JPH0830275A - Sound absorbing material - Google Patents

Sound absorbing material

Info

Publication number
JPH0830275A
JPH0830275A JP6188792A JP18879294A JPH0830275A JP H0830275 A JPH0830275 A JP H0830275A JP 6188792 A JP6188792 A JP 6188792A JP 18879294 A JP18879294 A JP 18879294A JP H0830275 A JPH0830275 A JP H0830275A
Authority
JP
Japan
Prior art keywords
sound absorbing
absorbing material
sound
fiber assembly
lightweight mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6188792A
Other languages
Japanese (ja)
Inventor
Tomotatsu Ogawa
智達 小川
Masami Aoki
正己 青木
Nobuhiro Sakai
展弘 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP6188792A priority Critical patent/JPH0830275A/en
Publication of JPH0830275A publication Critical patent/JPH0830275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PURPOSE:To reduce the weight of a sound absorbing material and to improve the durability and weatherability by forming the sound absorbing material of lightweight mortar formed by intimate mixing of a porous material of a synthetic resin and/or inorg. porous material, a foaming agent, cement and water and having a specific void volume. CONSTITUTION:This sound absorbing material 1 is obtd. by laminating a fiber assembly 10 consisting of short fibers as blanks and the lightweight mortar 20 contg. foamed urethane chips. The lamination is executed by a method of casting the lightweight mortar 20 contg. the foamed urethane chips, then laminating the fiber assembly 10 consisting of the short fibers as the blanks and again casting the lightweight mortar 20 contg. the foamed urethane chips, thereby forming a laminated structure. A sound absorbing effect is improved by forming such structure. The fiber assembly 10 is produced by using fibers of <=30 denier in the center of a fiber diameter distribution as blanks and forming these fibers to the fiber assembly having an average apparent density of 0.04 to 0.15g/cm<3>. The apparent density is confined within the prescribed range by using the short fibers of <=30 denier and the sound absorbing characteristics are improved by increasing air permeation resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築物の床,壁,天井
および鉄道軌道面、鉄道・道路用防音壁に軽量吸音材と
して利用される合成樹脂多孔質材料及び/又は無機系多
孔材料混入軽量モルタルを使用した吸音材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic resin porous material and / or an inorganic porous material used as a lightweight sound absorbing material for floors, walls, ceilings and railway track surfaces of buildings, and soundproof walls for railways and roads. The present invention relates to a sound absorbing material using a mixed lightweight mortar.

【0002】[0002]

【従来の技術】従来の建築物の外壁等に用いられている
のは、軽量気泡コンクリートであり、比重0.8、空隙
率80%以上のものであり、大部分が独立気泡であり、
連続気泡部分が少ない構造となっている。また、鉄道軌
道面用吸音材としては、砕石や軽石をバインダーで固化
した吸音材が使用されている。
2. Description of the Related Art Conventionally used for outer walls of buildings is lightweight cellular concrete having a specific gravity of 0.8 and a porosity of 80% or more, and most of them are closed cells.
The structure has few open cells. Further, as a sound absorbing material for railway track surface, a sound absorbing material obtained by solidifying crushed stone or pumice stone with a binder is used.

【0003】[0003]

【発明が解決しようとする課題】外壁等に用いられてい
る軽量気泡コンクリートは、吸音率が20%以下であ
り、自動車交通騒音・鉄道騒音対策の吸音材としては吸
音性能が不足している。また、鉄道軌道面用吸音材とし
ての砕石や軽石をバインダーで固化した吸音材は、吸音
率は特定の周波数で大きくなるが、その前後の周波数
は、ほとんど吸音しない。さらには、バインダーが高価
なためにコスト高となっていた。
The lightweight cellular concrete used for the outer wall has a sound absorption coefficient of 20% or less, and its sound absorbing performance is insufficient as a sound absorbing material for automobile traffic noise and railway noise. Further, the sound absorbing material obtained by solidifying crushed stone or pumice stone as a sound absorbing material for railroad track surface with a binder has a large sound absorbing coefficient at a specific frequency, but the sound absorbing material hardly absorbs sound at frequencies before and after that. Further, the cost is high because the binder is expensive.

【0004】昨今の自動車保有台数の増加、鉄道の高速
化に伴い、自動車交通騒音・鉄道騒音対策用の軽量かつ
耐久性に優れた吸音材に関する要求は高まる一方であ
る。
With the recent increase in the number of vehicles owned and the speeding up of railways, there is an ever-increasing demand for sound-absorbing materials that are lightweight and have excellent durability for measures against vehicle traffic noise and railway noise.

