JPH08303205A - Turbine moving blade - Google Patents

Turbine moving blade

Info

Publication number
JPH08303205A
JPH08303205A JP11283095A JP11283095A JPH08303205A JP H08303205 A JPH08303205 A JP H08303205A JP 11283095 A JP11283095 A JP 11283095A JP 11283095 A JP11283095 A JP 11283095A JP H08303205 A JPH08303205 A JP H08303205A
Authority
JP
Japan
Prior art keywords
blade
leaf spring
face
rotor
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11283095A
Other languages
Japanese (ja)
Inventor
Shigeki Senoo
茂樹 妹尾
Kiyoshi Namura
清 名村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11283095A priority Critical patent/JPH08303205A/en
Publication of JPH08303205A publication Critical patent/JPH08303205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To prevent vibration of a moving blade alone so as to increase rigidity by arranging semi-elliptic holes along the longitudinal directions of respective face on the opposed side faces between integral shrouds. CONSTITUTION: A moving blade 1 consists of a dovetail 2 to be inserted into a disk in a rotor, a blade part 3, and an integral shroud 4. On a circumferential end face 4a in the integral shroud 4, a send-elliptic hole 5 along the longitudinal direction of the integral shroud side face is perforated for insertion of a plate spring. In the same way, a hole 5 for insertion of a plate spring is perforated in a face 4b opposed to the circumferential end face 4a in the integral shroud 4. When the dove tail 2 is inserted into a blade groove and a circular blade cascade is formed, the holes 5 function as a single hole along the longitudinal direction of a single elliptic integral shroud side face. In this way, connection effect between the adjacent integral shrouds is generated, so that rigidity increasing effect and vibration damping effect for the circular blade cascade can be accomplished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はタービンのロータに植込
まれて環状翼列を形成する一体に削りだされたシュラウ
ド付動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shrouded rotor blade which is integrally machined into a rotor of a turbine to form an annular blade row.

【0002】[0002]

【従来の技術】軸流タービンはロータのディスクの周囲
に設けられた環状の翼溝に植込まれて環状翼列を形成す
る動翼を備え、この動翼と段落を形成する静翼から流出
する流体が動翼に吹き付けられてロータを回転させ、動
力を発生する。
2. Description of the Related Art An axial turbine includes a rotor blade which is embedded in an annular blade groove formed around a disk of a rotor to form an annular blade row, and flows out from a stationary blade which forms a paragraph with the rotor blade. The rotating fluid is blown onto the rotor blades to rotate the rotor and generate power.

【0003】このような動翼の一つとして図6に示すも
のが知られている。図6で動翼1はロータのディスクに
植込まれるダブテール2と、ダブテール2から延びる翼
部3と、翼部3の上端を覆うインテグラルシュラウド4
とからなり、ダブテール2,翼部3,インテグラルシュ
ラウド4は一体に削りだされている。
As one of such moving blades, one shown in FIG. 6 is known. In FIG. 6, a rotor blade 1 includes a dovetail 2 that is implanted in a disk of a rotor, a blade portion 3 that extends from the dovetail 2, and an integral shroud 4 that covers an upper end of the blade portion 3.
The dovetail 2, wings 3, and integral shroud 4 are machined together.

【0004】このような動翼は、図7に示すように複数
の隣接する動翼1のインテグラルシュラウド4の対向す
る側面4a,4bが互いに接し、またダブテール2も同
様にその側面が接するようにロータに設けられたディス
クに植込まれて環状翼列を形成している。
In such a moving blade, as shown in FIG. 7, the opposite side surfaces 4a and 4b of the integral shroud 4 of a plurality of adjacent moving blades 1 are in contact with each other, and the dovetail 2 is also in contact with the same side surface. And is embedded in a disk provided on the rotor to form an annular blade row.

【0005】このように環状翼列を形成する動翼は、隣
接する動翼のインテグラルシュラウドとダブテールとが
接することにより、タービン回転時に生じる動翼の振動
を減衰させ、振動を低減している。
As described above, in the moving blades forming the annular blade row, the integral shroud and the dovetail of the adjacent moving blades are in contact with each other, whereby the vibrations of the moving blades generated when the turbine is rotated are attenuated and the vibrations are reduced. .

【0006】[0006]

【発明が解決しようとする課題】上記のように形成され
た環状翼列の動翼では、タービン回転時発生する遠心力
や熱膨張により隣接するインテグラルシュラウド間に隙
間が空き、隣接する動翼が接触しなくなる。このため、
振動の減衰効果が失われ、動翼は単独で振動するので、
この振動による応力が大きくなり、最悪の場合、動翼が
破損するという問題があった。
In the rotor blades of the annular blade row formed as described above, there is a gap between the adjacent integral shrouds due to centrifugal force or thermal expansion generated when the turbine rotates, and the rotor blades adjacent to each other. No longer contact. For this reason,
Since the damping effect of vibration is lost and the blade vibrates independently,
There is a problem that the stress due to this vibration becomes large, and in the worst case, the moving blade is damaged.

