evacuated to increase the jet pressure of the leak portion to generate ultrasonic waves, and the ultrasonic wave is detected by a highly sensitive ultrasonic sensor. The position and size of holes can be measured quantitatively, and highly reliable measurement can be performed. The leakage position can be easily obtained by measuring the respective sensitivities from both ends of the pipe and measuring the difference in sensitivity. Since leakage inspection is performed by capturing ultrasonic waves, it is possible to perform inspection at a high sensitivity setting because it is not affected by low-frequency noise that is ambient noise.

【0013】又、切替弁付ワンタッチコネクターで着脱
容易な多軸ヘッダーを設けているので、伝熱管内の捕捉
センサの走査が不要であり、切替弁付ワンタッチコネク
ターと多軸ヘッダーを接続しているので、切替時の着脱
操作が迅速に行え、検査時間を短縮することができ、検
査工程も渦電流探傷方法の1/3に短縮できる。
Further, since the one-touch connector with the switching valve is provided with the easily attachable / detachable multi-axis header, it is not necessary to scan the capturing sensor in the heat transfer tube, and the one-touch connector with the switching valve and the multi-axis header are connected. Therefore, the attachment / detachment operation at the time of switching can be performed quickly, the inspection time can be shortened, and the inspection process can be shortened to 1/3 of the eddy current flaw detection method.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1から図5によ
り詳細に説明する。図1は、熱交換器付の湿分分離器の
系統図、図2は、伝熱管の漏洩検査方法を説明する構成
図、図3は、捕捉センサ構造を示す縦断面図、図4は、
捕捉センサ構造を示す横断面図、図10は、多軸ヘッダ
ー取り付け状態を示す斜視図、図5,図6は、それぞれ
漏洩部の管長さ方向の位置を求める説明図、図7は、貫
通穴が0mmの場合の検出レベルの変化を示す図、図8
は、貫通穴が0.1mm の場合の検出レベルの変化を示す
図、図9は、貫通穴が0.3mm の場合の検出レベルの変
化を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a system diagram of a moisture separator with a heat exchanger, FIG. 2 is a configuration diagram illustrating a leak inspection method of a heat transfer tube, FIG. 3 is a vertical cross-sectional view showing a trap sensor structure, and FIG.
FIG. 10 is a cross-sectional view showing the structure of the capturing sensor, FIG. 10 is a perspective view showing a state in which the multi-axis header is attached, FIGS. 5 and 6 are explanatory views for obtaining the position of the leak portion in the pipe length direction, and FIG. 7 is a through hole. Fig. 8 shows changes in the detection level when the distance is 0 mm.
FIG. 9 is a diagram showing a change in detection level when the through hole is 0.1 mm, and FIG. 9 is a diagram showing a change in detection level when the through hole is 0.3 mm.

【0015】本実施例の原子力発電設備用の加熱器付の
湿分分離器は、図1に示すように構成されている。原子
炉1にて発生した蒸気は主塞止弁2を通り、高圧タービ
ン3に導かれる。この蒸気の一部は、高圧タービン3で
タービンを駆動した後、高圧側で抽気され、高圧抽気管
4を通って湿分分離器5に内蔵された加熱器6伝熱管内
側に流入し、加熱する加熱蒸気として使用される。残り
の蒸気は、高圧タービン3でタービンを駆動した後、低
圧側で抽気され、高圧蒸気排気管7を通って湿分分離器
5に導かれる。湿分分離器5に流入した蒸気は、ここで
ドレンと蒸気に分離された後、加熱器6で加熱蒸気と熱
交換を行い、高エネルギーの過熱蒸気となってクロスア
ラウンド管8を介して低圧タービン9へ送気される。湿
分分離器5で分離されたドレンは、湿分分離器ドレン管
10を通り高圧給水加熱器11に、一方、加熱器6で熱
交換した加熱蒸気は、加熱器ドレン管12を通ってドレ
ンタンク13に導かれて熱回収される。
The moisture separator with a heater for a nuclear power plant of this embodiment is constructed as shown in FIG. The steam generated in the nuclear reactor 1 passes through the main stop valve 2 and is guided to the high pressure turbine 3. A part of this steam is extracted on the high-pressure side after driving the turbine by the high-pressure turbine 3, flows through the high-pressure extraction pipe 4, flows into the inside of the heat transfer pipe 6 of the heater 6 built in the moisture separator 5, and heats it. It is used as heating steam. After driving the turbine by the high-pressure turbine 3, the remaining steam is extracted on the low-pressure side and guided to the moisture separator 5 through the high-pressure steam exhaust pipe 7. The steam that has flowed into the moisture separator 5 is separated into drain and steam here, and then heat-exchanges with the heated steam in the heater 6, becomes high-energy superheated steam, and is low pressure through the crossaround pipe 8. Air is sent to the turbine 9. The drain separated in the moisture separator 5 passes through the moisture separator drain pipe 10 to the high-pressure feed water heater 11, while the heated steam heat-exchanged in the heater 6 passes through the heater drain pipe 12 and drains. It is guided to the tank 13 and heat is recovered.