【0005】そこで、この発明は、このような要求に応
ずるべく、軽量でかつ耐久・耐候性に優れた低コストの
吸音材の提供を目的とする。
Accordingly, the present invention has an object to provide a low-cost sound absorbing material which is lightweight and excellent in durability and weather resistance in order to meet such requirements.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
め、この発明の吸音材は、合成樹脂多孔質材料及び/又
は無機系多孔質材料と起泡剤とセメントと水との混和に
より形成された軽量モルタルの吸音材で、かつ、40〜
80%の空隙率を有するように構成した。
In order to achieve the above-mentioned object, the sound absorbing material of the present invention is formed by mixing a synthetic resin porous material and / or an inorganic porous material, a foaming agent, cement and water. Lightweight mortar sound absorbing material, and 40 ~
It was constructed to have a porosity of 80%.

【0007】[0007]

【作用】従来の軽量発泡コンクリートに比較し、本発明
の吸音材は、複雑な経路を有する連続気泡によって構成
されているので、吸音性能が格段に向上する。本発明で
空隙率を40〜80%と規定したのは、空隙率40%以
下では、連続気泡が減少し、独立気泡が増加するので音
波の伝播経路が減少し、吸音率が20%以下となり、吸
音材として十分な吸音性能が得られなくなる為である。
空隙率80%以上では音波の伝播経路が直線的になるた
め、音波の減衰が小さくなり、吸音性能は低下する。前
記組成に加えて、砂と、圭砂と、減水剤と、ポリマー及
び繊維質から選ばれた1種類もしくは数種類を含むこと
により、吸音性能を低下させずに、曲げ強度、圧縮強度
および耐衝撃性、脆性を向上させた吸音材を提供でき
る。また、短繊維を素材とする繊維集合体、連通性のウ
レタンフォームもしくはセラミックフォームと、軽量モ
ルタル吸音材を、積層体構造にすることによって、音波
の減衰及び伝播経路を大きくすることで、さらに優れた
吸音性能を発揮することが可能である。さらに、屋外に
て本発明品を使用する場合、降雨時に水が細孔に進入し
て充満し、音波が細孔に進入せずに反射するため、吸音
効果が著しく低下する。そこで軽量モルタル吸音材の表
面及び/又は内部に撥水処理し、吸水を防止することに
より、吸音効果を保持し、かつ低温時の耐凍結融解性を
改善することが可能となる。さらに、連続気泡により内
部に浸入した水も透水する。また、合成樹脂を含まない
ものに比べてヒビ割れも発生しにくい。
In comparison with the conventional lightweight foam concrete, the sound absorbing material of the present invention is composed of open cells having complicated paths, so that the sound absorbing performance is remarkably improved. In the present invention, the porosity is defined as 40 to 80%. When the porosity is 40% or less, the number of open cells decreases and the number of closed cells increases, so that the propagation path of sound waves decreases and the sound absorption rate becomes 20% or less. This is because it becomes impossible to obtain sufficient sound absorbing performance as a sound absorbing material.
When the porosity is 80% or more, the propagation path of the sound wave becomes linear, so that the sound wave is less attenuated and the sound absorbing performance is deteriorated. In addition to the above composition, by containing sand, Kei sand, a water reducing agent, and one or several kinds selected from polymers and fibrous materials, bending strength, compression strength and impact resistance can be achieved without lowering sound absorption performance. It is possible to provide a sound absorbing material having improved properties and brittleness. In addition, a fiber assembly made of short fibers, a continuous urethane foam or ceramic foam, and a lightweight mortar sound-absorbing material having a laminated structure to increase the sound wave attenuation and propagation path are more excellent. It is possible to exhibit excellent sound absorption performance. Further, when the product of the present invention is used outdoors, water penetrates into the pores during rain and is filled with the sound waves, and the sound waves are reflected without entering the pores, so that the sound absorbing effect is significantly reduced. Therefore, the surface and / or the inside of the lightweight mortar sound absorbing material is subjected to water repellent treatment to prevent water absorption, whereby the sound absorbing effect can be maintained and the freeze-thaw resistance at low temperature can be improved. Further, the water that has penetrated into the inside by the continuous bubbles also permeates. In addition, cracking is less likely to occur as compared with those containing no synthetic resin.

【0008】[0008]

【実施例】以下にこの発明の好適な実施例を説明する。The preferred embodiments of the present invention will be described below.