【0007】本発明の目的は、タービン回転時環状翼列
を形成する動翼が単独で振動するのを防止でき、さらに
動翼同士を連結し、環状翼列の力学的構成単位が単独翼
ではなく複数の翼が連結された群翼にすることにより剛
性を増加させることのできる軸流タービン動翼を提供す
ることにある。
It is an object of the present invention to prevent the moving blades forming the annular blade row from vibrating independently when the turbine is rotating, and connecting the moving blades to each other so that the dynamic constituent unit of the annular blade row is not a single blade. Another object is to provide an axial flow turbine blade whose rigidity can be increased by forming a group blade in which a plurality of blades are connected.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明はロータの周囲に設けられた環状の翼溝に植
込まれるダブテールと、ダブテールから延びる翼部と、
翼部の上端を覆うインテグラルシュラウドが一体に削り
だされてなる動翼を順次そのダブテールを前記翼溝に挿
入し、所定ピッチで動翼を設置して環状翼列を形成する
軸流タービンの動翼で、翼溝にそのダブテールを挿入し
て環状翼列を形成する際に、インテグラルシュラウド間
の対向する側面に、それぞれの面の長手方向にそった半
楕円形状の穴を設け、シュラウドの対向する面が互いに
接するような形で向かい合うときに楕円形状の穴が形成
されるようし、その穴に板ばねを挿入し、かつ板ばねの
たわみをタービン回転時発生が予想されるインテグラル
シュラウド間の隙間より大きい状態で挿入し環状翼列を
形成する事により、回転中も所定の翼連結効果が得られ
るようにする。
In order to solve the above-mentioned problems, the present invention relates to a dovetail which is planted in an annular blade groove provided around a rotor, and a blade portion which extends from the dovetail.
Integral shroud covering the upper end of the blade is sequentially machined into a blade, and the dovetail is sequentially inserted into the blade groove, and the blade is installed at a predetermined pitch to form an annular blade row. When inserting the dovetail into the blade groove to form an annular blade row in a moving blade, semi-elliptical holes along the longitudinal direction of each surface are provided on the opposite side surfaces between the integral shrouds, and the shroud is formed. An oval hole is formed when the opposite surfaces of the blade face each other so that they face each other, a leaf spring is inserted into the hole, and the deflection of the leaf spring is expected to occur when the turbine is rotated integral. By inserting it in a state larger than the gap between the shrouds to form an annular blade row, a predetermined blade connection effect can be obtained even during rotation.

【0009】[0009]

【作用】動翼のインテグラルシュラウド間の板ばねは、
タービン回転時発生が予想されるインテグラルシュラウ
ド間の環状翼列周方向隙間に、インテグラルシュラウド
の対向する側面に設置した穴が互いに向き合って一つの
穴を形成した時の穴の深さを足しあわせたものよりも、
環状翼列周方向寸法の大きいものを用いる。タービン動
翼のインテグラルシュラウド周方向長さの和は、隙間な
く環状翼列を形成するように設計されているために、板
ばねは、動翼が前記の方法で環状翼列を形成する際、環
状翼列周方向に初期変形を与えられる。
[Function] The leaf spring between the integral shrouds of the rotor blade is
In the circumferential gap between the annular shrouds between the integral shrouds, which is expected to occur during turbine rotation, the holes installed on the opposite sides of the integral shroud face each other to form a single hole. More than happy
Use a large annular blade circumferential direction. Since the sum of the circumferential lengths of the turbine blades in the integral shroud is designed so as to form an annular blade row without a gap, a leaf spring is used when the blades form an annular blade row in the above method. , The initial deformation is given in the circumferential direction of the annular blade row.

