JPH08303911A - Refrigerant charging device - Google Patents

Refrigerant charging device

Info

Publication number
JPH08303911A
JPH08303911A JP11469195A JP11469195A JPH08303911A JP H08303911 A JPH08303911 A JP H08303911A JP 11469195 A JP11469195 A JP 11469195A JP 11469195 A JP11469195 A JP 11469195A JP H08303911 A JPH08303911 A JP H08303911A
Authority
JP
Japan
Prior art keywords
refrigerant
piston
filling
charging
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11469195A
Other languages
Japanese (ja)
Other versions
JP3012481B2 (en
Inventor
Nobuyasu Kumaki
宣靖 熊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUOU KOGYO KK
Original Assignee
TOUOU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUOU KOGYO KK filed Critical TOUOU KOGYO KK
Priority to JP7114691A priority Critical patent/JP3012481B2/en
Publication of JPH08303911A publication Critical patent/JPH08303911A/en
Application granted granted Critical
Publication of JP3012481B2 publication Critical patent/JP3012481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/70Liquid pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE: To provide a refrigerant charging device of which the device is simplified and miniaturized, and which is inexpensive. CONSTITUTION: When a liquefying/pressurizing unit 19 operates, a liquid piston 8a slides in the longitudinal direction. In this case, an automatic valve 17 closes, and when one of the chambers of a cylinder 9 is under a refrigerant-pressurizing state, and the other chamber is placed under a refrigerant suction state. When a liquefied refrigerant is filled in the piston front chamber 9a and piston rear chamber 9b at a set liquefied pressure, the pressurization of the liquefying/pressurizing unit 19 stops, a charging/pressurizing unit 20 operates, and the liquid piston 8a retracts to the deepest end. In this case, the automatic valve 17 is opened, and the liquefied refrigerant in the piston rear chamber 9b removed to the piston front chamber 9a. Then, the automatic valve 17 is closed, charging/pressurizing unit 20 is operated, and the liquid piston 8a advances. Then, the piston front chamber 9a is pressurized, and the pressure is raised to a set charging pressure or higher, and the liquefied refrigerant is charged into equipment from the charging gun 16 by reducing the pressure to a specified pressure. The mass flow rate of a flow which is generated at this time is measured by a mass flow meter 13, and the charging weight is calculated at a charging control unit 21, and the control is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒を冷凍機等に充填
する冷媒充填装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant charging device for charging a refrigerator or the like with a refrigerant.

【0002】[0002]

【従来の技術】一般に、工場等においてR−22,R−
134a等のフロン系冷媒を冷凍機等に充填するには、
正確な規定量(g) の冷媒を充填するために冷媒充填装置
が使用されている。また、最近のフロン系冷媒の規制
や、小型で高効率化された冷凍機の製品化に伴い、冷媒
の充填は冷媒充填装置を用いて、より高精度に行なわれ
ている。
2. Description of the Related Art Generally, R-22 and R- are used in factories.
To fill a refrigerator with a CFC-based refrigerant such as 134a,
A refrigerant charging device is used to charge an exact specified amount (g) of refrigerant. In addition, due to the recent regulation of freon-based refrigerants and the commercialization of small-sized and highly efficient refrigerators, refrigerant is filled with higher accuracy using a refrigerant filling device.

【0003】従来の冷媒充填装置50は、図4に示すよ
うに、圧縮空気で動作されるブースターポンプ51と、
充填する冷媒を貯溜するシリンダ52と、このシリンダ
52の移動自在なピストン52aを加圧する油圧ポンプ
53と、ピストン52aの位置を計測するパルススケー
ル54と、充填する冷媒の温度を測定する温度計55
と、圧縮空気で動作される自動弁56と、これらを制御
する充填制御部57とを有し、チャージングガン58か
ら規定量の冷媒を冷凍機等に充填するようになってい
る。
As shown in FIG. 4, a conventional refrigerant charging device 50 includes a booster pump 51 operated by compressed air,
A cylinder 52 that stores the refrigerant to be filled, a hydraulic pump 53 that pressurizes a movable piston 52a of the cylinder 52, a pulse scale 54 that measures the position of the piston 52a, and a thermometer 55 that measures the temperature of the refrigerant to be filled.
It has an automatic valve 56 operated by compressed air, and a filling control unit 57 for controlling these, and is configured to fill a specified amount of refrigerant from a charging gun 58 into a refrigerator or the like.

【0004】すなわち、冷媒充填装置50にボンベ等か
ら供給された冷媒は、上記ブースターポンプ51によっ
て加圧され、装置内に液体状態を保って充満される。こ
のとき、上記自動弁56は開いた状態となっており、上
記シリンダ52内にも冷媒が液体状態を保って貯溜され
る。そして、上記自動弁56を閉じ、上記油圧ポンプ5
3で上記シリンダ52のピストン52aを加圧し移動さ
せて、上記シリンダ52内の冷媒を上記チャージングガ
ン58を介して冷凍機等に充填する。ここで、上記充填
制御部57には、シリンダ形状の情報と、充填する冷媒
について、油圧ポンプ53で加圧する圧力下での温度−
液密度(g/cm3 )の特性とが記憶されており、上記温度
計55で計測した温度から冷媒の液密度を求め、充填す
る冷媒重量に対応するピストン52aの移動量(容積)
を換算・設定し、上記パルススケール54でピストン5
2aの位置を監視しながら、設定位置までピストン52
aを移動させて、設定した規定量の冷媒を冷凍機等の機
器に正確に充填するようになっている。
That is, the refrigerant supplied to the refrigerant charging device 50 from a cylinder or the like is pressurized by the booster pump 51 to fill the inside of the device in a liquid state. At this time, the automatic valve 56 is in the open state, and the refrigerant is also stored in the cylinder 52 while maintaining the liquid state. Then, the automatic valve 56 is closed, and the hydraulic pump 5 is closed.
At 3, the piston 52a of the cylinder 52 is pressurized and moved to fill the refrigerant in the cylinder 52 into the refrigerator or the like via the charging gun 58. Here, the filling control unit 57 informs the cylinder shape information and the temperature of the refrigerant to be filled under the pressure applied by the hydraulic pump 53.
The liquid density (g / cm 3 ) characteristic is stored, the liquid density of the refrigerant is obtained from the temperature measured by the thermometer 55, and the movement amount (volume) of the piston 52a corresponding to the weight of the refrigerant to be filled is stored.
Is converted and set, and the piston 5 is
While monitoring the position of 2a, the piston 52
By moving a, the specified amount of the refrigerant that has been set is accurately filled into a device such as a refrigerator.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の冷媒充填装置では、装置の冷媒経路内の冷媒を液体
状態に保つために上述したようなブースターポンプが必
要で、装置が複雑化、大型化して高価になるといった問
題がある。
However, in the above-mentioned conventional refrigerant charging device, the booster pump as described above is required to keep the refrigerant in the refrigerant path of the device in the liquid state, and the device becomes complicated and large in size. There is a problem that it becomes expensive.

