JPH08301B2 - Welding method of low alloy steel with flux cored wire - Google Patents

Welding method of low alloy steel with flux cored wire

Info

Publication number
JPH08301B2
JPH08301B2 JP28264987A JP28264987A JPH08301B2 JP H08301 B2 JPH08301 B2 JP H08301B2 JP 28264987 A JP28264987 A JP 28264987A JP 28264987 A JP28264987 A JP 28264987A JP H08301 B2 JPH08301 B2 JP H08301B2
Authority
JP
Japan
Prior art keywords
wire
flux
welding
cored wire
low alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28264987A
Other languages
Japanese (ja)
Other versions
JPH01127178A (en
Inventor
松吾 夏目
明信 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28264987A priority Critical patent/JPH08301B2/en
Publication of JPH01127178A publication Critical patent/JPH01127178A/en
Publication of JPH08301B2 publication Critical patent/JPH08301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動及び半自動溶接によりフラックス入り
ワイヤを用いて低合金鋼を溶接する際、良好な耐割れ性
を得ることができる溶接方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a welding method capable of obtaining good crack resistance when welding a low alloy steel using a flux-cored wire by automatic and semi-automatic welding. It is a thing.

(従来の技術及び解決しようとする問題点) 低合金鋼はその特性に応じて広い分野で使用されてい
る。
(Prior art and problems to be solved) Low alloy steels are used in a wide range of fields depending on their properties.

例えば、低合金高張力鋼はその強度特性を活かして、
鉄骨、橋梁、タンク、海洋構造物等々に使用されてお
り、また低合金耐熱鋼はその耐熱性、耐食性を活かし
て、化学工業プラント、高温高圧ボイラ、原子力機器等
々に使用されている。
For example, low alloy high strength steel takes advantage of its strength characteristics,
It is used in steel frames, bridges, tanks, marine structures, etc., and low alloy heat resistant steel is used in chemical industry plants, high temperature and high pressure boilers, nuclear equipment, etc. due to its heat resistance and corrosion resistance.

そして、これらの分野での使用に際しては各種溶接法
が適用され、良好な溶接作業性及び高能率性と云った長
所を有するフラックス入りワイヤの使用が拡大しつつあ
る。
When used in these fields, various welding methods are applied, and the use of flux-cored wires having the advantages of good welding workability and high efficiency is expanding.

ところが、低合金鋼はNi、Cr、Mo等の合金元素の添加
により種々の特性を得ているため、一般の軟鋼、50キロ
級高張力鋼と比較して強度が高くなっており、水素によ
る低温割れ感受性も高くなっている。
However, low alloy steel has various properties by adding alloy elements such as Ni, Cr, Mo, etc., so its strength is higher than that of general mild steel and 50 kg class high strength steel. Cold cracking sensitivity is also high.

そのため、従来より、フラックス入りワイヤを用いて
低合金鋼を溶接する場合、十二分の熱管理(予熱、パス
間、直後熱)が必要であったり、適用鋼種が限定される
等の不都合が生じており、これらの問題点を解決するこ
とが望まれていた。
Therefore, conventionally, when welding a low alloy steel using a flux-cored wire, there is a problem that sufficient heat management (preheating, heat between passes, immediately after heating) is required, and applicable steel types are limited. However, it has been desired to solve these problems.

本発明は、かゝる要請に応えるべくなされたものであ
って、低合金鋼の鋼種によらずに、水素による低温割れ
感受性の少ない溶接方法を提供することを目的とするも
のである。
The present invention has been made in order to meet such a demand, and an object of the present invention is to provide a welding method having low susceptibility to cold cracking by hydrogen regardless of the type of low alloy steel.