【0010】この板ばねに与えた初期変形により環状翼
列周方向に弾性力が発生し、その初期弾性力が隣接イン
テグラルシュラウド間に初期張力として環状翼列周方向
に作用する。この板ばねによる環状翼列周方向張力によ
りタービン回転時の遠心力や熱膨張等によって隣接する
動翼のインテグラルシュラウド間に隙間が発生しても、
板ばねには予め十分変形を加えてあるので、常に板ばね
には環状翼列周方向張力が発生し、その張力により板ば
ねによる接触が常に保持され、隣接する動翼同士の連結
が常に保持されるために、環状翼列を構成する動翼は群
翼を成し、板ばねを挿入せずに単独翼となってしまう場
合に比べ剛性が増し、かつばねとシュラウドの摩擦によ
る振動減衰効果もあるため、動翼の破損を防止できる。
By the initial deformation applied to the leaf spring, an elastic force is generated in the circumferential direction of the annular blade row, and the initial elastic force acts between the adjacent integral shrouds as an initial tension in the circumferential direction of the annular blade row. Even if a gap occurs between the integral shrouds of adjacent moving blades due to centrifugal force or thermal expansion during turbine rotation due to the circumferential tension of the annular blade row due to this leaf spring,
Since the leaf spring has been sufficiently deformed in advance, tension is constantly generated in the leaf spring in the circumferential direction of the annular blade row, the contact by the leaf spring is always maintained by this tension, and the connection between adjacent blades is always maintained. Therefore, the rotor blades that form the annular blade row are group blades, and the rigidity is increased compared to the case where a blade is not inserted and it becomes a single blade, and the vibration damping effect due to the friction between the spring and the shroud. Therefore, the blades can be prevented from being damaged.

【0011】[0011]

【実施例】以下、本発明の実施例を図面によって説明す
る。図1は本発明の実施例を示す動翼の側面図、図2は
動翼先端部を半径方向外周側より見た平面図である。図
1,図2で動翼1はロータのディスクに植込まれるダブ
テール2と、ダブテール2から延びる翼部3と、翼部3
の上端を覆うインテグラルシュラウド4とからなり、ダ
ブテール2,翼部3,インテグラルシュラウド4は一体
に削りだされている。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a side view of a rotor blade showing an embodiment of the present invention, and FIG. 2 is a plan view of the rotor blade tip end portion as seen from the outer peripheral side in the radial direction. In FIG. 1 and FIG. 2, a rotor blade 1 is a dovetail 2 that is implanted in a disk of a rotor, a blade portion 3 extending from the dovetail 2, and a blade portion 3.
And an integral shroud 4 covering the upper end of the dovetail 2, the blade 3, and the integral shroud 4 are integrally machined.

【0012】動翼1のインテグラルシュラウド4の周方
向端面4aに板ばね挿入用のインテグラルシュラウド側
面の長手方向にそった半楕円形状の穴5を開けている。
またインテグラルシュラウド4の周方向端面4aと対向
する面4bにも同様に板ばね挿入用の穴5を開けてい
る。穴5は翼溝にそのダブテールを挿入して環状翼列を
形成する際、シュラウドの対向する面が互いに接するよ
うな形で向かい合うときに、図2に示すように一つの楕
円形状のインテグラルシュラウド側面の長手方向にそっ
た一つの穴として機能するようにしている。図3に板ば
ね挿入用の穴を周方向端面4aの方向から見た拡大図を
示す。また図2には隣接するインテグラルシュラウド同
士が連結しているときの動翼先端部を半径方向外周側よ
り見た平面図で、板ばね挿入用の穴5が一つの穴として
機能し、その中に初期変形が加えられた板ばねが設置さ
れている状態を透視イメージで示してある。図2,図3
に示すように板ばね連結用の穴5は、周方向端面4aの
方向から見るとインテグラルシュラウド側面の長手方向
にそった楕円形をしていて、その半径方向の上下端面は
平面形状をしていて、穴5の環状翼列周方向端面も板ば
ねとの接触面積を多くとれるように平面形状にしてあ
る。そのように穴5の半径方向の上下端面,周方向端面
で板ばねとの接触面積を多く取ることにより、接触摩擦
による振動減衰効果が得られ、防振に効果的に働く。ま
た、半径方向の上面、つまり外周側面は、タービンを回
転させたときに働く遠心力のために、挿入してある板ば
ねが外周側面に押しつけられ、そのことにより隣接する
インテグラルシュラウド同士の連結効果が生まれ、それ
による環状翼列剛性が増加する。これは、穴5に板状の
ものを挿入することにより得られる動翼連結効果,環状
翼列剛性増加効果であり、挿入物を初期変位を持つばね
状のものとし、その初期張力による動翼連結効果,環状
翼列剛性増加効果とは別のものである。
A semi-elliptical hole 5 is formed in the circumferential end surface 4a of the integral shroud 4 of the moving blade 1 along the longitudinal direction of the side surface of the integral shroud for inserting a leaf spring.
Further, a hole 5 for inserting a leaf spring is likewise formed in the surface 4b of the integral shroud 4 which faces the circumferential end surface 4a. When the dovetail is inserted in the blade groove to form the annular blade row, the hole 5 is formed into an elliptical integral shroud as shown in FIG. 2 when the opposite surfaces of the shroud face each other so as to contact each other. It functions as one hole along the longitudinal direction of the side surface. FIG. 3 shows an enlarged view of the hole for inserting the leaf spring as seen from the direction of the circumferential end surface 4a. Further, FIG. 2 is a plan view of the blade tips when the adjacent integral shrouds are connected to each other as viewed from the outer peripheral side in the radial direction, and the hole 5 for inserting the leaf spring functions as one hole. A perspective image shows a state in which a leaf spring having an initial deformation is installed therein. 2 and 3
As shown in Fig. 5, the leaf spring connecting hole 5 has an elliptical shape along the longitudinal direction of the side surface of the integral shroud when viewed from the circumferential end surface 4a, and its radial upper and lower end surfaces have a planar shape. In addition, the end surface of the hole 5 in the circumferential direction of the annular blade row is also formed in a planar shape so as to have a large contact area with the leaf spring. By thus increasing the contact area with the leaf spring on the upper and lower end surfaces in the radial direction and the end surfaces in the circumferential direction of the hole 5, a vibration damping effect due to contact friction can be obtained, which effectively acts on vibration damping. In addition, the upper surface in the radial direction, that is, the outer peripheral side surface, causes the inserted leaf spring to be pressed against the outer peripheral side surface due to the centrifugal force that acts when the turbine is rotated, thereby connecting adjacent integral shrouds to each other. The effect is produced and the annular blade stiffness is thereby increased. This is a blade connecting effect and an annular blade row rigidity increasing effect obtained by inserting a plate-shaped member into the hole 5, and the insert is a spring-shaped member having an initial displacement, and the rotor blade is caused by the initial tension. It is different from the coupling effect and the effect of increasing the rigidity of the annular blade cascade.