【0006】加えて、液体冷媒の温度を測定し液密度を
求め、冷媒充填量(充填する冷媒の重量)に対応するピ
ストンの移動量を換算・設定して、冷媒の充填を行なう
ようになっているため、正確な温度計、精度の良いシリ
ンダ、シリンダのピストン移動量を正確に検出できるパ
ルススケール、ピストンを正確に停止するための油圧ポ
ンプユニット等の多くの精密部品を必要とし、装置が複
雑化、大型化して高価になるとともに、装置を使用する
環境も制限され、また、定期的な調整やメンテナンスが
必要となるといった問題がある。
In addition, the temperature of the liquid refrigerant is measured to obtain the liquid density, and the moving amount of the piston corresponding to the refrigerant filling amount (the weight of the refrigerant to be filled) is converted and set to fill the refrigerant. Therefore, many precision parts such as an accurate thermometer, an accurate cylinder, a pulse scale that can accurately detect the amount of piston movement of the cylinder, and a hydraulic pump unit that stops the piston accurately are required. There is a problem that the device becomes complicated and large and expensive, the environment in which the device is used is limited, and regular adjustment and maintenance are required.

【0007】さらに、充填制御部には正確な冷媒の物性
データ(温度−液密度データ)を記憶しておく必要があ
り、多くの種類の冷媒の充填を行なおうとすると、膨大
な数のデータを予めメモリしておく必要がある。
Further, it is necessary to store accurate physical property data (temperature-liquid density data) of the refrigerant in the charging control section, and if many kinds of refrigerants are to be charged, a huge amount of data will be stored. Must be stored in advance.

【0008】また、装置内に何等かの原因でガス冷媒が
発生した場合、これを検出することが難しく、このよう
な異常が発生した場合、誤った量の冷媒を充填してしま
う可能性がある。
Further, when a gas refrigerant is generated in the apparatus for some reason, it is difficult to detect it, and when such an abnormality occurs, there is a possibility that an incorrect amount of refrigerant is filled. is there.

【0009】さらに、計算によって求めた冷媒重量の充
填(間接的な充填)となるため、常に実際の充填重量の
チェックを行なわなければならないといった煩わしさが
あった。
Further, since the refrigerant weight is filled (indirect filling) calculated, the actual filling weight must always be checked.

【0010】本発明は上記事情に鑑みてなされたもの
で、従来の装置で必要としたブースターポンプを充填の
際の加圧手段と兼用させて、装置の簡素化、小型化を図
り安価な冷媒充填装置を提供することを第一の目的と
し、さらに、装置の簡素化、小型化を図り安価で、使用
できる環境条件も広く、最小限の調整やメンテナンスを
行なうだけで良く、また、膨大なデータを予めメモリし
ておくことなく多種類の冷媒の定量充填を行なうことが
でき、さらに、装置内のガス冷媒の発生を容易に検出す
ることも可能で、実際の充填重量を正確に計測すること
ができる冷媒充填装置を提供することを第二の目的とし
ている。
The present invention has been made in view of the above circumstances, and the booster pump required in the conventional apparatus is also used as the pressurizing means at the time of filling, so that the apparatus can be simplified and downsized, and an inexpensive refrigerant can be obtained. The primary purpose is to provide a filling device, and further, the device is simplified and downsized, is inexpensive, has a wide range of environmental conditions in which it can be used, and requires minimal adjustment and maintenance. It is possible to perform quantitative filling of various types of refrigerant without storing the data in advance, and it is also possible to easily detect the generation of gas refrigerant in the device, and to measure the actual filling weight accurately. A second object of the present invention is to provide a refrigerant charging device that can be used.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明の請求項1記載の冷媒充填装置は、冷媒を経路内
で液体に保ち、この液化冷媒を注入部を介して機器に充
填する冷媒充填装置において、前後に摺動自在なピスト
ンにより容積可変の2室を区画形成したシリンダと、上
記ピストンを摺動して冷媒を吸引するとともに設定液化
圧力で加圧して液体状態を保つ液化加圧手段と、上記ピ
ストンを摺動して冷媒を設定充填圧力で加圧し充填を行
なう充填加圧手段とを備えたものである。
In order to achieve the above object, a refrigerant charging device according to claim 1 of the present invention keeps a refrigerant in a liquid state in a path, and charges the liquefied refrigerant into a device through an injection part. In a refrigerant charging device, a cylinder in which two chambers of variable volume are partitioned and formed by a piston that is slidable forward and backward, and a liquefaction process that slides the piston to suck the refrigerant and pressurize it at a set liquefaction pressure to maintain a liquid state It is provided with a pressure means and a charging / pressurizing means for sliding the piston to pressurize the refrigerant at a set charging pressure for charging.

