JPH0830340B2 - Method and apparatus for managing water stop of earth retaining wall - Google Patents

Method and apparatus for managing water stop of earth retaining wall

Info

Publication number
JPH0830340B2
JPH0830340B2 JP5125645A JP12564593A JPH0830340B2 JP H0830340 B2 JPH0830340 B2 JP H0830340B2 JP 5125645 A JP5125645 A JP 5125645A JP 12564593 A JP12564593 A JP 12564593A JP H0830340 B2 JPH0830340 B2 JP H0830340B2
Authority
JP
Japan
Prior art keywords
retaining wall
water
electrodes
earth retaining
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5125645A
Other languages
Japanese (ja)
Other versions
JPH06336734A (en
Inventor
健夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Kogyo Co Ltd
Original Assignee
Seiko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Kogyo Co Ltd filed Critical Seiko Kogyo Co Ltd
Priority to JP5125645A priority Critical patent/JPH0830340B2/en
Publication of JPH06336734A publication Critical patent/JPH06336734A/en
Publication of JPH0830340B2 publication Critical patent/JPH0830340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Piles And Underground Anchors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土留め壁における止水
の管理方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for managing water stoppage in a retaining wall.

【0002】[0002]

【従来の技術】地中構造物を建設するに当たっては、ま
ず、周囲に土留め壁を造成し、その内部を掘削して地中
構造物を建設するものである。ところが、地盤に含まれ
ている土中水(主として地下水)が湧き水となって土留
め壁の一部から内部に浸出し、周囲の地盤を沈下させた
り、あるいは、土留め壁内部における工事の阻害要因と
なっている。そこで、これらの対策として、従来は土留
め壁の壁厚を必要以上に厚くしたり、あるいは、土留め
壁を構成するためのセメント成分やその他の固結成分の
量を必要以上に増大させたりして湧き水防止をおこなっ
ているのが現状である。
2. Description of the Related Art In constructing an underground structure, first, an earth retaining wall is formed around the structure, and the inside of the retaining wall is excavated to construct the underground structure. However, underground water (mainly groundwater) contained in the ground turns into spring water and seeps into the interior from a part of the earth retaining wall, sinking the surrounding ground, or obstructing the construction inside the earth retaining wall. It is a factor. Therefore, as a measure against these, conventionally, the wall thickness of the earth retaining wall was made thicker than necessary, or the amount of cement components and other solidifying components for constituting the earth retaining wall was increased more than necessary. The current situation is to prevent spring water.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記のよう
に土留め壁の壁厚を必要以上に厚くしたり、あるいは、
土留め壁を構成するためのセメント成分やその他の固結
成分の量を必要以上に増大させたりして湧き水防止をお
こなうものにおいては、土留め壁全体の壁厚を厚くする
必要があり、また、セメント成分やその他の固結成分の
量を土留め壁全体にわたり増量する必要があり、コスト
が高くなるという問題がある。しかも、上記のように土
留め壁を必要以上に厚く形成したり、あるいはセメント
成分やその他の固結成分の量を必要以上に増量したりし
たものでも、土留め壁に不完全な部分があると湧き水が
浸出すという問題がある。そして、この土留め壁を浸透
する水は、浸透の初期の段階で察知できれば、対策が講
じられるが、従来は土留め壁における浸透場所、浸透量
を初期の段階で正確に察知することができず、大事故を
招いていた。
However, as described above, the wall thickness of the earth retaining wall is increased more than necessary, or
In the case of preventing spring water by increasing the amount of cement components and other solidified components for constituting the earth retaining wall more than necessary, it is necessary to increase the wall thickness of the whole earth retaining wall. However, it is necessary to increase the amount of cement components and other solidified components throughout the earth retaining wall, which causes a problem of high cost. Moreover, even if the earth retaining wall is formed thicker than necessary as described above, or the amount of cement components and other solidifying components is increased more than necessary, the earth retaining wall still has an incomplete portion. There is a problem that spring water seeps out. Then, if water that permeates this retaining wall can be detected if it can be detected in the initial stage of permeation, conventionally, the place and amount of permeation in the retaining wall can be accurately detected in the initial stage. No, it caused a big accident.

【0004】本発明は上記の従来例の問題点に鑑みて発
明したものであって、その目的とするところは、土留め
壁に水が浸透することによって生じる電気的な変化を測
定し、土留め壁における浸透場所、浸透量を初期の段階
で察知することができる土留め壁の止水管理方法及びそ
の装置を提供するにある。
The present invention has been made in view of the problems of the above-mentioned conventional example, and its purpose is to measure the electrical change caused by the permeation of water into the earth retaining wall and measure the soil. (EN) It is an object to provide a water stop management method and device for an earth retaining wall, which can detect an infiltration site and an infiltration amount in the retaining wall at an early stage.