【0013】動翼1をロータに設けられた翼溝に順次挿
入し、動翼1に力を加えて理論ピッチで動翼を植込んだ
環状翼列を形成すれば、板ばねの初期変位により、板ば
ねには弾性的初期張力が生じる。これが隣接するインテ
グラルシュラウド間の初期張力として作用する。この初
期張力により、タービンの回転時、遠心力や熱膨張があ
っても隣接する動翼のインテグラルシュラウドの板ばね
を介した接触が保持され、それにより動翼は群翼構造を
維持でき、環状翼列全体の剛性が増加する。また、振動
の減衰効果を保持して振動が小さくなる。
If the rotor blades 1 are sequentially inserted into the blade grooves provided in the rotor and a force is applied to the rotor blades 1 to form an annular blade row in which the rotor blades are implanted at the theoretical pitch, the initial displacement of the leaf spring causes The elastic initial tension is generated in the leaf spring. This acts as an initial tension between adjacent integral shrouds. Due to this initial tension, when the turbine rotates, even if there is centrifugal force or thermal expansion, the contact between the adjacent blades via the leaf spring of the integral shroud is maintained, which allows the blades to maintain the group blade structure, The rigidity of the entire annular cascade is increased. Further, the vibration is reduced while maintaining the vibration damping effect.

【0014】すなわち、図2に示すように、インテグラ
ルシュラウド4の平行四辺形の対向する側面4a,4b
は隣接するインテグラルシュラウド4の対向する側面と
互いに平行関係にあり、それぞれの端面に設けられた半
穴同士が互いに対向することにより一つの穴5を形成す
る。
That is, as shown in FIG. 2, opposite sides 4a and 4b of the parallelogram of the integral shroud 4 are opposed to each other.
Are parallel to the opposing side surfaces of the adjacent integral shrouds 4, and the half holes provided on the respective end surfaces face each other to form one hole 5.

【0015】一方、穴5に挿入された板ばね6はインテ
グラルシュラウド4のほぼ中間位置8で隣接するインテ
グラルシュラウドと常に接触している。
On the other hand, the leaf spring 6 inserted into the hole 5 is constantly in contact with the adjacent integral shroud at the intermediate position 8 of the integral shroud 4.

【0016】したがって、タービン回転時遠心力や熱膨
張により隣接するインテグラルシュラウド4の接触面の
間に隙間ができ、隣接する動翼が接触しなくなっても板
ばね6を介して、隣接する動翼は確実に連結されるので
環状翼列全体の剛性増加効果,振動の減衰効果が得られ
る。
Therefore, a gap is created between the contact surfaces of the adjacent integral shrouds 4 due to centrifugal force or thermal expansion during turbine rotation, and even if the adjacent moving blades do not come into contact with each other, the adjacent springs move through the leaf springs 6. Since the blades are securely connected, the effect of increasing the rigidity of the entire annular blade row and the effect of damping vibration can be obtained.