【0016】図2により、湿分分離器5の詳細な構成及
び伝熱管漏洩試験検査方法を説明する。湿分分離器5に
内蔵されている加熱器6は、伝熱管14の内側を高圧タ
ービンからの抽気蒸気である加熱蒸気が通り、外側を湿
分分離器5で分離された高圧排気蒸気が通るように構成
されている。伝熱管14は、管板15に拡管及び溶接に
より取り付けられており、伝熱管14の両端には、テー
パー状の捕捉センサ側閉止栓17及び閉止栓18が取り
付けられている。
The detailed construction of the moisture separator 5 and the heat transfer tube leakage test inspection method will be described with reference to FIG. In the heater 6 built in the moisture separator 5, the heating steam which is the extraction steam from the high-pressure turbine passes through the inside of the heat transfer tube 14, and the high-pressure exhaust steam separated by the moisture separator 5 passes through the outside thereof. Is configured. The heat transfer tube 14 is attached to the tube plate 15 by pipe expansion and welding, and tapered capture sensor side closing plugs 17 and 18 are attached to both ends of the heat transfer tube 14.

【0017】漏洩検査時には、伝熱管14内に超音波捕
捉センサ16(以下、単に捕捉センサ16という)を挿
入する。この捕捉センサ16は、図3,図4に示すよう
に構成されている。すなわち、図3,図4に示すよう
に、捕捉センサ16は、伝熱管14の内周側に配列され
る多数の感音バー33,調整ナット34及び捕捉センサ
側閉止栓17で構成されている。感音バー33と伝熱管
14とのスパン及び接触力は、超音波が最大に伝達され
るように調整ナット34で調整できるようになってい
る。この捕捉センサ16の後端側は、図2に示すよう
に、途中に元弁19を有する配管20を介して真空タン
ク21に接続され、この真空タンク21の下部はドレン
抜弁26を介して外部の吸引装置(図示せず)に通じて
いる。この真空タンク21には、弁を介して真空計25
が接続される一方、元弁22及び除湿器23を介して真
空ポンプ24と接続されている。捕捉センサ16の途中
部分には、超音波感知器28が接触されており、この超
音波感知器28には、ケーブル29を介してレシーバー
30が、ケーブル31を介してレコーダー32が接続さ
れている。
At the time of leakage inspection, an ultrasonic wave capturing sensor 16 (hereinafter simply referred to as capturing sensor 16) is inserted into the heat transfer tube 14. The capture sensor 16 is configured as shown in FIGS. That is, as shown in FIGS. 3 and 4, the capture sensor 16 is composed of a large number of sound sensing bars 33 arranged on the inner peripheral side of the heat transfer tube 14, an adjusting nut 34, and a capture sensor side closing plug 17. . The span and contact force between the sound-sensing bar 33 and the heat transfer tube 14 can be adjusted by the adjusting nut 34 so that ultrasonic waves are transmitted to the maximum. As shown in FIG. 2, the rear end side of the capture sensor 16 is connected to a vacuum tank 21 via a pipe 20 having a main valve 19 in the middle, and the lower portion of the vacuum tank 21 is externally connected via a drain valve 26 to the outside. Of the suction device (not shown). This vacuum tank 21 has a vacuum gauge 25 through a valve.
Is connected to the vacuum pump 24 through the main valve 22 and the dehumidifier 23. An ultrasonic sensor 28 is in contact with an intermediate portion of the capture sensor 16, and a receiver 30 is connected to the ultrasonic sensor 28 via a cable 29 and a recorder 32 is connected to the ultrasonic sensor 28 via a cable 31. .