【0012】また、請求項2記載の冷媒充填装置は、冷
媒を経路内で液体に保ち、この液化冷媒を注入部を介し
て機器に充填する冷媒充填装置において、前後に摺動自
在なピストンにより容積可変の2室を区画形成したシリ
ンダと、上記ピストンを摺動して冷媒を吸引するととも
に設定液化圧力で加圧して液体状態を保つ液化加圧手段
と、上記ピストンを摺動して冷媒を設定充填圧力で加圧
し充填を行なう充填加圧手段と、上記シリンダと上記注
入部との間に設けて流れる液化冷媒の質量流量を計測す
る質量流量計測手段と、上記液化加圧手段を制御する一
方、上記質量流量計測手段で計測した質量流量に基づき
上記充填加圧手段を制御する充填制御手段とを備えたも
のである。
Further, in the refrigerant charging device according to the second aspect of the invention, in the refrigerant charging device which keeps the refrigerant as a liquid in the path and charges the liquefied refrigerant into the device through the injection part, the piston is slidable back and forth. A cylinder in which two chambers of variable volume are partitioned and formed, a piston is slid to suck the refrigerant, and a liquefaction pressurizing unit that pressurizes at a set liquefaction pressure to maintain a liquid state, and a piston is slid to remove the refrigerant. A charging / pressurizing means for pressurizing and charging at a set charging pressure, a mass flow rate measuring means for measuring the mass flow rate of the liquefied refrigerant flowing between the cylinder and the injection part, and controlling the liquefying / pressurizing means. On the other hand, a filling control means for controlling the filling pressurizing means based on the mass flow rate measured by the mass flow rate measuring means is provided.

【0013】[0013]

【作用】上記請求項1記載の冷媒充填装置では、冷媒を
吸入、加圧して、液体状態に保つには、液化加圧手段
で、2室に区画形成されたシリンダのピストンを摺動す
る。すると、冷媒は、一方のシリンダ室を介して吸引さ
れるとともに、他方のシリンダ室を介して設定液化圧力
で加圧されて液体状態に保たれる。上記液化加圧手段に
よる冷媒の吸引が終了し、上記シリンダの2室を含め経
路の冷媒が上記設定液化圧力の液体状態となったとき
に、充填加圧手段で、上記ピストンを摺動して冷媒を設
定充填圧力で加圧し、液化冷媒を注入部を介して機器に
充填する。
In the refrigerant charging device according to the first aspect of the present invention, in order to suck and pressurize the refrigerant to keep it in the liquid state, the liquefying and pressurizing means slides the piston of the cylinder divided into two chambers. Then, the refrigerant is sucked through one of the cylinder chambers and pressurized at the set liquefied pressure through the other cylinder chamber to be kept in the liquid state. When the suction of the refrigerant by the liquefaction pressurizing means is completed and the refrigerant in the path including the two chambers of the cylinder is in the liquid state of the set liquefied pressure, the charging pressurizing means slides the piston. The refrigerant is pressurized at the set charging pressure, and the liquefied refrigerant is charged into the device via the injection part.

【0014】また、上記請求項2記載の冷媒充填装置で
は、冷媒を吸入、加圧して、液体状態に保つには、液化
加圧手段が充填制御手段により制御され、2室に区画形
成されたシリンダのピストンを摺動する。すると、冷媒
は、一方のシリンダ室を介して吸引されるとともに、他
方のシリンダ室を介して設定液化圧力で加圧されて液体
状態に保たれる。上記液化加圧手段による冷媒の吸引が
終了し、上記シリンダの2室を含め経路の冷媒が上記設
定液化圧力の液体状態となったときに、充填加圧手段が
上記充填制御手段により制御され、ピストンを摺動して
冷媒を設定充填圧力で加圧し、液化冷媒を注入部を介し
て機器に充填する。機器に充填される冷媒の充填重量
は、上記シリンダと上記注入部との間に設けて流れる液
化冷媒の質量流量を計測する質量流量計測手段からの信
号により上記充填制御手段によって算出され、この充填
重量に基づいて、上記充填加圧手段が制御される。
Further, in the refrigerant charging device according to the second aspect, in order to suck and pressurize the refrigerant to keep it in the liquid state, the liquefaction pressurizing means is controlled by the charging control means and divided into two chambers. Slide the piston of the cylinder. Then, the refrigerant is sucked through one of the cylinder chambers and pressurized at the set liquefied pressure through the other cylinder chamber to be kept in the liquid state. When the suction of the refrigerant by the liquefaction pressurizing means is completed and the refrigerant in the path including the two chambers of the cylinder is in the liquid state of the set liquefying pressure, the filling pressurizing means is controlled by the filling control means, The piston is slid to pressurize the refrigerant at the set charging pressure, and the liquefied refrigerant is charged into the device via the injection part. The filling weight of the refrigerant to be filled in the equipment is calculated by the filling control means based on a signal from the mass flow rate measuring means for measuring the mass flow rate of the liquefied refrigerant flowing between the cylinder and the injection part. The filling / pressurizing means is controlled based on the weight.

【0015】[0015]

【実施例】次に、図面を参照して本発明の実施例を説明
する。図1〜図3は本発明の一実施例を示し、図1は冷
媒充填装置の説明図、図2はシリンダのピストンの構造
の説明図、図3は質量流量計の説明図である。
Embodiments of the present invention will now be described with reference to the drawings. 1 to 3 show an embodiment of the present invention, FIG. 1 is an explanatory diagram of a refrigerant charging device, FIG. 2 is an explanatory diagram of a structure of a piston of a cylinder, and FIG. 3 is an explanatory diagram of a mass flowmeter.

【0016】図1において、符号1は冷媒充填装置を示
し、この冷媒充填装置1の冷媒入口2には、R−22,
R−134a等のフロン系冷媒のボンベ3が接続される
ようになっている。
In FIG. 1, reference numeral 1 indicates a refrigerant charging device, and a refrigerant inlet 2 of the refrigerant charging device 1 is provided with R-22, R-22.
A cylinder 3 of a fluorocarbon refrigerant such as R-134a is connected.

【0017】上記冷媒入口2は、弁4,フィルタ5を介
して、第1の逆止弁6と、この第1の逆止弁6に冷媒経
路上、平行に設けられた第2の逆止弁7とに通じてお
り、上記第1の逆止弁6の下流側は、ピストン8の液体
ピストン8aにより2室に区画形成されるシリンダ9の
ピストン前室9aに、また、上記第2の逆止弁7の下流
側はシリンダ9のピストン後室9bに接続されている。
The refrigerant inlet 2 is provided with a first check valve 6 via a valve 4 and a filter 5, and a second check valve provided in parallel with the first check valve 6 on the refrigerant path. The first check valve 6 communicates with the valve 7, and the downstream side of the first check valve 6 is connected to a piston front chamber 9a of a cylinder 9 which is divided into two chambers by a liquid piston 8a of a piston 8 and the second check valve 6a. The downstream side of the check valve 7 is connected to the piston rear chamber 9b of the cylinder 9.