【0017】また、図4は一般的な板ばね、図5は板ば
ねを略楕円状にしたものを示している。板ばね6の半径
方向の上下端面は穴5の半径方向の上下端面の平面形状
と接触面積をできるだけ多く取るために、穴5の半径方
向の上下端面同様に平面形状となっている。本発明に用
いる板ばねは、限定はしないが、図5に示すように、板
ばねを略楕円状にして、両サイドに円弧状の部分を設
け、その直線部中央の一箇所に切り欠き部分を設けるこ
とにより、同じ大きさの板ばねで同じたわみに対し、よ
り大きな弾性的張力を得ることができる。つまり、図4
のような形の板ばねでは、初期変位は大きくとれるがそ
れに伴う張力があまり大きくとれないために、環状翼列
を形成したときに板ばねによる接触を保つことは容易で
あるが、張力が大きくないためにそのことによる剛性の
増加は大きくない。また、切り欠きを設けずにただ略楕
円状にしただけの板ばねでは、両端に設けた半円弧状の
部分により大きな張力は得られるが、ばねのたわみを大
きくとれない。このことはつまり挿入する板ばねとして
タービン回転時発生が予想されるインテグラルシュラウ
ド間の環状翼列周方向隙間に、インテグラルシュラウド
の対向する側面に設置した穴が互いに向き合って一つの
穴を形成した時の穴の深さを足しあわせたものよりも環
状翼列周方向の大きいものを用いるようにしたときに、
大きなばねを用いなければいけないことを意味する。ま
た、切り欠きを設けずにただ略楕円状にしただけの板ば
ねのそのような特性は、本発明の動翼を順次そのダブテ
ールを翼溝に挿入し、所定ピッチで動翼を設置して環状
翼列を形成する際に大きな初期張力により製作上の困難
をもたらす可能性がある。しかし、図5に示すように両
端に半円弧部を有し直線部の一方に切り欠きを設けた板
ばねは、たわみ量とそれによって発生する張力の両方を
バランスよく大きくとれ、且つ板ばね自身の形状も小さ
く纏めることが可能である。このような板ばねを用いる
ことによりインテグラルシュラウド同士がより大きな張
力で連結されることにより、より大きなタービン環状翼
列の剛性増加効果,振動減衰効果が得られる。
Further, FIG. 4 shows a general leaf spring, and FIG. 5 shows a leaf spring in a substantially elliptical shape. The upper and lower end surfaces of the leaf spring 6 in the radial direction are formed in the same plane shape as the upper and lower end surfaces of the hole 5 in the radial direction in order to maximize the contact area and the planar shape of the upper and lower end surfaces of the hole 5 in the radial direction. Although the leaf spring used in the present invention is not limited, as shown in FIG. 5, the leaf spring is formed into a substantially elliptical shape, arcuate portions are provided on both sides, and a cutout portion is provided at one place in the center of the straight portion. By providing the above, it is possible to obtain a larger elastic tension for the same deflection with the leaf spring having the same size. That is, FIG.
With a leaf spring with a shape like this, it is easy to maintain contact with the leaf spring when forming the annular blade row because the initial displacement can be large but the tension accompanying it cannot be so large, but the tension is large. Since it does not exist, the increase in rigidity due to that is not large. Further, with a leaf spring that is simply elliptical without a notch, a large amount of tension can be obtained by the semi-arcuate portions provided at both ends, but the deflection of the spring cannot be increased. This means that the holes installed on the opposite side faces of the integral shroud face each other in the annular blade row circumferential gap between the integral shrouds, which is expected to occur when the turbine rotates as a leaf spring to be inserted, forming one hole. When using a larger one in the circumferential direction of the annular blade row than the sum of the depths of the holes when
It means that you have to use a big spring. Further, such a characteristic of the leaf spring which is simply made into a substantially elliptical shape without providing a notch has a characteristic that the blades of the present invention are sequentially inserted into the blade groove and the blades are installed at a predetermined pitch. Large initial tensions can create manufacturing difficulties when forming the annular cascade. However, as shown in FIG. 5, a leaf spring having semi-circular arc portions at both ends and a notch provided at one of the straight portions has a large amount of deflection and tension generated thereby in a well-balanced manner, and the leaf spring itself. The shape of can also be small. By using such a leaf spring, the integral shrouds are connected to each other with a larger tension, so that a larger rigidity increasing effect and vibration damping effect of the turbine annular blade row can be obtained.