【0018】伝熱管14内に捕捉センサ16を挿入した
後、捕捉センサ側閉止栓17と閉止栓18を伝熱管14
内側に取り付け、真空ポンプ24を運転して伝熱管14
及び捕捉センサ16内を真空にする。真空タンク21
は、捕捉センサ側閉止栓17および閉止栓18の入替作
業及び40で示す貫通欠陥があっても漏洩検査に十分な
真空度を保つに必要な容量とし、真空度は真空計25で
計測している。又、伝熱管14内は湿度を低く管理する
ことが望ましく、除湿器23を設置して除湿する一方、
真空タンク21にドレンが溜った場合は、元弁19及び
22を閉じ、ドレン抜弁26を開いて吸引装置により排
水する。
After inserting the capturing sensor 16 into the heat transfer tube 14, the capturing sensor side closing plug 17 and the closing plug 18 are attached.
Installed inside, operate the vacuum pump 24 and heat transfer tube 14
And the inside of the capture sensor 16 is evacuated. Vacuum tank 21
Is a capacity required to maintain a sufficient vacuum degree for a leak inspection even when there is a work of replacing the capture sensor side stop plugs 17 and 18 and a penetration defect shown by 40. The vacuum degree is measured by a vacuum gauge 25. There is. In addition, it is desirable to control the humidity inside the heat transfer tube 14 to be low, and while the dehumidifier 23 is installed to dehumidify,
When the drain is accumulated in the vacuum tank 21, the main valves 19 and 22 are closed, the drain discharge valve 26 is opened, and the drain is discharged by the suction device.

【0019】このように構成された検査方法では、管端
に捕捉センサ側閉止栓17,閉止栓18を取り付け、真
空ポンプ24を運転し高真空に維持しているので、漏洩
部40が存在すれば伝熱管内に空気が噴出する。伝熱管
14内に捕捉センサ16を取り付けているので、この捕
捉センサ16で超音波を計測する。超音波を用いるの
は、周囲の暗騒音の影響を避けるため洩れ音を超音波で
捉えるためであり、超音波を捉えて漏洩検査を行うの
で、周囲の雑音である低周波の騒音の影響を受けにくい
ため、高い感度設定での検査が可能となる。
In the inspection method thus constructed, the trapping sensor side closing plug 17 and the closing plug 18 are attached to the pipe end, and the vacuum pump 24 is operated to maintain a high vacuum, so that the leak portion 40 exists. For example, air blows into the heat transfer tube. Since the capture sensor 16 is attached in the heat transfer tube 14, the capture sensor 16 measures ultrasonic waves. The reason for using ultrasonic waves is to capture the leakage sound with ultrasonic waves in order to avoid the influence of ambient background noise.Since ultrasonic waves are used for leak inspection, the influence of low-frequency noise, which is ambient noise, is used. Since it is hard to receive, inspection with high sensitivity setting is possible.

【0020】次に、超音波を特定周波数の選択検出可能
な高感度の超音波感知器28で捉え、電流に変換してレ
シーバー30またはレコーダー32で聴音または洩れ位
置,大きさ等を定量的に計測記録する。この漏洩部の位
置及び大きさ等は、次のようにして計測する。上記した
ように、伝熱管の内周に均等に多数の超音波捕捉センサ
16を配置しており、洩れ位置の特定は長手方向につい
ては伝熱管の両端,周方向は円周方向についてそれぞれ
超音波を測定し、その差で比例案分する。すなわち、伝
熱管の長手方向の漏洩位置については音源よりの音圧の
配分により検出し(両管端よりそれぞれの感度を測定
し、その感度差により求める。)、周方向については感
音検知器を円周方向に走査させ、音圧が最大となる点を
探して検出する。
Next, the ultrasonic wave is captured by a high-sensitivity ultrasonic sensor 28 capable of selectively detecting a specific frequency, converted into an electric current, and quantitatively detected by the receiver 30 or the recorder 32 such as the sound or leakage position and size. Record measurement. The position, size, etc. of the leaked portion are measured as follows. As described above, a large number of ultrasonic wave capturing sensors 16 are evenly arranged on the inner circumference of the heat transfer tube, and the leak position is specified by ultrasonic waves at both ends of the heat transfer tube in the longitudinal direction and in the circumferential direction in the circumferential direction. Is measured and proportionally divided by the difference. That is, the leak position in the longitudinal direction of the heat transfer tube is detected by the distribution of the sound pressure from the sound source (sensitivity is measured from both ends of the tube, and the difference is obtained to obtain the sensitivity). Is scanned in the circumferential direction, and the point where the sound pressure is maximized is searched for and detected.