【0018】さらに、上記ピストン前室9aは第3の逆
止弁10と接続され、上記ピストン後室9bは第4の逆
止弁11と接続されており、上記第3の逆止弁10と上
記第4の逆止弁11の下流側は、順にフィルタ12,質
量流量計測手段としての質量流量計13,一方弁14,
弁15を介して、液化冷媒の注入部としてのチャージン
グガン16と接続されている。また、上記ピストン前室
9aから上記第3の逆止弁10までの経路と、上記ピス
トン後室9bから上記第4の逆止弁11までの経路の間
はバイパスされており、このバイパス経路には自動弁1
7が設けられている。
Further, the piston front chamber 9a is connected to a third check valve 10, and the piston rear chamber 9b is connected to a fourth check valve 11, which is connected to the third check valve 10. On the downstream side of the fourth check valve 11, a filter 12, a mass flow meter 13 as a mass flow rate measuring device, a one-way valve 14,
It is connected via a valve 15 to a charging gun 16 as an injection part for the liquefied refrigerant. Further, a path from the piston front chamber 9a to the third check valve 10 and a path from the piston rear chamber 9b to the fourth check valve 11 are bypassed, and this bypass path is used. Is an automatic valve 1
7 are provided.

【0019】上記ピストン8は、図2に示すように、ロ
ッド8cの前端部に上記シリンダ9内を前後方向に摺動
される上記液体ピストン8aが固設され、上記ロッド8
cの後端部にはエアーシリンダ18内を前後方向に摺動
されるエアーピストン8bが固設されている。また、上
記ロッド8c内には、上記ピストン前室9aに突出され
るシャフト8dが摺動自在に設けられており、このシャ
フト8dはスプリング8eによって突出する方向に付勢
されている。すなわち、上記シャフト8dは、上記ピス
トン前室9aの断面積と、上記ピストン後室9bの断面
積とが略同じになるように、換言すると、上記液体ピス
トン8aの移動で生じる上記ピストン前室9aの容積変
化と上記ピストン後室9bの容積変化とが略同じになる
ように設けられたものである。
As shown in FIG. 2, the piston 8 has a liquid piston 8a fixed to the front end of a rod 8c, which is slidable in the cylinder 9 in the front-rear direction.
An air piston 8b which is slidable in the air cylinder 18 in the front-rear direction is fixedly provided at the rear end portion of c. A shaft 8d projecting from the piston front chamber 9a is slidably provided in the rod 8c, and the shaft 8d is biased in a projecting direction by a spring 8e. That is, in the shaft 8d, the cross-sectional area of the piston front chamber 9a and the cross-sectional area of the piston rear chamber 9b are substantially the same, in other words, the piston front chamber 9a generated by the movement of the liquid piston 8a. And the volume change of the piston rear chamber 9b are substantially the same.

【0020】上記エアーシリンダ18には、液化加圧手
段としての液化加圧部19と、充填加圧手段としての充
填加圧部20とが接続されており、上記液化加圧部19
は、圧縮空気等を利用して加圧し上記エアーピストン8
bを上記エアーシリンダ18内で前後方向に摺動させ、
上記液体ピストン8aを上記シリンダ9内で前後方向に
摺動させるようになっている。ここで、上記液化加圧部
19により上記シリンダ9内は、約20 kg/cm2 の圧力
に加圧されるようになっている。
The air cylinder 18 is connected to a liquefaction pressurizing section 19 as a liquefaction pressurizing means and a filling pressurizing section 20 as a filling pressurizing means.
Is pressurized by using compressed air or the like, and the air piston 8 is
slide b in the air cylinder 18 in the front-back direction,
The liquid piston 8a is slidable in the cylinder 9 in the front-rear direction. Here, the inside of the cylinder 9 is pressurized by the liquefaction pressurizing unit 19 to a pressure of about 20 kg / cm 2 .

【0021】また、上記充填加圧部20も同様に、圧縮
空気等を利用して加圧し上記エアーピストン8bを上記
エアーシリンダ18内で前後方向に摺動させ、上記液体
ピストン8aを上記シリンダ9内で前後方向に摺動させ
るようになっている。ここで、上記充填加圧部20によ
り上記シリンダ9内は、約25 kg/cm2 の圧力に加圧さ
れるようになっている。
Similarly, the filling and pressurizing unit 20 is also pressurized by using compressed air or the like to slide the air piston 8b in the air cylinder 18 in the front-rear direction, and the liquid piston 8a is moved to the cylinder 9 in the same manner. It is designed to slide in the front-back direction. Here, the inside of the cylinder 9 is pressurized by the filling / pressurizing unit 20 to a pressure of about 25 kg / cm 2 .

【0022】上記チャージングガン16は、入口側バル
ブシートに加えられる圧力が、約25 kg/cm2 以上にな
った場合に機器側出口が開くように形成されており、上
記充填加圧部20による圧力で、冷媒の機器への充填が
行なわれるように構成されている。
The charging gun 16 is formed so that the equipment-side outlet opens when the pressure applied to the inlet side valve seat becomes about 25 kg / cm 2 or more. The refrigerant is charged into the device by the pressure generated by.

【0023】上記質量流量計13は、特に、高圧力の液
化冷媒の質量流量を正確に計測できるように流量変化に
対する応答性が高く、また、測定レンジの広い質量流量
計で、例えば、図3(a)に示すように、等しい固有振
動数(慣性)に調整され、両端が固定された2本のフロ
ーチューブ25,25と、このフローチューブ25に振
動を与える電磁オシレータ26と、フローチューブ25
内の流体の流れで生じるフローチューブ25のねじれ角
θを検出する角度検出部27とから主に構成されてい
る。
The mass flowmeter 13 is a mass flowmeter having a high responsiveness to changes in the flow rate so that the mass flow rate of the liquefied refrigerant having a high pressure can be accurately measured, and has a wide measurement range, for example, as shown in FIG. As shown in (a), two flow tubes 25, 25 adjusted to have the same natural frequency (inertia) and fixed at both ends, an electromagnetic oscillator 26 for vibrating the flow tube 25, and a flow tube 25.
The angle detection unit 27 mainly detects the twist angle θ of the flow tube 25 generated by the flow of the fluid inside.