【0009】実施例1 モルタルミキサーの中にセメント100重量部、直径2
mm以下の半硬質ウレタンチップ7.5重量部を投入し
て、1分間撹拌した後、起泡剤3重量部、水45重量部
を加えて、約20分間混練して、空隙率56%の発泡ウ
レタンチップ混入軽量モルタル吸音材を得た。空隙率の
調整は、起泡剤の量および混練時間によって制御可能で
ある。発泡ウレタンチップには、軟質ウレタン,硬質ウ
レタン,半硬質ウレタンを粉砕機等によって、チップ化
したものが使用できる。また、起泡剤には、アニオン
系,カチオン系等の合成界面活性剤,加水分解タンパク
系起泡剤,樹脂石けん系起泡剤が好適に使用できる。図
1に示すグラフは、符号Aは空隙率46%、符号Bは空
隙率56%、符号Cは空隙率67%、符号Dは80%の
ものであり、それぞれ厚さ60mm時の、周波数と垂直入
射吸音率との関係を示すグラフである。
Example 1 100 parts by weight of cement, diameter 2 in a mortar mixer
After adding 7.5 parts by weight of semi-hard urethane chips of mm or less and stirring for 1 minute, 3 parts by weight of a foaming agent and 45 parts by weight of water are added and kneaded for about 20 minutes to obtain a porosity of 56%. A lightweight mortar sound absorbing material mixed with urethane foam chips was obtained. The adjustment of the porosity can be controlled by the amount of the foaming agent and the kneading time. As the foamed urethane chips, soft urethane, hard urethane, and semi-hard urethane made into chips by a crusher or the like can be used. As the foaming agent, synthetic surfactants such as anionic and cationic surfactants, hydrolyzed protein foaming agents, and resin soap foaming agents can be preferably used. In the graph shown in FIG. 1, reference numeral A indicates a porosity of 46%, reference numeral B indicates a porosity of 56%, reference numeral C indicates a porosity of 67%, and reference numeral D indicates 80%. It is a graph which shows the relationship with a normal incidence sound absorption coefficient.

【0010】実施例1では発泡ウレタンチップを用いた
が、無機系多孔質材料を用いることもできる。無機系多
孔質材料としては、パーライト,メサライト,ライオナ
イト,石炭殻,軽石等が好適に使用できる。また、発泡
ウレタンチップ以外の合成樹脂多孔質材料としてスチレ
ンビーズ等も使用できる。さらに、これらを併用するこ
ともできる。以下に説明する実施例2以下においても合
成樹脂多孔質材料又は無機系多孔質材料あるいは両方を
使用することができる。
In Example 1, urethane foam chips were used, but an inorganic porous material can also be used. As the inorganic porous material, perlite, mesalite, lionite, coal shell, pumice, etc. can be preferably used. Also, styrene beads or the like can be used as a synthetic resin porous material other than the urethane foam chips. Furthermore, these can be used together. Also in the second and subsequent embodiments described below, the synthetic resin porous material, the inorganic porous material, or both can be used.

【0011】実施例2 曲げ強度、圧縮強度および耐衝撃性,脆性を向上させる
ために、モルタルミキサーの中にセメント100重量
部、直径2mm以下の半硬質ウレタンチップ7.5重量
部,ガラス繊維3重量部を投入して、1分間撹拌した
後、起泡剤3重量部,水45重量部,エチレン酢酸ビニ
ル20重量部を加えて、約20分間混練して、空隙率5
0%の発泡ウレタンチップ混入軽量モルタルを得た。曲
げ強度が、ポリマー及び繊維質無添加時=10kg/cm2
に対し、ポリマー及び繊維質添加時=25kg/cm2 に改
善できた。ポリマーには、ゴムラテックス,樹脂エマル
ジョン,再乳化形粉末樹脂が好適に使用できる。また繊
維質には、ガラス繊維,カーボン繊維,及びナイロン,
ビニロン等の合成樹脂繊維が好適に使用できる。
Example 2 In order to improve bending strength, compressive strength, impact resistance and brittleness, 100 parts by weight of cement, 7.5 parts by weight of semi-hard urethane chips having a diameter of 2 mm or less, and glass fiber 3 were placed in a mortar mixer. After adding 1 part by weight and stirring for 1 minute, 3 parts by weight of a foaming agent, 45 parts by weight of water and 20 parts by weight of ethylene vinyl acetate were added and kneaded for about 20 minutes to obtain a porosity of 5
A lightweight mortar containing 0% urethane foam chips was obtained. Bending strength is 10 kg / cm 2 when polymer and fiber are not added
On the other hand, when the polymer and the fiber were added, it could be improved to 25 kg / cm 2 . As the polymer, rubber latex, resin emulsion, and re-emulsified powder resin can be preferably used. Fibers include glass fiber, carbon fiber, nylon,
Synthetic resin fibers such as vinylon can be preferably used.