【0021】伝熱管の長手方向の漏洩位置を求める方法
をより具体的に図5,図6により説明する。図5,図6
に示す位置に漏洩部40が存在したとする。このとき、
図5に示すように、一方の伝熱管端に捕捉センサ16を
配置して計測を行ったときの超音波伝達座27aにおけ
る感知レベルがD1,図6に示すように、他方の伝熱管
端に捕捉センサ16を配置して計測を行ったときの超音
波伝達座27bにおける感知レベルがD2であったとし
たとき、漏洩部40から超音波伝達座27aの管板端面
までの距離をL1,漏洩部40から超音波伝達座27b
の管板端面までの距離をL2,管板端面間の距離をLと
したとき、L1,L2はそれぞれ、 L1={D1/(D1+D2)}L L2={D2/(D1+D2)}L で求めることができる。
A method of obtaining the leak position in the longitudinal direction of the heat transfer tube will be described more specifically with reference to FIGS. 5 and 6
It is assumed that the leakage portion 40 is present at the position indicated by. At this time,
As shown in FIG. 5, when the capture sensor 16 is arranged at one end of the heat transfer tube and the measurement is performed, the sensing level at the ultrasonic transmission seat 27a is D1, as shown in FIG. 6, at the other end of the heat transfer tube. When the detection level at the ultrasonic wave transmission seat 27b when the capture sensor 16 is arranged and measured is D2, the distance from the leakage portion 40 to the end surface of the tube sheet of the ultrasonic wave transmission seat 27a is L1, the leakage portion. 40 to ultrasonic transmission seat 27b
Let L1 be the distance to the tube sheet end surface of L2 and L be the distance between the tube sheet end surfaces, and L1 and L2 are respectively calculated by L1 = {D1 / (D1 + D2)} L L2 = {D2 / (D1 + D2)} L be able to.

【0022】又、漏洩部40の大きさについては、一例
として貫通穴の径を0mm,0.1mm,0.3mm について測
定結果を示した図7ないし図9から分るように、レベル
を計測することにより、その大きさから知ることができ
る。
As for the size of the leakage portion 40, the level is measured as shown in FIGS. 7 to 9 showing the measurement results for the diameters of the through holes of 0 mm, 0.1 mm and 0.3 mm, for example. By doing, you can know from its size.

【0023】又、表1に示すように、感音バー33すな
わちセンサの本数と真空度とは漏洩部40を検出する上
で関係があり、30本〜34本のセンサ数(表1)が最
も適当である。
Further, as shown in Table 1, the number of sound-sensing bars 33, that is, the number of sensors, and the degree of vacuum have a relationship in detecting the leaked portion 40, and the number of sensors of 30 to 34 (Table 1) is related. Most suitable.

【0024】[0024]

【表1】 [Table 1]