【0018】また、板ばねの切り欠き部に、図5に示す
ように突起部7を設けその部分で穴5と接するようにす
る。板ばね製造時にはこの部分を削りしろ分だけわずか
に大きく作成しておき、シュラウドの対向する面が互い
に接するような形で向かい合うときに形成される楕円形
状の穴に板ばねを挿入しながら、動翼を順次そのダブテ
ールを翼溝に挿入し、所定ピッチで動翼を設置して環状
翼列を形成するときに、この部分を削りながら対向する
インテグラルシュラウド間の間隔、板ばねに作用するこ
とによる初期張力を調整することができる。これは、図
4のような形状をした板ばねの端を削って対向するイン
テグラルシュラウド間で、板ばねに作用する初期張力を
調整する方法よりも作業性がよい。
Further, as shown in FIG. 5, a protruding portion 7 is provided in the notch portion of the leaf spring so that the protruding portion 7 is in contact with the hole 5 at that portion. When manufacturing the leaf spring, make this part slightly larger by the amount to be shaved, and insert the leaf spring into the elliptical hole that is formed when the opposite faces of the shroud face each other so that they face each other. When the blades are inserted into the blade groove one by one and the rotor blades are installed at a predetermined pitch to form an annular blade row, this portion is ground and the interval between the opposing integral shrouds acts on the leaf spring. The initial tension due to can be adjusted. This is more workable than the method of adjusting the initial tension acting on the leaf spring between the opposing integral shrouds by cutting the end of the leaf spring having the shape shown in FIG.

【0019】[0019]

【発明の効果】本発明によれば、動翼をロータの周囲に
設けられた環状の翼溝に植込んで環状翼列を形成する場
合、インテグラルシュラウドの対向する周方向側面に、
側面の長手方向にそった楕円形状の穴がシュラウドの対
向する面が互いに接するような形で向かい合うときに形
成されるように半楕円形状の穴を開けておき、その穴に
タービン回転時に発生が予想されるインテグラルシュラ
ウド間の環状翼列周方向隙間に、インテグラルシュラウ
ドの対向する側面に設置した穴が互いに向き合って一つ
の穴を形成した時の穴の深さを足しあわせたものより
も、環状翼列周方向寸法の大きい板ばねを設置して環状
翼列を形成することにより、隣接する動翼のインテグラ
ルシュラウドには板ばねを介して初期張力が生じるの
で、タービン回転,遠心力や熱膨張が生じても隣接する
動翼のインテグラルシュラウドの接触が板ばねを介して
保持され、隣接する動翼同士の連結が常に保持されるた
めに、タービン環状翼列を構成する動翼は群翼を成し、
板ばねを挿入せずに単独翼となってしまう場合に比べ剛
性が増し、動翼の破損を防止できる。また、その板ばね
同士の接触により振動の減衰効果を保持するのに必要な
摩擦力を得ることができ、このためタービン回転時の動
翼の振動は小さくなり、動翼の破損を防止できる。ま
た、板ばねの外周方向端面とシュラウドに設けた穴の板
ばねの外周方向端面と接する端面をどちらも平面にして
接触面積を大きく取ることにより、板ばねの初期張力に
加え、タービンを回転させたときに働く遠心力のため
に、挿入してある板ばねが外周側面に押しつけられ、そ
のことにより隣接するインテグラルシュラウド同士の連
結効果が生まれ、環状翼列の剛性増加効果,振動減衰効
果を得ることができる。
According to the present invention, when a rotor blade is planted in an annular blade groove provided around the rotor to form an annular blade row, on the opposite circumferential side surfaces of the integral shroud,
A semi-elliptical hole is formed so that an elliptical hole along the longitudinal direction of the side surface is formed when the opposite surfaces of the shroud face each other so that they are in contact with each other. Rather than the sum of the depths of holes when the holes installed on the opposite side surfaces of the integral shroud face each other in the circumferential gap of the annular blade row between the integral shrouds to form one hole. By installing a leaf spring with a large circumferential dimension in the annular blade row to form the annular blade row, initial tension is generated in the integral shroud of the adjacent moving blades via the leaf spring, so turbine rotation, centrifugal force Even if thermal expansion occurs, the contact between the integral shrouds of adjacent moving blades is maintained via the leaf springs, and the connection between adjacent moving blades is always maintained. Rotor blade forms a Guntsubasa that make up the,
Rigidity is increased as compared with the case where a single blade is formed without inserting a leaf spring, and damage to the moving blade can be prevented. Further, the contact between the leaf springs makes it possible to obtain the frictional force necessary to maintain the vibration damping effect, so that the vibration of the moving blade during turbine rotation is reduced, and the damage to the moving blade can be prevented. In addition, by making both the outer circumferential end surface of the leaf spring and the end surface of the hole provided in the shroud in contact with the outer circumferential end surface of the leaf spring flat so that the contact area is large, the initial tension of the leaf spring is added and the turbine is rotated. The inserted leaf spring is pressed against the outer peripheral side surface due to the centrifugal force that acts when it is generated, which creates a connecting effect between adjacent integral shrouds, increasing the rigidity of the annular blade row and the vibration damping effect. Obtainable.