【0005】[0005]

【課題を解決するための手段】上記の従来例の問題点を
解決して本発明の目的を達成するため、本発明の土留め
壁の止水管理方法は、土留め壁1自体の異なる位置に複
数の電極2を配設し、電極2間の電気量を測定し、電気
量の変化に基づき土留め壁1における水の浸透箇所を推
定することを特徴とするものである。そして、測定する
電気量は例えばインピーダンスであることが好ましい。
In order to solve the problems of the above-mentioned conventional examples and to achieve the object of the present invention, the method of managing the water stop of the earth retaining wall of the present invention is different in position of the earth retaining wall 1 itself . It is characterized in that a plurality of electrodes 2 are arranged on the ground, the amount of electricity between the electrodes 2 is measured, and the place where water permeates the earth retaining wall 1 is estimated based on the change in the amount of electricity. And it is preferable that the amount of electricity to be measured is, for example, impedance.

【0006】また、本発明の土留め壁1の止水管理装置
は、土留め壁1自体の異なる位置に埋設された複数の電
極2と、任意の電極2間の電気量を測定するための計測
装置3とより成ることを特徴とするものであり、計測装
置3として例えばインピーダンスを測定するための計測
装置3であることが好ましい。また、計測結果に基づい
て土留め壁1自体における水の浸透箇所を表示する表示
装置4を設ける構成とすることが好ましい。
Further, the water stop management device for the earth retaining wall 1 of the present invention is for measuring a quantity of electricity between a plurality of electrodes 2 buried in different positions of the earth retaining wall 1 itself and an arbitrary electrode 2. It is characterized in that it comprises a measuring device 3, and the measuring device 3 is preferably a measuring device 3 for measuring impedance, for example. In addition, it is preferable to provide a display device 4 that displays a water permeation site in the earth retaining wall 1 itself based on the measurement result.

【0007】また、計測結果に基づいて水の浸透が所定
量以上の場合に警報する警報手段9を設ける構成とする
ことも好ましい。
It is also preferable to provide an alarm means 9 for issuing an alarm when the permeation of water exceeds a predetermined amount based on the measurement result.

【0008】[0008]

【作用】しかして、上記のような方法、装置の本発明に
よれば、土留め壁1自体の異なる位置に複数の電極2を
配設し、電極2間の電気量を計測装置3により測定す
る。そして、水の浸透があると、ある電極2間の電気量
の変化の割合が他の電極2間の電気量の変化の割合と異
なるので、これに基づき土留め壁1における水の浸透箇
所を推定するものであり、この時の電気量の変化量によ
り水の浸透量も推定するものである。
According to the present invention of the method and apparatus as described above, a plurality of electrodes 2 are arranged at different positions on the earth retaining wall 1 itself , and the amount of electricity between the electrodes 2 is measured by the measuring device 3. To do. When water permeates, the rate of change in the amount of electricity between the electrodes 2 differs from the rate of change in the amount of electricity between the other electrodes 2. The amount of permeation of water is also estimated by the amount of change in the amount of electricity at this time.

【0009】また、計測結果に基づいて土留め壁1自体
における水の浸透箇所を表示する表示装置4を設ける
と、表示装置4により土留め壁1のどの場所が水の浸透
箇所であるかが簡単に確認できるものである。また、計
測結果に基づいて水の浸透が所定量以上の場合に警報す
る警報手段9を設ける構成とすると、水漏れが初期の段
階で警報できて、避難が早期にでき、また、止水を防止
するための対策に早期にかかれるものである。
Further, if a display device 4 is provided for displaying the water penetration place on the earth retaining wall 1 itself based on the measurement result, which place on the earth retaining wall 1 will be displayed by the display device 4. Can be easily confirmed. Further, when the alarm means 9 is provided to warn when the permeation of water is greater than or equal to a predetermined amount based on the measurement result, water leak can be warned at an early stage, evacuation can be performed early, and water stoppage can be stopped. Measures for prevention are taken early.

【0010】[0010]

【実施例】以下、本発明を添付図面に示す実施例に基づ
いて詳述する。土留め壁1は従来から公知の工法により
地盤6に造成される。一例を挙げれば、地盤6を掘削機
により掘削すると共に掘削孔にセメントミルク等の固結
用材を注入し、固結用材と掘削土砂とを攪拌混合してソ
イルセメントなどの柱体を形成し、これを連続して形成
することでソイルセメントなどの土留め壁1を形成する
ものである。土留め壁1にはH鋼のような補強材5が埋
入されるものである。この補強材5は土留め壁1が硬化
する前に埋入する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the accompanying drawings. The earth retaining wall 1 is constructed on the ground 6 by a conventionally known method. To give an example, the ground 6 is excavated by an excavator and a consolidating material such as cement milk is injected into the excavation hole, and the consolidating material and excavated earth and sand are stirred and mixed to form a pillar body such as soil cement, By continuously forming this, the earth retaining wall 1 such as soil cement is formed. A reinforcing material 5 such as H steel is embedded in the earth retaining wall 1. The reinforcing material 5 is embedded before the earth retaining wall 1 is hardened.