【0025】以上説明したように、本実施例によれば、
伝熱管内に捕捉センサを取り付け、真空にして漏洩部の
噴出圧を高めて超音波を発生させ、高感度の超音波感知
器で計測しているので、漏洩穴の位置,大きさ等を定量
的に計測することができ、信頼性の高い計測が行える。
伝熱管内の捕捉センサの走査が不要であり、切替弁付ワ
ンタッチコネクターと多軸ヘッダーを接続しているの
で、切替時の着脱操作が迅速に行え、検査工程も渦電流
探傷試験方法に比し、1/3に短縮できる。超音波を捉
えて漏洩検査を行うので、周囲の雑音である低周波の騒
音の影響を受けないため、高い感度設定での検査が可能
となる。
As described above, according to this embodiment,
A trapping sensor is installed in the heat transfer tube, and the pressure of the leak is increased to generate ultrasonic waves and ultrasonic waves are generated, and the ultrasonic sensor with high sensitivity measures the position and size of the leak holes. The measurement can be performed accurately, and highly reliable measurement can be performed.
Since the scanning of the capture sensor inside the heat transfer tube is not required and the one-touch connector with switching valve and the multi-axis header are connected, the attachment / detachment operation at the time of switching can be performed quickly, and the inspection process is also compared to the eddy current flaw detection test method. , 1/3 can be shortened. Since leakage inspection is performed by capturing ultrasonic waves, it is possible to perform inspection at a high sensitivity setting because it is not affected by low-frequency noise that is ambient noise.

【0026】次に、多軸ヘッダー方式による漏洩検査方
法を図2及び図10により説明する。多軸ヘッダー方式
は、図10に示すように、管板15に取り付けた伝熱管
14に多数の捕捉センサ16を挿入するように構成され
ている。それぞれの捕捉センサ16に切替弁付ワンタッ
チコネクター35及びヘッダー専用ホース36を接続し
ており、他端は多軸へッダー37に接続している。この
ように構成された装置において、元弁19及び22を開
き、真空ポンプ24を運転する。測定は上記したと同様
にして行い、貫通欠陥があれば空気の噴出圧により超音
波が発生し、超音波感知器28で漏洩部の位置,大きさ
等定量的に捉えることができる。このように構成するこ
とにより、切替弁付ワンタッチコネクターで着脱容易な
多軸ヘッダーで計測できるので、検出器の切替え操作の
短縮化を計ることができる。また、伝熱管内は捕捉セン
サの走査が不要で、且つ、切替弁付ワンタッチコネクタ
ーと多軸ヘッダーを接続し、切替時の着脱操作が迅速の
ため、検査工程も渦電流探傷試験方法に比し、1/3に
短縮できる。
Next, a leakage inspection method using the multi-axis header method will be described with reference to FIGS. As shown in FIG. 10, the multi-axis header system is configured to insert a large number of capture sensors 16 into the heat transfer tubes 14 attached to the tube sheet 15. A one-touch connector 35 with a switching valve and a hose 36 dedicated to a header are connected to each capture sensor 16, and the other end is connected to a multi-axis header 37. In the apparatus thus configured, the main valves 19 and 22 are opened and the vacuum pump 24 is operated. The measurement is performed in the same manner as described above, and if there is a penetration defect, ultrasonic waves are generated by the jet pressure of air, and the ultrasonic sensor 28 can quantitatively capture the position and size of the leaked portion. With this configuration, the one-touch connector with a switching valve allows measurement with a multi-axis header that can be easily attached and detached, and therefore the detector switching operation can be shortened. In addition, the scanning of the capture sensor is not required inside the heat transfer tube, and the one-touch connector with switching valve and the multi-axis header are connected. , 1/3 can be shortened.

【0027】[0027]

【発明の効果】以上説明したように、本発明の熱交換器
の伝熱管の検査方法によれば以下のような効果を奏す
る。
As described above, the method of inspecting the heat transfer tube of the heat exchanger of the present invention has the following effects.

【0028】第1に、伝熱管内に捕捉センサを取り付
け、真空にして漏洩部の噴出圧を高めて超音波を発生さ
せ、高感度の超音波感知器で計測しているので、漏洩穴
の位置,大きさ等を定量的に計測することができ、信頼
性の高い計測が行える。
First, a trapping sensor is installed in the heat transfer tube, and a vacuum is applied to increase the jet pressure at the leaking portion to generate an ultrasonic wave, which is measured by a highly sensitive ultrasonic sensor. Position, size, etc. can be measured quantitatively, and highly reliable measurement can be performed.