【0024】すなわち、この質量流量計13では、図3
(b)に示すように、両端が固定されたフローチューブ
25を、電磁オシレータ26によって固有振動数で共振
し、流体がフローチューブ25の中を流れると、流入
側、流出側それぞれに反対方向の力(コリオリの力)が
はたらいて、フローチューブ25は振動の半サイクル間
では図3(c)のように、次の半サイクル間では図3
(d)のようにねじられる。このねじれ角θはフローチ
ューブ25内の質量流量に比例し、両側に取り付けられ
た角度検出部27によって、質量流量に比例した信号と
して検出され、質量流量が求められるようになっている
のである。また、上記質量流量計13は、等しい固有振
動数(慣性)に調整された2本のフローチューブから構
成され、この2本のフローチューブの位置関係を検出す
るため、外部から振動を受けた場合にも、2つの管が受
ける力は互いに相殺するように作用して、その影響は極
めて小さくなる。さらに、この質量流量計13では、管
路内部に気体が発生した場合、質量流量の値に異常が示
されるため、管路内部に気体が発生したことが容易に判
断される。
That is, in the mass flowmeter 13, as shown in FIG.
As shown in (b), the flow tube 25, whose both ends are fixed, resonates at a natural frequency by the electromagnetic oscillator 26, and when the fluid flows in the flow tube 25, the fluid flows in opposite directions to the inflow side and the outflow side. The force (Coriolis force) is applied, and the flow tube 25 moves as shown in FIG. 3C during the half cycle of vibration, and as shown in FIG.
Twisted as in (d). This twist angle θ is proportional to the mass flow rate in the flow tube 25, and is detected by the angle detection units 27 mounted on both sides as a signal proportional to the mass flow rate, and the mass flow rate is obtained. The mass flowmeter 13 is composed of two flow tubes adjusted to have the same natural frequency (inertia), and detects the positional relationship between the two flow tubes. Even so, the forces exerted on the two pipes act to cancel each other out, and the effect is extremely small. Further, in this mass flow meter 13, when gas is generated inside the pipeline, an abnormality is shown in the value of the mass flow rate, so that it is easily determined that gas is generated inside the pipeline.

【0025】上記質量流量計13,一方弁14,自動弁
17,液化加圧部19および上記充填加圧部20は、充
填制御手段としての充填制御部21と、それぞれ接続さ
れている。
The mass flow meter 13, the one-way valve 14, the automatic valve 17, the liquefaction pressurizing unit 19 and the filling pressurizing unit 20 are connected to a filling control unit 21 as a filling control means.

【0026】上記充填制御部21は、予め充填する冷媒
の重量を設定可能に形成され、また、上記質量流量計1
3から入力された質量流量を示す信号を基に、質量流量
の積算値を求め充填重量を求め、これら質量流量、充填
重量を図示しない表示部に表示するとともに、これらの
値に基づいて、異常の検出や、上記一方弁14,自動弁
17,液化加圧部19および上記充填加圧部20の動作
を制御する。また、この充填制御部21は、冷凍機の研
究開発・仕様(冷媒量)決定の目的や、冷凍機の生産ラ
インの検査での異常検出による冷媒量追加検査等が行な
えるように、予め充填する冷媒の重量を設定しないで、
冷媒の充填を充填重量を監視しながら行なうこともでき
るようになっている。
The filling control unit 21 is formed so that the weight of the refrigerant to be filled in advance can be set, and the mass flowmeter 1 is also provided.
Based on the signal indicating the mass flow rate input from 3, the integrated value of the mass flow rate is calculated to find the filling weight, and the mass flow rate and the filling weight are displayed on a display unit (not shown). And the operations of the one-way valve 14, the automatic valve 17, the liquefaction pressurizing unit 19 and the filling pressurizing unit 20 are controlled. Further, the filling control unit 21 is pre-filled so that the purpose of the research and development / specification (refrigerant amount) determination of the refrigerator and the additional refrigerant amount inspection by abnormality detection in the inspection of the refrigerator production line can be performed. Do not set the weight of the refrigerant to
The refrigerant can be filled while monitoring the filling weight.

【0027】尚、図1中、符号31、32は、それぞれ
の管路圧力を計測する圧力計を示し、符号33は安全弁
を示す。
In FIG. 1, reference numerals 31 and 32 indicate pressure gauges for measuring the respective pressures of the respective pipelines, and reference numeral 33 indicates a safety valve.

【0028】次に、上記構成の冷媒充填装置で、冷凍機
等の機器に規定量の冷媒(例えば、R−22,R−13
4a等のフロン系冷媒)を充填する際の作用について説
明する。
Next, in the refrigerant charging device having the above-mentioned structure, a specified amount of refrigerant (for example, R-22, R-13) is supplied to a device such as a refrigerator.
The operation of filling a CFC-based refrigerant such as 4a) will be described.