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、各種条件を種
々変化させ、特に種々レベルのポテンシャル水素量を有
する低合金鋼に対しフラックス入りワイヤのワイヤ突出
し長さを変化させて溶接し、耐低温割れ性との関係を調
べたところ、その間に一定の関連性があることを見い出
し、ここに本発明をなしたものである。
(Means for Solving Problems) In order to achieve the above-mentioned object, the present inventor changed various conditions variously, and particularly the wire protrusion length of the flux-cored wire for low alloy steel having various levels of potential hydrogen content. When the relationship between the low temperature crack resistance and the resistance to cold cracking was investigated by finding that there was a certain relationship between them, the present invention was made here.

すなわち、本発明は、低合金鋼をフラックス入りワイ
ヤを用いて溶接するに際し、次式を満たす条件で溶接を
行うことを特徴とするものである。
That is, the present invention is characterized in that when welding a low alloy steel using a flux-cored wire, the welding is performed under conditions satisfying the following equation.

ここで、〔H〕は不活性ガス溶解法で測定したフラ
ックス入りワイヤのポテンシャル水素量をppmで表わし
たものであり、EXはフラックス入りワイヤの突出し長さ
をmmで表わしたものであって、ワイヤ突出し長さは、第
2図に示すように、フラックス入りワイヤ1の先端とコ
ンタクトチップ2の先端との間の距離を示し、コンタク
トチップ2と母材の距離からアーク長4を引いた長さに
等しい。
Here, (H) W is a representation of the potential amount of hydrogen flux cored wires were measured by inert gas melting method in ppm, E X is a a representation of the extension length of the flux cored wire in mm As shown in FIG. 2, the wire protrusion length indicates the distance between the tip of the flux-cored wire 1 and the tip of the contact tip 2, and the arc length 4 is subtracted from the distance between the contact tip 2 and the base material. Equal to the length

以下に本発明を更に詳細に説明する。 The present invention will be described in more detail below.

まず、フラックス入りワイヤのポテンシャル水素量
〔H〕とワイヤ突出し長さEXの比について述べる。
First, the potential amount of hydrogen in the flux cored wire (H) and W and wire extension described ratio of length E X.

ワイヤそのものに含有している水素を測定する方法と
しては種々開発されているが、ここでは簡便性及び普遍
性並びに精度の観点より不活性ガス融解法を採用した。
この方法は、試料を高温で溶解し、その時に放出される
水素を測定するものであり、フラックス入りワイヤの表
面付着物、フープ材そのものや内蔵フラックスに含有す
る水素量を合計した値で知ることができる。勿論、他の
方法で測定して、本方法に換算してもよいことは云うま
でもない。
Various methods have been developed for measuring hydrogen contained in the wire itself, but the inert gas melting method was adopted here from the viewpoint of simplicity, universality, and accuracy.
This method melts a sample at high temperature and measures the amount of hydrogen released at that time. Knowing the total amount of hydrogen contained in the surface deposits on the flux-cored wire, the hoop material itself, and the built-in flux. You can Of course, it goes without saying that it may be measured by another method and converted into this method.

本発明者が前記不活性ガス融解法で各種のフラックス
入りワイヤのポテンシャル水素量を測定したところ、ワ
イヤの鋼種やその製造方法により種々の値が得られた。
そこで、これらのワイヤを用いると共にワイヤの突出し
長さを種々変え、且つ各種鋼種の母材について溶接し、
溶接部につき拘束割れ試験を行い、割れの有無を確認し
たところ、第1図に示す結果が得られた。この試験結果
より、水素に起因する割れを防ぐには、〔H〕W/EXを4
以下に規制することが有効であることが判明した。勿
論、その比が4を超えると溶接部に割れが発生し、耐低
温割れ性が劣化するので好ましくない。
When the present inventor measured the amount of potential hydrogen of various flux-cored wires by the above-mentioned inert gas melting method, various values were obtained depending on the steel type of the wire and the manufacturing method thereof.
Therefore, using these wires, varying the protruding length of the wire, and welding the base materials of various steel types,
When a restraint cracking test was conducted on the welded portion and the presence or absence of cracking was confirmed, the results shown in FIG. 1 were obtained. From this test result, prevent cracking due to hydrogen, the [H] W / E X 4
The following restrictions have proved effective. Of course, if the ratio exceeds 4, cracking occurs in the welded portion and the low temperature cracking resistance deteriorates, which is not preferable.