【0011】上記のような土留め壁1には土留め壁1
体の複数箇所に電極2が埋設して配置してある。そし
て、電極2にはリード線7が接続してあって、リード線
7は土留め壁1から外部に導出してある。ここで、土留
め壁1の複数箇所に電極2を埋設するには、例えば、任
意の補強材5の上下方向の複数箇所に電極2を絶縁材を
介して取付け、この電極2付きの補強材5を土留め壁1
に任意のピッチで埋入することで、土留め壁1の上下方
向及び横方向の複数箇所にそれぞれ電極2を埋設するこ
とができる。もちろん、土留め壁1を形成後、土留め壁
1の内側を掘削して地下建造物を構築する際に露出した
土留め壁1の内側面部の上下方向及び横方向の複数箇所
にそれぞれ電極2を埋入して土留め壁1の上下方向及び
横方向の複数箇所に電極2を配設するようにしてもよ
い。この場合は補強材5がなくても電極2を埋設するこ
とができる。
The earth retaining wall 1 as described above includes the earth retaining wall 1 itself.
Electrodes 2 are embedded and arranged at a plurality of locations on the body . A lead wire 7 is connected to the electrode 2, and the lead wire 7 is led out from the earth retaining wall 1 to the outside. Here, in order to embed the electrodes 2 in a plurality of places of the earth retaining wall 1, for example, the electrodes 2 are attached to a plurality of vertical positions of an arbitrary reinforcing member 5 via an insulating material, and the reinforcing member with the electrode 2 is attached. 5 retaining wall 1
The electrodes 2 can be embedded at a plurality of positions in the vertical direction and the lateral direction of the earth retaining wall 1 by burying the electrodes 2 at an arbitrary pitch. Of course, after the earth retaining wall 1 is formed, the electrodes 2 are respectively provided at a plurality of vertical and horizontal positions on the inner side surface of the earth retaining wall 1 exposed when the inside of the earth retaining wall 1 is excavated to construct an underground structure. Alternatively, the electrodes 2 may be disposed at a plurality of positions in the vertical direction and the lateral direction of the earth retaining wall 1 by embedding. In this case, the electrode 2 can be embedded without the reinforcing material 5.

【0012】土留め壁1の上下方向及び横方向の複数箇
所に埋設した各電極2に接続されて外部に導出された各
リード線7は計測装置3に接続してある。ここで、計測
装置3においては、各電極2間の電気量を測定するよう
になっており、実施例においては各電極2間のインピー
ダンスを測定するようになっている。そして、水の浸透
がない場合には各電極2間のインピーダンスは変化しな
いが、土留め壁1のある場所に水の浸透があると、水の
浸透により水の浸透の影響を受ける電極2間のインピー
ダンスが低下する。この場合、ある電極2間はインピー
ダンスの変化の割合が大きく、また別の電極2間はイン
ピーダンスの変化の割合が比較的小さく、また、水の浸
透箇所から遠く離れた箇所の電極2間においては、イン
ピーダンスの変化ががほとんどなかったり、あるいは変
化の割合がきわめて小さいといったように、各電極2間
のインピーダンスの変化の割合が異なるものである。そ
して、この電極2間のインピーダンスの変化の割合の違
いに基づいて、土留め壁1における水の浸透箇所を推定
するものである。この時、同時にインピーダンスの変化
量により水の浸透量も推定する。
Each lead wire 7 connected to each electrode 2 buried in a plurality of vertical and lateral positions of the earth retaining wall 1 and led out to the outside is connected to a measuring device 3. Here, in the measuring device 3, the amount of electricity between the electrodes 2 is measured, and in the embodiment, the impedance between the electrodes 2 is measured. When the water does not permeate, the impedance between the electrodes 2 does not change. However, when the water is permeated at the place where the earth retaining wall 1 exists, the water between the electrodes 2 is affected by the permeation of the water. Impedance will decrease. In this case, the rate of change in impedance between the electrodes 2 is large, the rate of change in impedance between the other electrodes 2 is relatively small, and between the electrodes 2 far away from the water permeation site. The ratio of change in impedance between the electrodes 2 is different, such that there is almost no change in impedance or the ratio of change is extremely small. Then, based on the difference in the rate of change in impedance between the electrodes 2, the place where water permeates the earth retaining wall 1 is estimated. At this time, the permeation amount of water is estimated at the same time by the change amount of impedance.

【0013】計測装置3はマイクロコンピュータのよう
な制御手段8により制御されるようになっており、一定
時間毎に各電極2間のインピーダンスを測定し、この測
定結果をディスプレーのような表示装置4に表示した
り、プリンター10で打ち出すようになっている。そし
て、水の浸透があった場合、計測信号を制御手段8によ
り処理し、土留め壁1のどの場所にどの程度の水の浸透
量があるのかを表示装置4に表示するようになってい
る。この場合、更に、異常とされる水の浸透量の場合に
はブザー、光、その他の警報手段9により異常を報知す
る。
The measuring device 3 is controlled by a control means 8 such as a microcomputer, measures the impedance between the electrodes 2 at regular intervals, and displays the measurement result on a display device 4 such as a display. And is displayed by the printer 10. Then, when water has penetrated, the measurement signal is processed by the control means 8 and the display device 4 displays which part of the earth retaining wall 1 and how much water penetrates. . In this case, if the amount of water permeated is abnormal, a buzzer, light, or other alarm means 9 is used to notify the abnormality.