【0029】まず、図1に示すように、冷媒入口2にフ
ロン系冷媒のボンベ3が接続され、ボンベ3内の液化冷
媒が、装置1内の冷媒経路に充満された状態で、チャー
ジングガン16を機器と接続して、充填制御部21に、
予め充填する冷媒の重量を設定し装置1を動作させる
と、上記充填制御部21により液化加圧部19が動作さ
れ、エアーシリンダ18のエアーピストン8bが前後に
摺動され、シリンダ9の液体ピストン8aが前後に摺動
される。このとき、自動弁17は、上記充填制御部21
により閉じられており、上記シリンダ9の一方の室が冷
媒加圧状態となっているとき、他方の室は冷媒吸引状態
となる。例えば、上記液体ピストン8aが前進しピスト
ン前室9aを加圧していく過程においては、ピストン後
室9bにより上記ボンベ3から冷媒が吸引され、その
後、上記ピストン前室9aが約20 kg/cm2 の圧力に加
圧されて液体ピストン8aが後退すると、上記ピストン
後室9bが加圧される。この過程では、上記ピストン前
室9aに上記ボンベ3から冷媒が吸引される。これを繰
り返し、上記ピストン前室9aと上記ピストン後室9b
とに液化冷媒が充満され約20 kg/cm2 の圧力に加圧さ
れると、上記液化加圧部19による加圧は停止する。
First, as shown in FIG. 1, a cylinder 3 of CFC-based refrigerant is connected to the refrigerant inlet 2, and the liquefied refrigerant in the cylinder 3 is filled in the refrigerant passage in the apparatus 1 with the charging gun. 16 is connected to a device, and the filling control unit 21
When the weight of the refrigerant to be charged is set in advance and the device 1 is operated, the liquefaction pressurizing unit 19 is operated by the filling control unit 21, the air piston 8b of the air cylinder 18 is slid back and forth, and the liquid piston of the cylinder 9 is moved. 8a is slid back and forth. At this time, the automatic valve 17 is operated by the filling control unit 21.
When the one chamber of the cylinder 9 is in the refrigerant pressurization state, the other chamber is in the refrigerant suction state. For example, in the process in which the liquid piston 8a moves forward and pressurizes the piston front chamber 9a, the refrigerant is sucked from the cylinder 3 by the piston rear chamber 9b, and then the piston front chamber 9a has a pressure of about 20 kg / cm 2. When the liquid piston 8a is retracted by being pressurized to the above pressure, the piston rear chamber 9b is pressurized. In this process, the refrigerant is sucked from the cylinder 3 into the piston front chamber 9a. By repeating this, the piston front chamber 9a and the piston rear chamber 9b are
When the liquefied refrigerant is filled therewith and the pressure is increased to about 20 kg / cm 2 , the pressure applied by the liquefaction pressurizing unit 19 is stopped.

【0030】次いで、上記充填制御部21は、充填加圧
部20を動作させ、上記エアーピストン8bを後退さ
せ、上記液体ピストン8aを最後部まで後退させる。こ
のとき、上記充填制御部21は、上記自動弁17を開い
た状態とする。このため、上記ピストン後室9bの液化
冷媒は、上記ピストン前室9aに移動させられる。ここ
で、シャフト8dにより、上記液体ピストン8aの移動
で生じる上記ピストン前室9aの容積変化と上記ピスト
ン後室9bの容積変化とが略同じになるように調整され
ているため、冷媒がガス化するようなことはない。
Next, the filling control unit 21 operates the filling pressurizing unit 20, retracts the air piston 8b, and retracts the liquid piston 8a to the end. At this time, the filling control unit 21 keeps the automatic valve 17 open. Therefore, the liquefied refrigerant in the piston rear chamber 9b is moved to the piston front chamber 9a. Here, since the shaft 8d is adjusted so that the volume change of the piston front chamber 9a caused by the movement of the liquid piston 8a and the volume change of the piston rear chamber 9b become substantially the same, the refrigerant is gasified. There is nothing to do.

【0031】次に、上記充填制御部21は、上記自動弁
17を閉じ、上記充填加圧部20を動作させ、上記エア
ーピストン8bを前進させて、上記液体ピストン8aを
前進させ、上記ピストン前室9aを加圧する。
Next, the filling control section 21 closes the automatic valve 17, operates the filling pressurizing section 20, advances the air piston 8b, advances the liquid piston 8a, and advances the piston front. The chamber 9a is pressurized.

【0032】そして、圧力が約25 kg/cm2 以上となる
と、チャージングガン16から液化冷媒が機器に、所定
の圧力に減圧されて充填される。このとき生じる冷媒の
流れの質量流量は、質量流量計13により計測され、上
記質量流量計13からの信号は、上記充填制御部21に
送られ、質量流量値に変換されるとともに、質量流量値
が積算されて充填重量が算出され、これらの値が表示さ
れる。充填した重量が設定重量に達すると、上記充填制
御部21は、上記充填加圧部20を停止させるととも
に、一方弁14を閉じ、冷媒の充填を終了する。尚、冷
媒充填の際、上記ピストン後室9bには、上記液体ピス
トン8aが移動するのにともない上記ボンベ3から冷媒
が補充される。また、充填に際して上記質量流量計13
から異常な質量流量値が入力されると、これを表示し、
異常が発生するまでの充填量を表示するとともに、充填
を中止する。
When the pressure reaches about 25 kg / cm 2 or more, the liquefied refrigerant is charged from the charging gun 16 into the equipment at a predetermined pressure. The mass flow rate of the flow of the refrigerant generated at this time is measured by the mass flow meter 13, and the signal from the mass flow meter 13 is sent to the filling control unit 21 to be converted into the mass flow rate value and the mass flow rate value. Is added to calculate the filling weight, and these values are displayed. When the filled weight reaches the set weight, the filling control unit 21 stops the filling pressurizing unit 20, closes the one-way valve 14, and finishes the filling of the refrigerant. When the refrigerant is filled, the piston rear chamber 9b is replenished with the refrigerant from the cylinder 3 as the liquid piston 8a moves. In addition, at the time of filling, the mass flowmeter 13
When an abnormal mass flow rate value is input from, it is displayed and
The filling amount until the abnormality occurs is displayed and filling is stopped.

【0033】次いで、他の機器に充填するには、再び、
上記ボンベ3から冷媒を吸入して、上述のように行な
う。この作用の例は、予め充填制御部に充填重量を設定
して充填を行なう際の例であるが、充填制御部に充填重
量を設定することなく、充填重量を監視しながら充填を
行なうことも可能である。
Then, to fill the other equipment, again,
The refrigerant is sucked from the cylinder 3 and the operation is performed as described above. An example of this operation is an example in which the filling weight is set in the filling control unit in advance and the filling is performed. However, the filling weight may be monitored while the filling weight is monitored without setting the filling weight in the filling control unit. It is possible.

【0034】このように、本実施例によれば、従来の装
置で必要としたブースターポンプを充填の際の加圧手段
と兼用させているので、装置の簡素化、小型化を図るこ
とができる。
As described above, according to this embodiment, the booster pump required in the conventional device is also used as the pressurizing means at the time of filling, so that the device can be simplified and downsized. .

【0035】また、質量流量を計測して、直接、充填重
量を求めるようにしているので、従来の装置で必要であ
った、実際の充填重量のチェック作業が不必要となる。
Further, since the mass flow rate is measured and the filling weight is directly obtained, the actual filling weight check work, which is required in the conventional apparatus, is unnecessary.