【0029】第2に、伝熱管内の捕捉センサの走査が不
要であり、切替弁付ワンタッチコネクターと多軸ヘッダ
ーを接続しているので、切替時の着脱操作が迅速に行
え、検査工程も渦電流探傷試験方法に比し、1/3に短
縮できる。
Secondly, the scanning of the trapping sensor in the heat transfer tube is not required, and the one-touch connector with a switching valve and the multi-axis header are connected, so that the detaching operation at the time of switching can be performed swiftly, and the inspection process can be swirled. Compared with the current flaw detection test method, it can be shortened to 1/3.

【0030】第3に、漏洩位置は両管端よりそれぞれの
感度を測定し、その感度差により容易に求めることがで
きる。
Thirdly, the leakage position can be easily obtained by measuring the respective sensitivities from both ends of the pipe and measuring the sensitivity difference.

【0031】第4に、超音波を捉えて漏洩検査を行うの
で、周囲の雑音である低周波の騒音の影響を受けないた
め、高い感度設定での検査が可能となる。
Fourthly, since leakage inspection is performed by capturing ultrasonic waves, it is possible to perform inspection with a high sensitivity setting because it is not affected by low-frequency noise that is ambient noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱交換器付の湿分分離器の系統図である。FIG. 1 is a system diagram of a moisture separator with a heat exchanger.

【図2】伝熱管の漏洩検査方法を説明する構成図であ
る。
FIG. 2 is a configuration diagram illustrating a leakage inspection method for a heat transfer tube.

【図3】捕捉センサ構造を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a capture sensor structure.

【図4】図3の矢視A−Aから見た捕捉センサの構造を
示す断面図である。
FIG. 4 is a cross-sectional view showing the structure of the capture sensor viewed from the direction of arrow AA in FIG.

【図5】漏洩部の管長さ方向の位置を求める説明図であ
る。
FIG. 5 is an explanatory diagram for obtaining the position of the leaked portion in the pipe length direction.

【図6】漏洩部の管長さ方向の位置を求める説明図であ
る。
FIG. 6 is an explanatory diagram for obtaining the position of the leaked portion in the pipe length direction.

【図7】貫通穴が0mmの場合の検出レベルの変化を示す
図である。
FIG. 7 is a diagram showing a change in detection level when a through hole is 0 mm.

【図8】貫通穴が0.1mm の場合の検出レベルの変化を
示す図である。
FIG. 8 is a diagram showing a change in detection level when a through hole is 0.1 mm.

【図9】貫通穴が0.3mm の場合の検出レベルの変化を
示す図である。
FIG. 9 is a diagram showing changes in the detection level when the through hole is 0.3 mm.

【図10】多軸ヘッダー取り付け状態を示す斜視図であ
る。
FIG. 10 is a perspective view showing a multi-axis header attached state.

【符号の説明】[Explanation of symbols]