【0014】上記のようにして、土留め壁1のどの場所
にどの程度の水の浸透量があるかを初期の段階で察知す
ることで、土留め壁1の必要な場所のみに必要な止水工
事を初期の段階で行うことができ、このことにより湧き
水による地盤沈下や地下工事の中断、あるいは事故等を
防止することができることになる。次に、具体的実験例
につき説明する。
As described above, by recognizing at which place of the earth retaining wall 1 and how much water permeates in the initial stage, the stop required only at the necessary place of the earth retaining wall 1 is detected. Water works can be carried out at an early stage, which will prevent ground subsidence due to spring water, interruption of underground works, or accidents. Next, a specific experimental example will be described.

【0015】(実験1)砂に含水比が5%となるように
水を加え、図3に示すような縦24cm、横32cm、
高さ12cmのプラスチック製のボックス13内に単位
体積重量1.45gf/cm3 になるように突き固め
る。次に、電極2を図3のようにボックス13内の4隅
に埋入する。この状態で、図4のイで示す部分(直径6
cmの円の枠内)に水を100ml単位で500mlま
で浸透させる。この場合における図において形成される
〜の6つの回路のインピーダンスの変化を測定し
た。ここで、測定周波数は120Hz、測定回路モード
は抵抗素子(R,G)とリアクタンス素子(L,C)の
並列等価回路である。また上記〜の回路は、電極2
aと電極2bとの間の等価回路をとし、同様にして電
極2cと電極2dとの間の等価回路をとし、電極2a
と電極2cとの間の等価回路をとし、電極2bと電極
2dとの間の等価回路をとし、同様にして電極2aと
電極2dとの間の等価回路をとし、電極2cと電極2
bとの間の等価回路をとしたものである。測定結果を
下記の表1に示し、この表1をグラフにしたものを図5
に示す。
(Experiment 1) Water was added to sand so that the water content ratio was 5%, and the length was 24 cm and the width was 32 cm as shown in FIG.
It is compacted in a plastic box 13 having a height of 12 cm so as to have a unit volume weight of 1.45 gf / cm 3 . Next, the electrodes 2 are embedded in the four corners of the box 13 as shown in FIG. In this state, the part (diameter 6
Water is permeated up to 500 ml in units of 100 ml). In this case, changes in impedance of the six circuits (1) to (3) formed in the figure were measured. Here, the measurement frequency is 120 Hz, and the measurement circuit mode is a parallel equivalent circuit of resistance elements (R, G) and reactance elements (L, C). Also, the above-mentioned circuits are for the electrode 2
a is an equivalent circuit between the electrode 2b and similarly, an equivalent circuit between the electrode 2c and the electrode 2d is defined as
And an electrode 2c, an equivalent circuit between the electrodes 2b and 2d, an equivalent circuit between the electrodes 2a and 2d, and an electrode 2c and an electrode 2c.
This is an equivalent circuit with b. The measurement results are shown in Table 1 below, and a graph of this Table 1 is shown in FIG.
Shown in

【0016】(実験2)実験1と同様にして、図6のロ
で示す部分(直径6cmの円の枠内)に水を100ml
単位で500mlまで浸透させる。この場合における図
6において形成される〜の6つの回路のインピーダ
ンスの変化を測定した。この場合も、測定周波数120
Hz、測定回路モードは抵抗素子(R,G)とリアクタ
ンス素子(L,C)の並列等価回路である。インピーダ
ンスの測定結果を、下記の表2に示し、表2をグラフに
したものをそれぞれ図7に示す。
(Experiment 2) In the same manner as in Experiment 1, 100 ml of water was added to the portion indicated by "b" in FIG. 6 (in the frame of a circle having a diameter of 6 cm).
Soak up to 500 ml per unit. In this case, the changes in the impedance of the six circuits (1) to (3) formed in FIG. 6 were measured. Also in this case, the measurement frequency 120
Hz, the measurement circuit mode is a parallel equivalent circuit of a resistance element (R, G) and a reactance element (L, C). The impedance measurement results are shown in Table 2 below, and a graph of Table 2 is shown in FIG. 7, respectively.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】上記表1及び図5により明らかなように、
電極2aと2dとの間の等価回路、電極2bと電極2
cとの間の等価回路のインピーダンスの変化の割合が
ほぼ同じで一番大きく、また、電極2aと電極2cとの
間の等価回路と電極2bと電極2dとの間の等価回路
のインピーダンスの変化の割合がほぼ同じで一番小さ
く、また、電極2aと電極2bとの間の等価回路と電
極2cと電極2dとの間の等価回路のインピーダンス
の変化の割合がほぼ同じで中間の変化量であることが判
る。このデータを分析すると、図4のイで示す電極2a
と電極2dを結んだ線と電極2bと電極2cとを結んだ
線の交わる部分の近くが浸水場所であると推定できる。
そして、インピーダンスがどれだけ変化したかにより浸
水量も推定できる。
As is clear from Table 1 and FIG.
Equivalent circuit between electrodes 2a and 2d, electrode 2b and electrode 2
The rate of change in the impedance of the equivalent circuit between C and C is the same and the largest, and the change in impedance of the equivalent circuit between the electrodes 2a and 2c and between the electrodes 2b and 2d is the largest. Is the same and is the smallest, and the rate of change in impedance of the equivalent circuit between the electrode 2a and the electrode 2b and that of the equivalent circuit between the electrode 2c and the electrode 2d are almost the same, and the change amount is in the middle. I know there is. When this data is analyzed, the electrode 2a shown in FIG.
It can be presumed that the inundation location is near the intersection of the line connecting the electrode 2d and the line connecting the electrode 2b and the electrode 2c.
The amount of inundation can also be estimated based on how much the impedance has changed.