【0036】さらに、質量流量を計測して、直接、充填
重量を求めるようにしているため、装置内に何等かの原
因でガス冷媒が発生した場合、質量流量の値から、これ
を検出することが容易にできる。
Further, since the mass flow rate is measured and the filling weight is directly obtained, if a gas refrigerant is generated in the apparatus for some reason, it should be detected from the value of the mass flow rate. Can be done easily.

【0037】また、質量流量を計測しているため、予
め、装置に正確な冷媒の物性データ(温度−液密度デー
タ)を記憶しておく必要がなく、多くの種類の冷媒の充
填に対応できる。
Further, since the mass flow rate is measured, it is not necessary to store accurate physical property data (temperature-liquid density data) of the refrigerant in the device in advance, and it is possible to fill many kinds of refrigerant. .

【0038】さらに、間接的な様々なパラメータから充
填重量を計算して求めるのではなく、直接、計測するた
め、従来の装置で必要であった多くの精密部品や計算の
ための電子部品を省略することができ、装置の簡素化、
小型化、低コスト化を図ることができ、また、使用でき
る環境条件も広く、調整やメンテナンスも容易に行なえ
る。
Further, since the filling weight is not calculated and obtained from indirect various parameters but directly measured, many precision parts and electronic parts for calculation which are required in the conventional apparatus are omitted. Can simplify the equipment,
The size and cost can be reduced, and the environmental conditions that can be used are wide, and adjustment and maintenance can be easily performed.

【0039】尚、本実施例では、冷媒としてR−22,
R−134a等のフロン系冷媒を用いた装置で説明した
が、これに限るものではない。
In this embodiment, R-22, which serves as the refrigerant, is used.
Although the apparatus using the chlorofluorocarbon refrigerant such as R-134a has been described, the invention is not limited to this.

【0040】また、液化加圧部による加圧、及び、充填
加圧部による加圧は、R−22,R−134aの物性か
ら、それぞれ約20 kg/cm2 、約25 kg/cm2 の圧力で
行なうようにしているが、これに限るものではなく、さ
らに、R−22,R−134a以外の物質を対象とする
場合は、この対象物質の物性に合わせて上記各圧力値は
変更されることはいうまでもない。
The pressure applied by the liquefaction pressurizing unit and the pressurization by the filling pressurizing unit are about 20 kg / cm 2 and about 25 kg / cm 2 , respectively, due to the physical properties of R-22 and R-134a. Although the pressure is applied, the present invention is not limited to this, and when a substance other than R-22 and R-134a is targeted, the above pressure values are changed according to the physical properties of the target substance. Needless to say.

【0041】また、本実施例では、質量流量計として、
共振されたフローチューブ内を流れる流体が生じさせる
コリオリの力を利用した方式のものを例示したが、これ
に限定するものではなく、高圧力の液化冷媒の質量流量
を正確に計測できるように流量変化に対する応答性が高
く、また、測定レンジの広い質量流量計であれば良い。
In this embodiment, the mass flowmeter is
The method using the Coriolis force generated by the fluid flowing in the resonated flow tube has been illustrated, but the method is not limited to this and the flow rate must be set so that the mass flow rate of the liquefied refrigerant at high pressure can be accurately measured. A mass flowmeter that has high response to changes and has a wide measurement range may be used.

【0042】[0042]

【発明の効果】以上説明したように請求項1の発明によ
れば、従来の装置で必要としたブースターポンプを充填
の際の加圧手段と兼用させて、装置の簡素化、小型化を
図り安価な装置を実現することができる。
As described above, according to the invention of claim 1, the booster pump required in the conventional device is also used as the pressurizing means at the time of filling, so that the device can be simplified and downsized. An inexpensive device can be realized.

【0043】また、請求項2の発明によれば、従来の装
置で必要としたブースターポンプを充填の際の加圧手段
と兼用させて、装置の簡素化、小型化を図り安価な装置
を実現する効果に加え、さらに、装置の簡素化、小型化
を図り安価で、使用できる環境条件も広く、最小限の調
整やメンテナンスを行なうだけで良く、また、膨大なデ
ータを予めメモリしておくことなく多種類の冷媒の定量
充填を行なうことができ、さらに、装置内のガス冷媒の
発生を容易に検出することも可能で、実際の充填重量を
正確に計測することが可能となる。
Further, according to the invention of claim 2, the booster pump required in the conventional device is also used as the pressurizing means at the time of filling, so that the device is simplified and downsized, and the inexpensive device is realized. In addition to the effect of making it easier, the device is simple and compact, it is cheap, the environmental conditions that it can be used are wide, only minimal adjustment and maintenance are required, and a huge amount of data is stored in advance. It is possible to perform quantitative filling of various types of refrigerants without using it, and moreover, it is possible to easily detect the generation of gas refrigerant in the device, and it is possible to accurately measure the actual filling weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による冷媒充填装置の説明図FIG. 1 is an explanatory diagram of a refrigerant charging device according to an embodiment of the present invention.

【図2】本発明の一実施例によるシリンダのピストンの
構造の説明図
FIG. 2 is an explanatory diagram of a structure of a piston of a cylinder according to an embodiment of the present invention.

【図3】本発明の一実施例による質量流量計の説明図FIG. 3 is an explanatory diagram of a mass flowmeter according to an embodiment of the present invention.

【図4】従来の冷媒充填装置の説明図FIG. 4 is an explanatory view of a conventional refrigerant charging device.