なお、本発明法を実施するに際しては、以下に述べる
ように、ワイヤの電気抵抗及びキャスト径を適切にコン
トロールするのが好ましいことである。
When carrying out the method of the present invention, it is preferable to appropriately control the electric resistance and the cast diameter of the wire, as described below.

ワイヤ突出し長さを長くすることによって拡散性水素
が少なくなるという現象は、コンタクトチップとアーク
点の間でワイヤがジュール熱により加熱され、そのため
脱水素(水分)が行われるためであると考えられる。
The phenomenon that the diffusible hydrogen is reduced by increasing the protruding length of the wire is considered to be because the wire is heated by Joule heat between the contact tip and the arc point, which causes dehydrogenation (moisture). .

ジュール熱による単位時間の発熱量は次の式で表わさ
れる。
The calorific value per unit time due to Joule heat is expressed by the following equation.

H=KI2R ここで、 K:定数 I:電流 R:抵抗 この式から、同じ電流値で比較すれば、発熱量は抵抗
値に比例することがわかる。そこで、抵抗値の異なる種
々のフープによりフラックス入りワイヤを製作し、確認
したところ、1m当りの電気抵抗にワイヤの実質断面積を
乗じた値が1.0×10-3Ω・cm2未満のフラックス入りワイ
ヤでは十分な発熱が得られないため、効果が少なく、ま
た逆に15×10-3Ω・cm2を超えるものでは発熱が過大と
なり、溶接作業性が悪化すると共に、一般の市販電源で
は必要な溶接電流が得られないという問題が生じるた
め、フラックス入りワイヤとしては上記の値が(1.0〜1
5)×10-3Ω・cm2のものを用いることが好ましい。
H = KI 2 R Here, K: constant I: current R: resistance From this equation, it is understood that the amount of heat generation is proportional to the resistance value when compared at the same current value. Therefore, we manufactured and confirmed flux-cored wires using various hoops with different resistance values, and found that the value obtained by multiplying the electrical resistance per 1 m by the actual cross-sectional area of the wire was less than 1.0 × 10 -3 Ωcm 2. Since the wire does not generate sufficient heat, it is less effective, and conversely, if it exceeds 15 × 10 -3 Ωcm 2 , the heat generation becomes excessive and welding workability deteriorates. Since the problem that a sufficient welding current cannot be obtained, the above value is (1.0-1
5) It is preferable to use one having a density of × 10 −3 Ω · cm 2 .

なお、実質断面積とはワイヤ断面積中のフープ部分の
ことを示す。
The substantial cross-sectional area means the hoop portion in the wire cross-sectional area.

勿論、フラックス入りワイヤの抵抗値は溶接時には高
温に加熱されるため、抵抗値も上昇するので、実際の使
用時の抵抗値で規定すべきとも考えられるが、低合金鋼
用フラックス入りワイヤに使用される軟鋼及び低合金鋼
フープ材の電気抵抗の温度係数(温度の変化に伴う抵抗
値の変化の割合)は、殆ど同一であるため、室温におけ
る電気抵抗値で規定しても問題はない。
Of course, the resistance value of the flux-cored wire is heated to a high temperature during welding, so the resistance value also rises, so it is considered that it should be specified by the resistance value during actual use. Since the mild steel and the low alloy steel hoop materials have almost the same temperature coefficient of electric resistance (rate of change in resistance value due to temperature change), there is no problem in defining the electric resistance value at room temperature.