【0020】また、上記表2及び図7により明らかなよ
うに、電極2aと電極2bとの間の等価回路のインピ
ーダンスの変化量が一番大きく、電極2aと2dとの間
の等価回路、電極2bと電極2cとの間の等価回路
のインピーダンスの変化の割合がほぼ同じで次に変化量
が大きく、また、電極2aと電極2cとの間の等価回路
と電極2bと電極2dとの間の等価回路のインピー
ダンスの変化の割合がほぼ同じで変化量が小さく、ま
た、電極2cと電極2dとの間の等価回路のインピー
ダンスの変化の割合が一番小さいことが判る。このデー
タを分析すると、浸水場所が電極2aと電極2bとを結
んだ線と電極2aと電極2dを結んだ線と電極2bと電
極2cとを結んだ線とにより囲まれた部分の図6のロで
示す場所であることが推定できる。そして、インピーダ
ンスがどれだけ変化したかにより浸水量も推定できる。
As is clear from Table 2 and FIG. 7, the amount of change in impedance of the equivalent circuit between the electrodes 2a and 2b is the largest, and the equivalent circuit between the electrodes 2a and 2d 2b and the electrode 2c, the rate of change in impedance of the equivalent circuit is substantially the same, and the amount of change is the next largest, and the equivalent circuit between the electrode 2a and the electrode 2c and the electrode between the electrode 2b and the electrode 2d are the same. It can be seen that the rate of change in impedance of the equivalent circuit is almost the same and the amount of change is small, and the rate of change in impedance of the equivalent circuit between the electrodes 2c and 2d is the smallest. When this data is analyzed, the part of FIG. 6 in which the place of flooding is surrounded by the line connecting the electrodes 2a and 2b, the line connecting the electrodes 2a and 2d, and the line connecting the electrodes 2b and 2c. It can be presumed that it is the place shown in B. The amount of inundation can also be estimated based on how much the impedance has changed.

【0021】上記実験は砂に水を加えた場合の実験であ
るが、次に、砂と水とセメントとの混合による固結体で
実験した例につき説明する。 (実験3)砂に含水比が10%となるように水を加え、
次に普通ポルトランドセメントを6%混合し、これを実
験1に用いたプラスチック製のボックス13内に単位体
積重量1.6gf/cm3 になるように突き固める。次
に、電極2を図8のようにボックス13内の4隅に埋入
する。この状態で、図8のハで示す部分(直径6cmの
円の枠内)に水を100ml単位で500mlまで浸透
させる。この場合における図8において形成される〜
の6つの回路のインピーダンスの変化を測定した。こ
こで、測定周波数は120Hz、測定回路モードは抵抗
素子(R,G)とリアクタンス素子(L,C)の並列等
価回路である。測定結果を、下記の表3に示し、この表
3をグラフにしたものを図9に示す。
The above experiment is an experiment in which water is added to sand. Next, an example of an experiment on a solidified body by mixing sand, water and cement will be described. (Experiment 3) Add water to the sand so that the water content ratio is 10%,
Next, 6% of ordinary Portland cement was mixed, and this was tamped in the plastic box 13 used in Experiment 1 so that the unit volume weight was 1.6 gf / cm 3 . Next, the electrodes 2 are embedded in the four corners of the box 13 as shown in FIG. In this state, water is permeated up to 500 ml in 100 ml units in the portion indicated by C in FIG. 8 (inside the frame of a circle having a diameter of 6 cm). Formed in FIG. 8 in this case
The changes in the impedance of the six circuits were measured. Here, the measurement frequency is 120 Hz, and the measurement circuit mode is a parallel equivalent circuit of resistance elements (R, G) and reactance elements (L, C). The measurement results are shown in Table 3 below, and a graph of Table 3 is shown in FIG.