【0020】また、本発明の方法は、動翼同士の連結を
保持するために、インテグラルシュラウドに作用させる
張力を、動翼の初期ねじりにより得るものに比べ、動翼
のスタッガー角を変えることなく得ることができるた
め、動翼の空力性能とは全く独立に環状翼列の剛性増加
効果,振動減衰効果を得ることができる。
Further, in the method of the present invention, in order to maintain the connection between the moving blades, the tension applied to the integral shroud is changed by changing the stagger angle of the moving blades as compared with that obtained by initial twisting of the moving blades. Therefore, it is possible to obtain the rigidity increasing effect and the vibration damping effect of the annular blade row completely independently of the aerodynamic performance of the moving blade.

【0021】また、ロータの周囲に設けられた環状の翼
溝に動翼のダブテールに順次挿入し、所定ピッチで動翼
を設置して環状翼列を形成する際、その工程で従来技術
と異なるのは、初期変形を与えた板ばねを、隣接する動
翼のインテグラルシュラウドの対向する側面に挿入する
だけであり、その調整も板ばねの端、もしくは板ばねに
設けた削りしろを削ることにより容易に行えるため、新
たに製造技術を開発する必要性がない。
Further, when the dovetails of the moving blades are sequentially inserted into the annular blade grooves provided around the rotor and the moving blades are installed at a predetermined pitch to form the annular blade row, the process differs from the prior art. The only thing to do is to insert the leaf springs that have undergone initial deformation into the opposite sides of the integral shroud of the adjacent blades, and adjust that also by scraping the edge of the leaf spring or the margin provided on the leaf spring. There is no need to develop new manufacturing technology because it can be done more easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のタービンの動翼の側面図。FIG. 1 is a side view of a rotor blade of a turbine according to an embodiment of the present invention.

【図2】本発明の動翼及び隣接して配置した動翼の先端
部を半径方向外周側より見た一実施例の平面図。
FIG. 2 is a plan view of an embodiment of the rotor blade of the present invention and the tip end portions of the rotor blades arranged adjacent to each other as seen from the outer peripheral side in the radial direction.

【図3】インテグラルシュラウド周方向側面に設けた板
ばね挿入用の穴の説明図。
FIG. 3 is an explanatory view of holes for inserting leaf springs provided on the circumferential side surface of the integral shroud.

【図4】一般的な板ばねの平面図。FIG. 4 is a plan view of a general leaf spring.

【図5】略楕円状に変形させた板ばねの平面図。FIG. 5 is a plan view of a leaf spring deformed into a substantially elliptical shape.

【図6】タービン動翼の正面図。FIG. 6 is a front view of a turbine rotor blade.

【図7】図6の動翼を隣接して配置したときの半径方向
外周側より見た平面図。
FIG. 7 is a plan view seen from the outer peripheral side in the radial direction when the moving blades of FIG. 6 are arranged adjacent to each other.

【符号の説明】[Explanation of symbols]