【0012】実施例3 図2に示す実施例では、あらかじめ製品に適した形状に
成形された短繊維を素材とする繊維集合体10と、発泡
ウレタンチップ混入軽量モルタル20を積層することに
より吸音材1を得た。積層方法は、発泡ウレタンチップ
混入軽量モルタル20を適量注型した後、短繊維を素材
とする繊維集合体10を積層し、再度発泡ウレタンチッ
プ混入軽量モルタル20を注型し、積層構造にした。積
層構造にすることによって、吸音効果を向上させること
ができる。また、短繊維を素材とする繊維集合体10の
かわりに、連通性のウレタンフォームもしくはセラミッ
クフォームを使用しても、同様の吸音効果向上が得られ
る。繊維集合体10は、繊維径分布の中心が30デニー
ル以下の短繊維を素材として平均見かけ密度0.04〜
0.15g/cm3 の繊維集合体に成形して成るものであ
る。30デニール以下の細い短繊維を用いるとともに見
かけ密度を所定範囲に納めることで繊維集合体10内部
の通気抵抗を大きくして吸音特性を良好にしている。仮
りに、30デニール以上の繊維を用いると、同一見かけ
密度において粗な状態になり、通気抵抗が上がらず吸音
特性の劣ったものになる。そこで、これを見かけ密度の
高いものにするだけで吸音性を改善しようとすると、硬
くなりすぎて音を放射し易くなり、逆に防音性能は低下
する。さらに、見かけ密度を高くすることは、匡体1の
重量をアップすることになり、軽量化が図れない。これ
らの視点から、見かけ密度の上限は0.15g/cm3
設定する必要がある。一方30デニール以下の細い繊維
を用いても、見かけ密度が0.04g/cm3 以下では、
通気抵抗が大きくならず、吸音性を期待することができ
ず防音性能が不充分となる。使用する短繊維は、基本的
には30デニール以下とし、高吸音性能を実現するため
には15デニール以下、好適には6〜8デニールの短繊
維を用いることが望ましい。短繊維の材質としては、例
えば、ポリエステル,ポリプロピレン,ポリエチレン,
ナイロン,ビニロン等の合成繊維の他に、羊毛,綿,麻
等の天然繊維を使用することもできる。さらに、これら
の繊維を使用した布から開繊した短繊維を使用すること
もできる。この場合、歴青質あるいはその類似材料を溶
融紡糸あるいはその他の方法で繊維状にし、これを前述
した短繊維の中に10重量%以上混入するか、あるいは
単独で使用した繊維集合体の成形品を使用することによ
っても、大きな遮音吸音効果が得られる。歴青質の類似
材料としては、歴青質の脆さや温度依存性を樹脂やゴム
あるいは熱可塑性エラストマー等で改質した歴青質を3
0重量%以上含むものが使用される。このような歴青質
またはその類似材料を繊維状にしたものを使用して大き
な遮音吸音効果が得られる理由は、歴青質の制振性(高
ダンピング性)が繊維集合体の中に付与され、遮音吸音
性のみならず、振動を抑制する機能が得られるためであ
る。
Example 3 In the example shown in FIG. 2, a sound absorbing material is obtained by laminating a fiber assembly 10 made of short fibers preliminarily formed into a shape suitable for a product and a lightweight mortar 20 containing urethane foam chips. Got 1. As for the stacking method, an appropriate amount of the foamed urethane chip mixed lightweight mortar 20 was cast, then the fiber assembly 10 made of short fibers was stacked, and the foamed urethane chip mixed lightweight mortar 20 was cast again to form a stacked structure. With the laminated structure, the sound absorbing effect can be improved. Further, even if a continuous urethane foam or ceramic foam is used instead of the fiber assembly 10 made of short fibers, the similar sound absorbing effect can be obtained. The fiber assembly 10 is made of short fibers whose center of fiber diameter distribution is 30 denier or less, and has an average apparent density of 0.04 to
It is formed by molding into a fiber aggregate of 0.15 g / cm 3 . By using fine short fibers of 30 denier or less and keeping the apparent density within a predetermined range, the ventilation resistance inside the fiber assembly 10 is increased and the sound absorption characteristics are improved. If fibers having a denier of 30 denier or more are used, the fibers will be in a rough state at the same apparent density, and the airflow resistance will not increase and the sound absorption characteristics will be inferior. Therefore, if it is attempted to improve the sound absorbing property only by making the apparent density high, the sound absorbing property becomes too hard and the sound is easily emitted, and conversely the soundproof performance is deteriorated. Further, increasing the apparent density increases the weight of the casing 1 and cannot reduce the weight. From these viewpoints, the upper limit of the apparent density needs to be set to 0.15 g / cm 3 . On the other hand, even if a fine fiber of 30 denier or less is used, if the apparent density is 0.04 g / cm 3 or less,
Ventilation resistance does not increase, sound absorption cannot be expected, and sound insulation performance becomes insufficient. The short fibers used are basically 30 denier or less, and in order to realize high sound absorption performance, it is desirable to use short denier fibers of 15 denier or less, preferably 6 to 8 denier. Examples of the material of the short fiber include polyester, polypropylene, polyethylene,
In addition to synthetic fibers such as nylon and vinylon, natural fibers such as wool, cotton and hemp can be used. Furthermore, it is also possible to use short fibers opened from a cloth using these fibers. In this case, bituminous material or a similar material is melt-spun or formed into a fibrous shape, and 10% by weight or more of the fibrous material is mixed into the above-mentioned short fibers, or a molded product of a fiber aggregate used alone. Also by using, a large sound insulation and sound absorption effect can be obtained. As a bituminous material, a bituminous material obtained by modifying the brittleness and temperature dependence of bituminous material with resin, rubber, thermoplastic elastomer, or the like can be used.
Those containing 0% by weight or more are used. The reason why a large sound insulating and sound absorbing effect can be obtained by using such a fibrous material of bituminous material or its similar material is that the damping property (high damping) of bituminous material is imparted to the fiber aggregate. This is because not only the sound insulation and sound absorption but also the function of suppressing the vibration can be obtained.