1…原子炉、2…主塞止弁、3…高圧タービン、4…高
圧抽気管、5…湿分分離器、6…加熱器、7…高圧蒸気
排気管、8…クロスアラウンド管、9…低圧タービン、
10…湿分分離器ドレン管、11…高圧給水加熱器、1
2…加熱器ドレン管、13…ドレンタンク、14…伝熱
管、15…管板、16…捕捉センサ、17…捕捉センサ
側閉止栓、18…閉止栓、19,22…元弁、20…ホ
ース、21…真空タンク、23…除湿器、24…真空ポ
ンプ、25…真空計、26…ドレン抜弁、27…超音波
伝達座、28…超音波感知器、29…ケーブル、30…
レシーバー、31…ケーブル、32…レコーダー、33
…感音バー、34…調整ナット、35…ワンタッチコネ
クター、36…ヘッダー専用ホース、37…多軸ヘッダ
ー、40…漏洩部。
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Main stop valve, 3 ... High pressure turbine, 4 ... High pressure extraction pipe, 5 ... Moisture separator, 6 ... Heater, 7 ... High pressure steam exhaust pipe, 8 ... Crossaround pipe, 9 ... Low pressure turbine,
10 ... Moisture separator drain pipe, 11 ... High-pressure feed water heater, 1
2 ... Heater drain pipe, 13 ... Drain tank, 14 ... Heat transfer pipe, 15 ... Tube plate, 16 ... Capture sensor, 17 ... Capture sensor side closing plug, 18 ... Closing plug, 19, 22 ... Main valve, 20 ... Hose , 21 ... Vacuum tank, 23 ... Dehumidifier, 24 ... Vacuum pump, 25 ... Vacuum gauge, 26 ... Drain removal valve, 27 ... Ultrasonic transmission seat, 28 ... Ultrasonic sensor, 29 ... Cable, 30 ...
Receiver, 31 ... Cable, 32 ... Recorder, 33
... Sound-sensing bar, 34 ... Adjustment nut, 35 ... One-touch connector, 36 ... Heose for header, 37 ... Multi-axis header, 40 ... Leakage part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 哲夫 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Obara 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】熱交換器に使用される伝熱管の漏洩部の有
無を検査する熱交換器伝熱管の検査方法において、前記
伝熱管の管端部から空気を吸引し、前記漏洩部からの空
気漏洩を超音波で検出することを特徴とする熱交換器の
伝熱管の検査方法。
1. A method of inspecting a heat transfer tube for a heat exchanger for inspecting a heat transfer tube used for a heat exchanger, wherein air is sucked from a tube end portion of the heat transfer tube, A method for inspecting a heat transfer tube of a heat exchanger, characterized by detecting air leakage by ultrasonic waves.
【請求項2】熱交換器に使用される伝熱管に生じた漏洩
部の有無を検査する熱交換器伝熱管の検査方法におい
て、前記伝熱管の管端部から空気を吸引し、前記漏洩部
からの空気漏洩を超音波で少なくとも2ヵ所で検出し
て、前記漏洩部の位置を特定することを特徴とする熱交
換器伝熱管の検査方法。
2. A heat exchanger heat exchanger tube inspection method for inspecting a heat exchanger tube used in a heat exchanger for the presence of a leak portion, wherein air is sucked from a tube end portion of the heat exchanger tube, and the leak portion is detected. A method for inspecting a heat transfer tube of a heat exchanger, characterized in that air leaks from the air are detected by ultrasonic waves at at least two places, and the position of the leaked portion is specified.
【請求項3】熱交換器に使用される伝熱管に生じた漏洩
部の有無を検査する熱交換器伝熱管の検査装置におい
て、前記伝熱管の管端部から空気を吸引する手段と,超
音波捕捉センサと,該捕捉センサにより検出される漏洩
部からの空気漏洩を位置及び大きさを特定する手段を備
えたことを特徴とする熱交換器の伝熱管の検査装置。
3. A heat exchanger heat exchanger tube inspection device for inspecting a heat exchanger tube used in a heat exchanger for the presence of a leak portion, and a means for sucking air from a tube end portion of the heat exchanger tube; An apparatus for inspecting a heat transfer tube of a heat exchanger, comprising: a sound wave capturing sensor; and means for specifying a position and a size of air leakage from a leak portion detected by the capturing sensor.
【請求項4】前記吸引手段は、複数の捕捉センサとこれ
らと専用ホースを介して接続される切替ヘッダーを有す
ることを特徴とする請求項3に記載の熱交換器の伝熱管
の検査装置。
4. The heat transfer tube inspection device according to claim 3, wherein the suction means has a plurality of capture sensors and a switching header connected to the capture sensors via a dedicated hose.
【請求項5】前記吸引手段の一端に前記捕捉センサが形
成され、前記捕捉センサは伝熱管壁に密着するテーパー
形状の閉止栓を有することを特徴とする請求項3に記載
の熱交換器伝熱管の検査装置。
5. The heat exchanger according to claim 3, wherein the trapping sensor is formed at one end of the suction means, and the trapping sensor has a taper-shaped closing plug that is in close contact with the wall of the heat transfer tube. Inspection device for heat transfer tubes.
【請求項6】前記捕捉センサが伝熱管の内周に均等に位
置するように複数個配置されていることを特徴とする請
求項3に記載の熱交換器伝熱管の検査装置。
6. The heat exchanger heat exchanger tube inspection device according to claim 3, wherein a plurality of the trap sensors are arranged so as to be evenly located on the inner circumference of the heat exchanger tube.
【請求項7】前記特定する手段が、特定周波数の選択検
出可能な感音検知器であることを特徴とする請求項3に
記載の熱交換器伝熱管の検査装置。
7. The heat exchanger heat transfer tube inspection device according to claim 3, wherein the specifying means is a sound sensor capable of selectively detecting a specific frequency.
JP11422495A 1995-05-12 1995-05-12 Device and method for inspecting heat exchanger tube of heat exchanger Pending JPH08304219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11422495A JPH08304219A (en) 1995-05-12 1995-05-12 Device and method for inspecting heat exchanger tube of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11422495A JPH08304219A (en) 1995-05-12 1995-05-12 Device and method for inspecting heat exchanger tube of heat exchanger