【0022】[0022]

【表3】 [Table 3]

【0023】上記表3及び図9により明らかなように、
電極2aと2dとの間の等価回路、電極2bと電極2
cとの間の等価回路のインピーダンスの変化の割合が
ほぼ同じで一番大きく、また、電極2aと電極2cとの
間の等価回路と電極2bと電極2dとの間の等価回路
のインピーダンスの変化の割合がほぼ同じで一番小さ
く、また、電極2aと電極2bとの間の等価回路と電
極2cと電極2dとの間の等価回路のインピーダンス
の変化の割合がほぼ同じで中間の変化量であることが判
る。このデータを分析すると、図8のハで示す電極2a
と電極2dを結んだ線と電極2bと電極2cとを結んだ
線の交わる部分の近くが浸水場所であると推定できる。
このように、砂と水とセメントとの固結体も、実験1や
実験2で示した砂と水との混合物のものと同様に電極2
間のインピーダンスを測定することで、浸水場所が推定
できるのである。また、そして、インピーダンスがどれ
だけ変化したかにより浸水量も推定できる。
As is clear from Table 3 and FIG. 9,
Equivalent circuit between electrodes 2a and 2d, electrode 2b and electrode 2
The rate of change in the impedance of the equivalent circuit between C and C is the same and the largest, and the change in impedance of the equivalent circuit between the electrodes 2a and 2c and between the electrodes 2b and 2d is the largest. Is the same and is the smallest, and the rate of change in impedance of the equivalent circuit between the electrode 2a and the electrode 2b and that of the equivalent circuit between the electrode 2c and the electrode 2d are almost the same, and the change amount is in the middle. I know there is. When this data is analyzed, the electrode 2a shown by C in FIG.
It can be presumed that the inundation location is near the intersection of the line connecting the electrode 2d and the line connecting the electrode 2b and the electrode 2c.
As described above, the solidified body of sand, water, and cement also has the same electrode 2 as that of the mixture of sand and water shown in Experiment 1 and Experiment 2.
The inundation location can be estimated by measuring the impedance between them. Also, the amount of inundation can be estimated by how much the impedance changes.

【0024】上記実施例においては、電極間の電気量を
測定するに当たり、インピーダンスの変化に基づき土留
め壁における水の浸透箇所を推定した例を示したが、電
極2間の電気量の変化の測定としては、インピーダンス
の変化の測定のみに限定されるものではない。電極2間
の静電容量の変化を測定したり、あるいは、電極2間の
インダクタンスの変化を測定したりして水の浸透箇所、
浸透量を推定するようにしてもよいものである。
In the above embodiment, when measuring the amount of electricity between the electrodes, an example of estimating the permeation point of water in the earth retaining wall based on the change in impedance was shown. The measurement is not limited to measurement of changes in impedance. By measuring the change in the capacitance between the electrodes 2 or by measuring the change in the inductance between the electrodes 2,
The permeation amount may be estimated.

【0025】[0025]

【発明の効果】本発明にあっては、上述のように、土留
め壁自体の異なる位置に複数の電極を配設し、電極間の
電気量を測定し、電気量の変化に基づき土留め壁におけ
る水の浸透箇所を推定するので、土留め壁の一部から浸
水がある場合、浸水の初期の段階で土留め壁のどの場所
で、どの程度の浸水があるのかが推定でき、事故が発生
する前に土留め壁の必要な箇所のみ必要な止水工事を行
えばよく、この結果、はじめから土留め壁全体を必要以
上に厚く形成したり、あるいはセメント成分やその他の
固結成分の量を必要以上に増量したりする必要がなくて
コストダウンがはかれ、土留め壁を安全な状態に管理す
ることができるものであり、また、土留め壁自体の異な
る位置に複数の電極を配設し、電極間の電気量を測定
し、電気量の変化に基づき土留め壁における水の浸透箇
所を推定するので、土留め壁の内側において掘削工事、
地下構築物の構築工事を行っている最中に常時土留め壁
の漏水を検知することができ、また、土留め壁の内側の
掘削底面よりも上方に突出している土留め壁部分の目で
は見えない漏水箇所でも確実に見つけることができる
のである。
According to the present invention, as described above, a plurality of electrodes are arranged at different positions on the earth retaining wall itself , the electric quantity between the electrodes is measured, and the earth retaining piece is based on the change in the electric quantity. Since the location of water infiltration into the wall is estimated, if there is inundation from a part of the retaining wall, it is possible to estimate where and how much the retaining wall is in the initial stage of the inundation, and the accident will occur. Before the occurrence of water, it is only necessary to carry out the necessary water stop work on the required part of the retaining wall.As a result, the entire retaining wall should be made thicker than necessary from the beginning, or the cement component and other solidified components should not be formed. It is possible to manage the earth retaining wall in a safe state without the need to increase the amount more than necessary , and the earth retaining wall itself is different.
Multiple electrodes are placed at different positions and the amount of electricity between the electrodes is measured
However, due to changes in the amount of electricity, the penetration of water in the retaining wall
Since the location is estimated, excavation work inside the retaining wall,
Earth retaining wall at all times during construction of underground structures
Can detect water leaks in the
With the eyes of the earth retaining wall protruding above the bottom of the excavation
It can be reliably found even at invisible water leaks . <br/>