【0013】実施例4 図3に示す実施例では、積層回数を5層にし、さらに吸
音効果を向上させたものである。積層回数は5層以上で
も良い。
Embodiment 4 In the embodiment shown in FIG. 3, the number of layers is 5 and the sound absorption effect is further improved. The number of layers may be 5 or more.

【0014】実施例5 図4に示す吸音材1は発泡ウレタンチップ混入軽量モル
タル20の表面にケイ酸ジルコニア系撥水剤30を1m
2 あたり200g塗布したものである。撥水処理をしな
い場合、吸水率は50体積%であり、著しく吸音率は低
下したが、撥水処理後は1%以下になり、吸音性能は低
下しない。前記撥水剤30の他に、シリコーンオイル,
シリカ系の撥水剤30が好適に使用でき、同様の撥水お
よび吸音効果が得られた。モルタルミキサーによる混練
り時に、セメント100重量部に対して、シリコーンオ
イル30重量部投入した場合も、上述同様の効果が得ら
れた。
Example 5 The sound absorbing material 1 shown in FIG. 4 is made of a zirconia silicate-based water repellent 30 of 1 m on the surface of a lightweight mortar 20 mixed with urethane foam chips.
200g per 2 is applied. When the water repellent treatment is not performed, the water absorption rate is 50% by volume, and the sound absorption rate is remarkably reduced, but after the water repellent treatment, it is 1% or less, and the sound absorption performance is not reduced. In addition to the water repellent 30, silicone oil,
The silica-based water repellent 30 can be preferably used, and similar water repellent and sound absorbing effects were obtained. Even when 30 parts by weight of silicone oil was added to 100 parts by weight of cement at the time of kneading with a mortar mixer, the same effect as described above was obtained.

【0015】実施例6 図5に示す吸音材1は、実施例5の撥水処理に加えて、
さらに排水性を向上させるため、発泡ウレタンチップ混
入軽量モルタル20の上面を5度傾斜させたものであ
り、かつ排水ドレインとして底面に空気層40をもたせ
たものである。傾斜角は大きい程、排水性が向上し、吸
水率は低下するが、一般に吸音性能は、吸音材厚さと比
例関係にある為、限定された厚さ内で、傾斜角を大きく
すると、吸音性能は低下する。傾斜角度5度の場合、吸
水率は0.5%以下であり、十分な撥水性が得られた。
空気層40の存在により吸音性能の低下は防止できる。
Example 6 In addition to the water repellent treatment of Example 5, the sound absorbing material 1 shown in FIG.
In order to further improve the drainage property, the upper surface of the urethane foam tip mixed lightweight mortar 20 is inclined 5 degrees, and the bottom surface has an air layer 40 as a drainage drain. The larger the inclination angle, the better the drainage performance and the lower the water absorption rate.However, since sound absorption performance is generally proportional to the thickness of the sound absorbing material, increasing the inclination angle within a limited thickness reduces the sound absorption performance. Will fall. When the inclination angle was 5 degrees, the water absorption rate was 0.5% or less, and sufficient water repellency was obtained.
The presence of the air layer 40 can prevent deterioration of the sound absorbing performance.

【0016】比較例1 建築物の外壁用吸音材として、比重0.8、空隙率80
%以上であり、構造がほとんど独立気泡で連続気泡部分
が少ない軽量発泡コンクリートを比較例1とした。
Comparative Example 1 As a sound absorbing material for the outer wall of a building, the specific gravity is 0.8 and the porosity is 80.
% Or more, the structure was almost closed cells, and the lightweight foamed concrete with few open cells was set as Comparative Example 1.

【0017】比較例2 鉄道軌道面用吸音材として、砕石や軽石をバインダーで
固化したものを比較例2とした。
Comparative Example 2 As a sound absorbing material for railroad track surface, a material obtained by solidifying crushed stone or pumice with a binder was used as Comparative Example 2.

【0018】図6に示すグラフは、符号Aは実施例1、
符号Bは実施例3、符号Cは実施例4、符号Dは実施例
5、符号Eは比較例1、符号Fは比較例2のものであ
り、それぞれ厚さ100mm時の、周波数と垂直入射吸音
率との関係を示すグラフである。比較例1のものは、連
続気泡部分が少ないため、吸音率は20%以下であり、
吸音性能が明らかに不足している。比較例2のものは、
吸音率が特定の周波数で大きくなるが、その前後の周波
数はほとんど吸音しないことが判明している。
In the graph shown in FIG. 6, reference numeral A is the first embodiment,
Reference symbol B is for Example 3, reference symbol C is for Example 4, reference symbol D is for Example 5, reference symbol E is for Comparative Example 1, and reference symbol F is for Comparative Example 2. The frequency and the vertical incidence at a thickness of 100 mm, respectively. It is a graph which shows the relationship with a sound absorption coefficient. In Comparative Example 1, the sound absorbing coefficient is 20% or less because the open cell portion is small.
Sound absorption performance is obviously insufficient. In Comparative Example 2,
It has been found that the sound absorption coefficient increases at a specific frequency, but the frequencies before and after the sound absorption hardly absorb the sound.