Publications (1)

Publication Number Publication Date
JPH08304219A true JPH08304219A (en) 1996-11-22

Family

ID=14632351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11422495A Pending JPH08304219A (en) 1995-05-12 1995-05-12 Device and method for inspecting heat exchanger tube of heat exchanger

Country Status (1)

Country Link
JP (1) JPH08304219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712752A (en) * 2012-10-03 2014-04-09 千代田化工建设株式会社 Leak testing apparatus of tube bundle for heat exchanger
CN105805562A (en) * 2016-04-06 2016-07-27 青岛瑞雪兆散热器有限公司 Automatic detection control method for overflow leakage of liquid pipeline
CN114526876A (en) * 2022-01-27 2022-05-24 核电运行研究(上海)有限公司 Differential pressure induction type conical pipe plug, negative pressure leakage detection device and leakage detection method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712752A (en) * 2012-10-03 2014-04-09 千代田化工建设株式会社 Leak testing apparatus of tube bundle for heat exchanger
JP2014074613A (en) * 2012-10-03 2014-04-24 Chiyoda Corp Device for testing airtight of bundle for heat exchanger
CN105805562A (en) * 2016-04-06 2016-07-27 青岛瑞雪兆散热器有限公司 Automatic detection control method for overflow leakage of liquid pipeline
CN114526876A (en) * 2022-01-27 2022-05-24 核电运行研究(上海)有限公司 Differential pressure induction type conical pipe plug, negative pressure leakage detection device and leakage detection method thereof

Similar Documents

Publication Publication Date Title
US5526689A (en) Acoustic emission for detection of corrosion under insulation
US7474092B1 (en) Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
KR100987166B1 (en) Acoustic Leak Detector for Fuel Channels in Heavy Water Reactor
US5243862A (en) Confirmation of hydrogen damage in boiler tubes by refracted shear waves
CN112362743A (en) Nuclear power station loop stainless steel BOSS welding line phased array ultrasonic detection device and method
JPH08304219A (en) Device and method for inspecting heat exchanger tube of heat exchanger
KR100480966B1 (en) Method and apparatus for diagnosing scale of pipe by using the guided ultrasound
KR200446596Y1 (en) The Acoustic Emission Signal Acquisition Assembly for Leak Detection of Closure Plug in Heavy Water Reactor
CN105738465A (en) Equipment and method for detecting defect of boiler water cooling wall tube on basis of low-frequency electromagnetic technique
CN112229912A (en) Three-way crack vibration frequency measurement and check method
JP3710417B2 (en) Nondestructive inspection method for pipe joints
KR102147036B1 (en) Apparatus for sensing corrosion and rupture of piping through ultrasonic generator and receiver shaped a ring
CN110174440A (en) A kind of high-temperature metal pipeline welded joint incomplete penetration defect online test method
CN112735615B (en) Inspection device and inspection method for online sip leakage test equipment
EP0321013A2 (en) A method and apparatus for internal corrosion-inspection of pipes or tubes of a relatively small diameter
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
Ding et al. Magnetic memory inspection of high pressure manifoolds
Vivekanand et al. Nde techniques for reliable inspection of carbon steel tubes
CN113819835A (en) Furnace tube inner wall corrosion pit detection method
Smith et al. Acoustic monitoring for leak detection in pressurized water reactors
Ruha et al. Advanced ultrasonic and eddy current inspection of recovery boiler floor tubes
Cecco et al. Recent advances in probe design for eddy current testing of heat exchangers
JPH11287789A (en) Ultrasonic flaw detection method of pipe
JPH10153679A (en) Inspection method and device for piping and the like