【符号の説明】[Explanation of symbols]

1 冷媒充填装置 3 ボンベ 8a 液体ピストン 9 シリンダ 9a ピストン前室 9b ピストン後室 13 質量流量計 16 チャージングガン 19 液化加圧部 20 充填加圧部 21 充填制御部 DESCRIPTION OF SYMBOLS 1 Refrigerant charging device 3 Cylinder 8a Liquid piston 9 Cylinder 9a Piston front chamber 9b Piston rear chamber 13 Mass flow meter 16 Charging gun 19 Liquefaction pressurizing part 20 Filling pressurizing part 21 Filling control part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を経路内で液体に保ち、この液化冷
媒を注入部を介して機器に充填する冷媒充填装置におい
て、 前後に摺動自在なピストンにより容積可変の2室を区画
形成したシリンダと、 上記ピストンを摺動して冷媒を吸引するとともに設定液
化圧力で加圧して液体状態を保つ液化加圧手段と、 上記ピストンを摺動して冷媒を設定充填圧力で加圧し充
填を行なう充填加圧手段とを備えたことを特徴とする冷
媒充填装置。
1. A refrigerant filling device for keeping a refrigerant as a liquid in a path and filling the liquefied refrigerant into a device through an injection part, wherein a cylinder in which two chambers having variable volumes are defined by a piston slidable forward and backward. Liquefaction pressurizing means for sliding the piston to suck the refrigerant and pressurizing it at a set liquefying pressure to maintain a liquid state, and sliding the piston to pressurize the refrigerant at a set charging pressure to perform filling. A refrigerant charging device comprising a pressurizing means.
【請求項2】 冷媒を経路内で液体に保ち、この液化冷
媒を注入部を介して機器に充填する冷媒充填装置におい
て、 前後に摺動自在なピストンにより容積可変の2室を区画
形成したシリンダと、 上記ピストンを摺動して冷媒を吸引するとともに設定液
化圧力で加圧して液体状態を保つ液化加圧手段と、 上記ピストンを摺動して冷媒を設定充填圧力で加圧し充
填を行なう充填加圧手段と、 上記シリンダと上記注入部との間に設けて流れる液化冷
媒の質量流量を計測する質量流量計測手段と、 上記液化加圧手段を制御する一方、上記質量流量計測手
段で計測した質量流量に基づき上記充填加圧手段を制御
する充填制御手段とを備えたことを特徴とする冷媒充填
装置。
2. A cylinder in which two chambers of variable volume are defined by a piston slidable forward and backward in a refrigerant filling device for keeping a refrigerant as a liquid in a path and filling the liquefied refrigerant into a device through an injection part. Liquefaction pressurizing means for sliding the piston to suck the refrigerant and pressurizing it at a set liquefying pressure to maintain a liquid state, and sliding the piston to pressurize the refrigerant at a set charging pressure to perform filling. A pressurizing means, a mass flow rate measuring means for measuring the mass flow rate of the liquefied refrigerant flowing between the cylinder and the injection part, and controlling the liquefying pressurizing means, while measuring with the mass flow rate measuring means. A refrigerant filling device, comprising: a filling control unit that controls the filling pressurizing unit based on a mass flow rate.
JP7114691A 1995-05-12 1995-05-12 Refrigerant filling device Expired - Lifetime JP3012481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7114691A JP3012481B2 (en) 1995-05-12 1995-05-12 Refrigerant filling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7114691A JP3012481B2 (en) 1995-05-12 1995-05-12 Refrigerant filling device

Publications (2)

Publication Number Publication Date
JPH08303911A true JPH08303911A (en) 1996-11-22
JP3012481B2 JP3012481B2 (en) 2000-02-21

Family

ID=14644226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114691A Expired - Lifetime JP3012481B2 (en) 1995-05-12 1995-05-12 Refrigerant filling device

Country Status (1)

Country Link
JP (1) JP3012481B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPR20100015A1 (en) * 2010-03-03 2010-06-02 Brain Bee Holding S P A MAINTENANCE DEVICE FOR AIR-CONDITIONING SYSTEMS.
CN104374128A (en) * 2014-10-22 2015-02-25 珠海格力电器股份有限公司 Refrigerant charging device
WO2020066921A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Refrigerant filling method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109760544B (en) * 2018-12-27 2022-06-10 国网电力科学研究院有限公司 Top charging bow direct current charging control guide circuit and implementation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPR20100015A1 (en) * 2010-03-03 2010-06-02 Brain Bee Holding S P A MAINTENANCE DEVICE FOR AIR-CONDITIONING SYSTEMS.
EP2363669A2 (en) 2010-03-03 2011-09-07 Brain Bee Holding S.p.A. Maintenance device for conditioning systems
CN104374128A (en) * 2014-10-22 2015-02-25 珠海格力电器股份有限公司 Refrigerant charging device
WO2020066921A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Refrigerant filling method
JPWO2020066921A1 (en) * 2018-09-28 2021-08-30 ダイキン工業株式会社 Refrigerant filling method
US11988426B2 (en) 2018-09-28 2024-05-21 Daikin Industries, Ltd. Refrigerant charging method
US11994323B2 (en) 2018-09-28 2024-05-28 Daikin Industries, Ltd. Refrigerant charging method, heat source unit, and renewed refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP3012481B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US5953923A (en) Fluid dispensing apparatus and method of dispensing fluid
US20070151350A1 (en) Measuring fluid volumes in a container using pressure
US4941345A (en) Method and apparatus for the measurement of gas properties
CN109238686A (en) Detector for safety valve and safety valve detection method
US3782168A (en) Method and apparatus for calibrating and testing pressure responsive apparatus
EP0670476B1 (en) A fluid sensor
JP2014530357A (en) Small volume testing apparatus and method for measuring flow velocity
JPH08303911A (en) Refrigerant charging device
Rousseaux et al. A static method for determination of vapour—liquid equilibria and saturated liquid molar volumes at high pressures and temperatures using a new variable-volume cell
Bayani et al. Online measurement of oil concentrations of R-134a/oil mixtures with a density flowmeter
CN112484942B (en) Method and system for measuring leakage rate of small-volume container
US4649734A (en) Apparatus and method for calibrating a flow meter
US4996869A (en) System for selecting valid K-factor data points based upon selected criteria
CN110895202B (en) Test device for researching influence of environmental factors on flow measurement
JPH08303910A (en) Refrigerant charging device
EP0451752A2 (en) Method and apparatus for testing gas dispersed in a liquid
Bhandarkar et al. Modeling and experiments of compressible gas flow through microcapillary fill tubes on NIF targets
US5238016A (en) Method of supply pressure effect sensing and associated gage
JPH09145454A (en) Flowmeter testing device
Panek et al. Determination of the modulus of rigidity of rock by expanding a cylindrical pressure cell in a drillhole
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
CN103411724B (en) A kind of measuring method of pressure of constant-volume quick inflation/deflation air cavity
US3508431A (en) System for calibration of a differential pressure transducer
US4331033A (en) Precision flowmeter
CN109916467A (en) A kind of volume determination system and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141210

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term