【0019】図7は吸音材1を鉄道軌道面用としたもの
を示し、上述した各吸音材1のいずれか1又は2以上の
ものを砕石や軽石をバインダーで固化した従来のものに
かえて使用した。また、防音壁2としては、繊維集合体
10と同一のものの表面に撥水剤30を塗布したものを
使用したが、吸音材1と同一のものを使用することもで
きる。
FIG. 7 shows a sound absorbing material 1 for a railway track surface. In place of the sound absorbing material 1 described above, one or more of the sound absorbing materials 1 is replaced with a conventional one in which crushed stone or pumice is solidified with a binder. used. Further, as the soundproof wall 2, the same material as the fiber assembly 10 with the water repellent 30 applied on the surface was used, but the same material as the sound absorbing material 1 can also be used.

【0020】[0020]

【発明の効果】以上説明したように、本発明の吸音材
は、合成樹脂多孔質材料及び/又は無機系多孔質材料と
起泡剤とセメントと水との混和により形成された軽量モ
ルタル吸音材で、かつ、40〜80%の空隙率を有し、
複雑な経路を有する連続気泡によって構成されているの
で、吸音性能が格段に向上する。また、本発明で空隙率
を40〜80%と規定したのは、空隙率40%以下で
は、連続気泡が減少し、独立気泡が増加するので音波の
伝播経路が減少し、吸音率が20%以下となり、吸音材
として十分な吸音性能が得られなくなる為である。空隙
率80%以上では音波の伝播経路が直線的になるため、
音波の減衰が小さくなり、吸音性能は低下する。
As described above, the sound absorbing material of the present invention is a lightweight mortar sound absorbing material formed by mixing a synthetic resin porous material and / or an inorganic porous material, a foaming agent, cement and water. And has a porosity of 40 to 80%,
Since it is composed of open cells having complicated paths, the sound absorbing performance is remarkably improved. Further, the porosity is defined as 40 to 80% in the present invention. When the porosity is 40% or less, the number of open cells decreases and the number of closed cells increases, so that the propagation path of sound waves decreases and the sound absorption rate is 20%. The reason is as follows, and it becomes impossible to obtain sufficient sound absorbing performance as a sound absorbing material. When the porosity is 80% or more, the sound wave propagation path becomes linear, so
The sound wave is less attenuated and the sound absorbing performance is reduced.

【0021】前記組成の吸音材に加えて、砂と、圭砂
と、減水剤と、ポリマー及び繊維質から選ばれた1種類
もしくは数種類を含むことにより、吸音性能を低下させ
ずに、曲げ強度、圧縮強度および耐衝撃性、脆性を向上
させることができる。
In addition to the sound absorbing material having the above-mentioned composition, sand, kei sand, a water reducing agent, and one or several kinds selected from polymers and fibrous materials are included so that sound absorbing performance is not deteriorated and bending strength is reduced. , Compressive strength, impact resistance and brittleness can be improved.

【0022】また、短繊維を素材とする繊維集合体、連
通性のウレタンフォームもしくはセラミックフォーム
と、軽量モルタル吸音材を、積層体構造にすることによ
って、音波の減衰及び伝播経路を大きくすることで、さ
らに優れた吸音性能を発揮することが可能である。
Further, a fiber assembly made of short fibers, a continuous urethane foam or ceramic foam, and a lightweight mortar sound absorbing material have a laminated structure to increase the attenuation and propagation paths of sound waves. It is possible to exhibit even better sound absorption performance.

【0023】さらに、屋外にて本発明品を使用する場
合、降雨時に水が細孔に浸入して充満し、音波が細孔に
進入せずに反射するため、吸音効果が著しく低下する。
そこで軽量モルタル吸音材の表面及び/又は内部に撥水
処理し、吸水を防止することにより、吸音効果を保持
し、かつ低温時の耐凍結融解性を改善することが可能と
なる。
Further, when the product of the present invention is used outdoors, water infiltrates into the pores and is filled with it when it rains, and sound waves are reflected without entering into the pores, so that the sound absorbing effect is significantly reduced.
Therefore, the surface and / or the inside of the lightweight mortar sound absorbing material is subjected to water repellent treatment to prevent water absorption, whereby the sound absorbing effect can be maintained and the freeze-thaw resistance at low temperature can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸音材の空隙率の違いによる吸音率の変化を示
すグラフ。
FIG. 1 is a graph showing a change in sound absorption coefficient due to a difference in porosity of a sound absorbing material.

【図2】実施例3の吸音材を示す断面図。FIG. 2 is a sectional view showing a sound absorbing material of Example 3.