1…動翼、2…ダブテール、3…翼部、4…インテグラ
ルシュラウド、5…板ばね挿入用の穴、6…板ばね、7
…板ばねの削りしろ。
DESCRIPTION OF SYMBOLS 1 ... Moving blade, 2 ... Dovetail, 3 ... Wing part, 4 ... Integral shroud, 5 ... Hole for inserting leaf spring, 6 ... Leaf spring, 7
… Shavings of leaf springs.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ロータの周囲に設けられた環状の翼溝に挿
入されるダブテールと、前記ダブテールから延びる翼部
と、前記翼部の上端に設けられるシュラウドが一体に削
りだされてなり、順次前記ダブテールを前記翼溝に挿入
し、所定ピッチで前記動翼を設置して環状翼列を形成す
るタービン動翼において、隣接する動翼のシュラウドの
対向する面に、それぞれの面の長手方向に延びる半楕円
形状の穴を設け、前記シュラウドの対向する面が互いに
接するような形で向かい合うときに楕円形状の穴が形成
されるようにし、その穴に板ばねを挿入することによっ
て環状翼列周方向に張力を働かせて、隣接する動翼を連
結するようにしたことを特徴とするタービン動翼。
1. A dovetail inserted into an annular blade groove provided around a rotor, a blade portion extending from the dovetail, and a shroud provided at an upper end of the blade portion are integrally machined, In the turbine blade that inserts the dovetail into the blade groove and installs the blades at a predetermined pitch to form an annular blade row, in the facing surfaces of the shrouds of the adjacent blades, in the longitudinal direction of each surface. A semi-elliptical hole extending is provided so that an oval hole is formed when the facing surfaces of the shroud face each other in such a manner that they are in contact with each other. A turbine rotor blade characterized in that the rotor blades are made to connect adjacent rotor blades by exerting tension in a direction.
【請求項2】請求項1において、前記板ばねを、両端に
曲率を持たせ直線部中央に一箇所切り欠きを設けて略楕
円状にしたものを挿入することによって、板ばね自体の
大きさを大きくせずに一定のたわみ量に対して大きな環
状翼列周方向張力が得られるようにしたタービン動翼。
2. The size of the leaf spring itself according to claim 1, wherein the leaf spring is inserted into the leaf spring which has a curvature at both ends thereof and is provided with a notch at a central portion of a straight line portion so as to have a substantially elliptical shape. A turbine rotor blade that can obtain a large circumferential tension in the annular blade row for a certain amount of deflection without increasing the value.
【請求項3】請求項1において、前記板ばねの外周方向
端面とシュラウドに設けた前記穴の板ばねの外周方向端
面と接する端面をどちらも平面にして接触面積を大きく
取ることにより、前記板ばねの初期張力に加え、タービ
ンを回転させたときに働く遠心力によって挿入してある
板ばねを外周側面に押しつけることにより隣接するイン
テグラルシュラウド同士の連結効果が生まれるようにし
たタービン動翼。
3. The plate according to claim 1, wherein both the outer peripheral end face of the leaf spring and the end face of the hole provided in the shroud which is in contact with the outer peripheral end face of the leaf spring are made flat to obtain a large contact area. In addition to the initial tension of the spring, a turbine blade that creates the effect of connecting adjacent integral shrouds by pressing the inserted leaf spring against the outer peripheral side surface by the centrifugal force that acts when the turbine is rotated.
JP11283095A 1995-05-11 1995-05-11 Turbine moving blade Pending JPH08303205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11283095A JPH08303205A (en) 1995-05-11 1995-05-11 Turbine moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11283095A JPH08303205A (en) 1995-05-11 1995-05-11 Turbine moving blade

Publications (1)

Publication Number Publication Date
JPH08303205A true JPH08303205A (en) 1996-11-19

Family

ID=14596611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11283095A Pending JPH08303205A (en) 1995-05-11 1995-05-11 Turbine moving blade

Country Status (1)

Country Link
JP (1) JPH08303205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085214A (en) * 2007-09-11 2009-04-23 Hitachi Ltd Steam turbine moving blade assembly
WO2010094540A1 (en) * 2009-02-17 2010-08-26 Siemens Aktiengesellschaft Blade union of a turbo machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085214A (en) * 2007-09-11 2009-04-23 Hitachi Ltd Steam turbine moving blade assembly
WO2010094540A1 (en) * 2009-02-17 2010-08-26 Siemens Aktiengesellschaft Blade union of a turbo machine

Similar Documents

Publication Publication Date Title
EP1602801B1 (en) Rotor blade with a stick damper
JP3968234B2 (en) Row of flow guide elements for turbomachines
US7311495B2 (en) Vane support in a gas turbine engine
JP4460103B2 (en) Self-retaining blade damper
EP0757160B1 (en) Airfoil vibration damping device
US5558497A (en) Airfoil vibration damping device
US6283707B1 (en) Aerofoil blade damper
US6450769B2 (en) Blade assembly with damping elements
CA2196481C (en) Steam turbine
US10767504B2 (en) Flexible damper for turbine blades
JP2005226648A (en) Advanced firtree and broach slot form for turbine stage 3 bucket and rotor wheel
JPH0586804A (en) Integral shroud blade
EP1698760B1 (en) Torque-tuned, integrally-covered bucket and related method
US11401815B2 (en) Bladed rotor system and corresponding method of servicing
JPS58174105A (en) Vibration damper for stator blade row of axial-flow turbo-machine
JPH08303205A (en) Turbine moving blade
JPH10184305A (en) Turbine having shroud moving blade
JP3682131B2 (en) Turbine blade and its assembly method
JP3782161B2 (en) Rotor coupling device for axial flow turbine
JPH08144705A (en) Steam turbine rotor blade
JPH10325302A (en) Vibration damping structure for moving blade
JPH0932502A (en) Moving blade of turbine
RU2173390C2 (en) Turbo-machine rotor accommodating blades in its slots and rotor blades
JPH07332003A (en) Turbine moving blade
JPH1047004A (en) Rotor blade of rotary fluid machinery