【0026】しかも、本発明における装置は、土留め壁
自体の異なる位置に埋設された複数の電極と、任意の電
極間の電気量を測定するための計測装置とより成るの
で、簡単な構成で、土留め壁の浸水箇所及び浸水量を初
期の段階でつかむことができるものである。しかも、計
測結果に基づいて土留め壁における水の浸透箇所を表示
する表示装置を設けることで、土留め壁のどの場所が水
の浸透している箇所であるかを表示装置で表すことがで
きて、浸透箇所が一目で判るものであり、特に、土留め
壁の内側において掘削工事、地下構築物の構築工事を行
っている最中に常時土留め壁の漏水を検知することがで
き、また、土留め壁の内側の掘削底面よりも上方に突出
している土留め壁部分で漏水が発生したとしても(例え
それが目に見えない程度の漏水であっても)確実に漏水
箇所を見つけることができるものである。
Moreover, the device according to the present invention is provided with an earth retaining wall.
It consists of multiple electrodes buried in different positions of itself and a measuring device for measuring the amount of electricity between arbitrary electrodes. You can grab it with. Moreover, by providing a display device that displays the water penetration point on the earth retaining wall based on the measurement result, it is possible to indicate which part of the earth retaining wall is the place where the water penetrates. Te state, and are not penetration point is seen at a glance, in particular, earth retaining
Excavation work and construction of underground structures are performed inside the walls
It is possible to detect water leakage on the earth retaining wall at any time during
And project above the bottom of the excavation inside the earth retaining wall.
Even if water leakage occurs in the retaining wall that is being used (for example,
Reliable leakage (even if it is invisible)
Ru Der what you can find a place.

【0027】また、計測結果に基づいて水の浸透が所定
量以上の場合に警報する警報手段9を設ける構成とする
と、水漏れが初期の段階で警報できて、避難が早期にで
き、また、止水を防止するための対策に早期にかかれる
ものである。
Further, if the alarm means 9 is provided to warn when the permeation of water exceeds a predetermined amount based on the measurement result, water leak can be warned at an early stage, and evacuation can be performed early. Measures to prevent water stoppage are taken early.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略斜視図である。FIG. 1 is a schematic perspective view of an embodiment of the present invention.

【図2】同上の制御を示すブロック図である。FIG. 2 is a block diagram showing control of the above.

【図3】(a)(b)は同上の実験に用いるボックスの
平面図及び断面図である。
3 (a) and 3 (b) are a plan view and a cross-sectional view of a box used in the same experiment.

【図4】同上の実験1の説明図である。FIG. 4 is an explanatory diagram of Experiment 1 of the above.

【図5】同上の実験1における各電極間のインーピダン
スの変化を示すグラフである。
FIG. 5 is a graph showing changes in impedance between electrodes in Experiment 1 of the same.

【図6】同上の実験2の説明図である。FIG. 6 is an explanatory diagram of Experiment 2 of the above.

【図7】同上の実験2における各電極間のインーピダン
スの変化を示すグラフである。
FIG. 7 is a graph showing changes in impedance between electrodes in Experiment 2 of the same.

【図8】同上の実験3の説明図である。FIG. 8 is an explanatory diagram of Experiment 3 of the above.

【図9】同上の実験3における各電極間のインーピダン
スの変化を示すグラフである。
FIG. 9 is a graph showing changes in impedance between electrodes in Experiment 3 of the above.

【符号の説明】[Explanation of symbols]