【図3】実施例4の吸音材を示す断面図。FIG. 3 is a cross-sectional view showing a sound absorbing material of Example 4.

【図4】実施例5の吸音材を示す断面図。FIG. 4 is a sectional view showing a sound absorbing material of Example 5.

【図5】実施例6の吸音材を示す断面図。FIG. 5 is a sectional view showing a sound absorbing material of Example 6.

【図6】実施例1〜6と比較例1,2との吸音率を示す
グラフ。
FIG. 6 is a graph showing sound absorption coefficients of Examples 1 to 6 and Comparative Examples 1 and 2.

【図7】この発明の吸音材を鉄道軌道面用吸音材とした
図。
FIG. 7 is a diagram in which the sound absorbing material of the present invention is used as a sound absorbing material for railway track surfaces.

【符号の説明】[Explanation of symbols]

1 吸音材 10 繊維集合体 20 発泡ウレタンチップ混入軽量モルタル 30 撥水剤 1 Sound Absorbing Material 10 Fiber Aggregate 20 Lightweight Mortar with Polyurethane Foam Chip 30 Water Repellent

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂多孔質材料及び/又は無機系多
孔質材料と起泡剤とセメントと水との混和により形成さ
れた軽量モルタル吸音材で、かつ、40〜80%の空隙
率を有することを特徴とする吸音材。
1. A lightweight mortar sound absorbing material formed by mixing a synthetic resin porous material and / or an inorganic porous material, a foaming agent, cement, and water, and having a porosity of 40 to 80%. Sound absorbing material characterized by that.
【請求項2】 合成樹脂多孔質材料として発泡ウレタン
チップを用いたことを特徴とする請求項1に記載の吸音
2. The sound absorbing material according to claim 1, wherein urethane foam chips are used as the synthetic resin porous material.
【請求項3】 請求項1記載の組成に加えて、砂と、圭
砂と、減水剤と、ポリマー及び繊維質から選ばれた1種
類もしくは数種類を含むことを特徴とする吸音材。
3. A sound absorbing material comprising, in addition to the composition of claim 1, sand, keiseki, a water reducing agent, and one or several kinds selected from polymers and fibrous materials.
【請求項4】 短繊維を素材とする繊維集合体、連通性
のウレタンフォームもしくはセラミックフォームと、請
求項1ないし3のいずれか1項に記載の吸音材を、積層
構造にしたことを特徴とする吸音材。
4. A laminated structure comprising a fiber assembly made of short fibers, a continuous urethane foam or a ceramic foam, and the sound absorbing material according to any one of claims 1 to 3. Sound absorbing material.
【請求項5】 表面及び/又は内部に撥水処理したこと
を特徴とする請求項1ないし4のいずれか1項に記載の
吸音材。
5. The sound absorbing material according to any one of claims 1 to 4, wherein the surface and / or the inside thereof is treated to be water repellent.
【請求項6】 表面に5°以上の勾配を有することを特
徴とする請求項1ないし5のいずれか1項に記載の吸音
材。
6. The sound absorbing material according to claim 1, wherein the surface has a gradient of 5 ° or more.
【請求項7】 底面に空気層をもたせたことを特徴とす
る請求項1ないし6のいずれか1項に記載の吸音材。
7. The sound absorbing material according to claim 1, wherein an air layer is provided on the bottom surface.
JP6188792A 1994-07-19 1994-07-19 Sound absorbing material Pending JPH0830275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6188792A JPH0830275A (en) 1994-07-19 1994-07-19 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6188792A JPH0830275A (en) 1994-07-19 1994-07-19 Sound absorbing material

Publications (1)

Publication Number Publication Date
JPH0830275A true JPH0830275A (en) 1996-02-02

Family

ID=16229883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6188792A Pending JPH0830275A (en) 1994-07-19 1994-07-19 Sound absorbing material

Country Status (1)