1 土留め壁 2 電極 3 計測装置 4 表示装置 9 警報手段 1 earth retaining wall 2 electrode 3 measuring device 4 display device 9 alarm means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 土留め壁自体の異なる位置に複数の電極
を配設し、電極間の電気量を測定し、電気量の変化に基
づき土留め壁における水の浸透箇所を推定することを特
徴とする土留め壁の止水管理方法。
1. A plurality of electrodes are arranged at different positions on the earth retaining wall itself , the amount of electricity between the electrodes is measured, and the place where water penetrates into the earth retaining wall is estimated based on the change in the amount of electricity. How to control the still water of the earth retaining wall.
【請求項2】 土留め壁自体の異なる位置に複数の電極
を配設し、電極間のインピーダンスを測定し、インピー
ダンスの変化に基づき土留め壁における水の浸透箇所を
推定することを特徴とする土留め壁の止水管理方法。
2. A plurality of electrodes are arranged at different positions on the earth retaining wall itself , impedance between the electrodes is measured, and a place where water permeates into the earth retaining wall is estimated based on a change in impedance. How to manage the still water of the retaining wall.
【請求項3】 土留め壁自体の異なる位置に埋設された
複数の電極と、任意の電極間の電気量を測定するための
計測装置とより成ることを特徴とする土留め壁の止水管
理装置。
3. A water retaining management of the earth retaining wall, comprising a plurality of electrodes buried in different positions of the earth retaining wall itself and a measuring device for measuring an electric quantity between arbitrary electrodes. apparatus.
【請求項4】 土留め壁自体の異なる位置に埋設された
複数の電極と、任意の電極間のインピーダンスを測定す
るための計測装置とより成ることを特徴とする土留め壁
の止水管理装置。
4. A water retaining management device for a retaining wall, comprising a plurality of electrodes buried in different positions of the retaining wall itself and a measuring device for measuring impedance between arbitrary electrodes. .
【請求項5】 計測装置の計測結果に基づいて土留め壁
自体における水の浸透箇所を表示する表示装置を設けて
成ることを特徴とする請求項3又は請求項4記載の土留
め壁の止水管理装置。
5. The earth retaining wall based on the measurement result of the measuring device
The water stop management device for the earth retaining wall according to claim 3 or 4, further comprising a display device for displaying a water permeation point in itself .
【請求項6】 計測装置の計測結果に基づいて水の浸透
が所定量以上の場合に警報する警報手段を設けて成るこ
とを特徴とする請求項3又は請求項4又は請求項5記載
の土留め壁の止水管理装置。
6. The soil according to claim 3, further comprising alarm means for alarming when water permeation exceeds a predetermined amount based on the measurement result of the measuring device. Water stop management device for retaining wall.
JP5125645A 1993-05-27 1993-05-27 Method and apparatus for managing water stop of earth retaining wall Expired - Fee Related JPH0830340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5125645A JPH0830340B2 (en) 1993-05-27 1993-05-27 Method and apparatus for managing water stop of earth retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5125645A JPH0830340B2 (en) 1993-05-27 1993-05-27 Method and apparatus for managing water stop of earth retaining wall

Publications (2)

Publication Number Publication Date
JPH06336734A JPH06336734A (en) 1994-12-06
JPH0830340B2 true JPH0830340B2 (en) 1996-03-27

Family

ID=14915153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5125645A Expired - Fee Related JPH0830340B2 (en) 1993-05-27 1993-05-27 Method and apparatus for managing water stop of earth retaining wall

Country Status (1)

Country Link
JP (1) JPH0830340B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551602B2 (en) * 1996-02-19 2004-08-11 前田建設工業株式会社 Drilling hole water leak position measuring method and measuring device
CN110397044A (en) * 2019-07-22 2019-11-01 中铁第四勘察设计院集团有限公司 The prominent foundation ditch construction method and foundation pit structure gushed of anti-artesian water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099025B2 (en) * 1991-11-28 2000-10-16 株式会社間組 Method of detecting leakage from earth retaining wall

Also Published As

Publication number Publication date
JPH06336734A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
CN111795676B (en) Dam dangerous case emergency early warning system
JP4859454B2 (en) Erosion measuring device, its construction method and real-time monitoring system
CN104329076B (en) A kind of deviational survey hole osmotic pressure counter device and installation method
CN106638719B (en) Bored pile piling quality automatic monitoring controller and method
KR101432453B1 (en) Leak detection device using a diagnostic procedure
KR100955599B1 (en) Apparatus for auto measuring underground water level
CN106988179A (en) A kind of road structure for preventing salinized soil from corroding and its construction method
US6371692B1 (en) Device for early detection of underground utilities during excavation and method of using the same
CN204491639U (en) A kind of marine cofferdam preventing infiltration, prevent erosion
RU2393290C2 (en) Method for monitoring safety of earth dam and device for its implementation
CN111335904A (en) Shield downward-penetrating building construction monitoring method
JPH0830340B2 (en) Method and apparatus for managing water stop of earth retaining wall
JPH03152420A (en) Method and apparatus for measuring movement of ground
CN108955741A (en) A kind of device and method suitable for Dumping Sites safety monitoring
KR20040108384A (en) The universal instrumentation apparatus for the measure sinking value of the soft ground
JP3550893B2 (en) How to check the filling status of cast concrete
CN108677939B (en) Pile end post-grouting failure handling method and device
CN113931697A (en) Tunnel water seepage early warning device and tunnel water seepage monitoring and processing method
US20160341614A1 (en) Sinkhole detection systems and methods
KR200373187Y1 (en) The instrumentation apparatus for the measure sinking value fo the soft ground
CN206666958U (en) A kind of road structure for preventing salinized soil from corroding
CN114482014A (en) Hammering pile sinking construction method for precast pile in deep foundation pit in offshore super-thick sludge area
JP2005262021A (en) System for detection and repair of water leakage in sealing work
CN217878120U (en) Horizontal soil pressure monitoring device
JP3967016B2 (en) Underground water level detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960910

LAPS Cancellation because of no payment of annual fees