Country Link
JP (1) JPH0830275A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102623A (en) * 1996-10-01 1998-04-21 Nippon Cement Co Ltd Sound absorbing concrete panel
JPH10245905A (en) * 1997-03-06 1998-09-14 Sekisui Chem Co Ltd Sound absorbing material
JPH10273642A (en) * 1997-01-30 1998-10-13 Daido Concrete Kogyo Kk Porous acoustic material with impregnated silicone
JPH10317534A (en) * 1997-05-22 1998-12-02 Kenzai Techno Kenkyusho:Kk Sound absorbing panel
JP2000170142A (en) * 1998-12-04 2000-06-20 Sanwa Bosai Setsubi Kk Run-off oil collecting and treating device
JP2000170143A (en) * 1998-12-04 2000-06-20 Sanwa Bosai Setsubi Kk Run-off oil collecting fence material
JP2002297151A (en) * 2001-04-03 2002-10-11 Armstrong World Industries Inc Porous article having durability and manufacturing process for the same
JP2006526720A (en) * 2003-06-04 2006-11-24 シューレンブルク−ボルフスブルク、ギュンツェル・グラフ・フォン・デア Rail structure for rail vehicles, especially railways
JP2010169153A (en) * 2009-01-21 2010-08-05 Showa Denko Kenzai Kk Soundproof synthetic resin pipe and method of manufacturing the same
JP2016223269A (en) * 2015-06-04 2016-12-28 旭ビルウォール株式会社 Sound absorption body for the railway
CN107265967A (en) * 2017-05-22 2017-10-20 西南科技大学 A kind of Frozen Ground Area roadbed bentonite modified cement based porous materials of heat-insulating and shock-absorbing
JP2019132820A (en) * 2018-01-26 2019-08-08 三菱重工冷熱株式会社 Anechoic chamber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102623A (en) * 1996-10-01 1998-04-21 Nippon Cement Co Ltd Sound absorbing concrete panel
JPH10273642A (en) * 1997-01-30 1998-10-13 Daido Concrete Kogyo Kk Porous acoustic material with impregnated silicone
JPH10245905A (en) * 1997-03-06 1998-09-14 Sekisui Chem Co Ltd Sound absorbing material
JPH10317534A (en) * 1997-05-22 1998-12-02 Kenzai Techno Kenkyusho:Kk Sound absorbing panel
JP2000170142A (en) * 1998-12-04 2000-06-20 Sanwa Bosai Setsubi Kk Run-off oil collecting and treating device
JP2000170143A (en) * 1998-12-04 2000-06-20 Sanwa Bosai Setsubi Kk Run-off oil collecting fence material
JP2002297151A (en) * 2001-04-03 2002-10-11 Armstrong World Industries Inc Porous article having durability and manufacturing process for the same
JP2006526720A (en) * 2003-06-04 2006-11-24 シューレンブルク−ボルフスブルク、ギュンツェル・グラフ・フォン・デア Rail structure for rail vehicles, especially railways
JP2010169153A (en) * 2009-01-21 2010-08-05 Showa Denko Kenzai Kk Soundproof synthetic resin pipe and method of manufacturing the same
JP2016223269A (en) * 2015-06-04 2016-12-28 旭ビルウォール株式会社 Sound absorption body for the railway
CN107265967A (en) * 2017-05-22 2017-10-20 西南科技大学 A kind of Frozen Ground Area roadbed bentonite modified cement based porous materials of heat-insulating and shock-absorbing
CN107265967B (en) * 2017-05-22 2020-02-14 西南科技大学 Heat-insulating and shock-absorbing bentonite modified cement-based porous material for roadbed in frozen soil area
JP2019132820A (en) * 2018-01-26 2019-08-08 三菱重工冷熱株式会社 Anechoic chamber

Similar Documents

Publication Publication Date Title
US4094380A (en) Multi layer sound-proofing structure
EP1088946B1 (en) Acoustical panel having a honeycomb structure and method of making the same
JPH0830275A (en) Sound absorbing material
KR102193235B1 (en) Noise reduction reinforcement method between floors in buildings with high functional mortar using nano-technology
KR0166993B1 (en) The method of nozzle protecting structure of floor
KR100788746B1 (en) Mortar composition for improving impact sound resistance and method of improving impact sound resistance of concrete slab floor
KR20150093628A (en) The construction method and panel soundproof shockproof for structure
KR20010027935A (en) Impact sound insulating member and floating floor structure using it and floating floor executing method
KR20010036969A (en) Polymer Composites for Impact Sound Insulation
KR101269113B1 (en) A method for manufacturing with a panel for absorbing and cutting off impact noise
JP4906318B2 (en) Low frequency sound absorber made of closed cell glass foam
KR100773106B1 (en) Shock absorbing materials for inter layer noise proofing of a construction, manufacturing method thereof and floor forming method using the shock absorbing materials
CN108911689A (en) A kind of sound-absorbing material
KR100666875B1 (en) Manufacturing inter layer absorbing materials for construction using wastes absorbing board
KR100806728B1 (en) Insulation materials for reducing a noise and a impact sound
KR200181811Y1 (en) A floor structure of public house for preventing noise and vibration
KR20190033995A (en) Construction methods to minimize floor noise using nano-technology
KR101722983B1 (en) Composition for foam concrete with high insulation for reducing of floor impact sound, manufacturing method of foam concrete using the same and foam concrete with high insulation for reducing of floor impact sound manufactured using the same
KR102145800B1 (en) Anti-noise pad
KR200284537Y1 (en) Insulation material for dust insulation
CN114350213A (en) Single-component sound insulation coating, preparation method thereof and single-component sound insulation coating
KR100750628B1 (en) Noise-blocking pad for architecture with excellent insulation of noise
KR102240458B1 (en) Noise reduction reinforcement structure between floors in buildings with high functional mortar using nano-technology
KR200401924Y1 (en) Sound-proof floor reduction panel for construction
KR200201314Y1 (en) Interior finish insulated sound and heat for a floor of an appartment using cast-in-place concreat