更に、より安定した効果を得るためには、ワイヤとコ
ンタクトチップ間で安定した通電が行われることが好ま
しい。安定した通電が行われないと溶接作業性が悪化す
るのみでなく、部分的にジュール熱の発生不足により拡
散性水素の高い溶接部が生じる可能性があり、継手部の
健全性に問題を生じる。この点に関して検討を行った結
果、ワイヤのキャストを300〜1000mmの範囲に管理する
ことが効果的であるとの知見を得た。つまり、キャスト
が300mm未満ではワイヤがコンジットやチップを通過し
にくくなり、アークの安定性を害することになり、ま
た、1000mmを超えるとコンタクトチップにおける通電が
不安定となることがわかった。したがって、キャストを
300〜1000mmの範囲にするのが好ましい。
Furthermore, in order to obtain a more stable effect, it is preferable that a stable energization be performed between the wire and the contact tip. If stable energization is not performed, not only the welding workability will deteriorate, but there may be welds with high diffusible hydrogen due to insufficient Joule heat generation, which causes problems with the integrity of the joints. . As a result of studying this point, it was found that it is effective to control the wire casting within the range of 300 to 1000 mm. In other words, it was found that when the cast was less than 300 mm, the wire was difficult to pass through the conduit or the tip, impairing the stability of the arc, and when the cast was more than 1000 mm, the energization of the contact tip was unstable. Therefore, cast
It is preferably in the range of 300 to 1000 mm.

なお、この溶接方法に使用されるシールドガスとして
は、CO2100%でもアルゴンにCO2やO2を混合した混合ガ
スも使用することができ、特に制限されない。
As the shield gas used in this welding method, mixed gas of CO 2 and O 2 in Argon even CO 2 100% also can be used is not particularly limited.

また、フラックス入りワイヤについての他の条件、例
えばフープ材質、フラックス材料、フラックス充填率等
々は特に制限されず、ワイヤの断面形状についても、溶
接上問題のない範囲であれば種々の形を採用することが
可能であり、いわゆるシームレス、シール有りの区別は
問わない。
Further, other conditions regarding the flux-cored wire, such as hoop material, flux material, and flux filling rate, are not particularly limited, and various shapes can be adopted for the cross-sectional shape of the wire as long as there is no problem in welding. It is possible to make a distinction between so-called seamless and with a seal.

また、母材の低合金鋼としても、各種鋼種のものを適
用できることは云うまでもない。
Needless to say, various types of steel can be applied as the low alloy steel of the base material.

次に本発明の実施例を示す。 Next, examples of the present invention will be described.

(実施例) 第1表及び第2表に示す各種特性のフラックス入りワ
イヤを使用し、同表に示す条件並びに第3表に示す溶接
条件により、同表に示す各種鋼種の母材を溶接した。
(Example) Using the flux-cored wires having various characteristics shown in Tables 1 and 2, the base materials of various steel types shown in the same table were welded under the conditions shown in the table and the welding conditions shown in Table 3. .

なお、フープ材は純鉄に近い極軟鋼から合金鋼に至る
各種成分のものを使用した。内蔵フラックスは一般的な
組成(合金元素+スラグ形成剤)のものを使用し、ワイ
ヤの水素量を種々変えるため、乾燥条件を変えたり、含
水鉱物を添加する等の処置を行うと共に、対象母材鋼種
及び使用フープ成分に応じて合金成分の調整も行った。
ワイヤはすべて1.2mmφに伸線し、巻き替え時にキャス
トをコントロールした。
The hoop materials used were various components ranging from extremely mild steel close to pure iron to alloy steel. The built-in flux has a general composition (alloying element + slag-forming agent), and in order to change the amount of hydrogen in the wire variously, the drying conditions are changed, water-containing minerals are added, and other measures are taken. The alloy composition was also adjusted according to the material steel type and the hoop composition used.
All the wires were drawn to 1.2 mmφ and the cast was controlled during rewinding.

第3表に示す試験要領で溶接性及び拘束割れ試験を行
った。その結果を第1表及び第2表に併記する。なお、
溶接性は○印(良好)、×印(不良)を付して評価し、
×印の場合には溶接を中止した。また割れの有無につい
ては○印(割れなし)、×印(割れ有り)を付した。
Weldability and restraint crack tests were conducted according to the test procedure shown in Table 3. The results are also shown in Tables 1 and 2. In addition,
Weldability is evaluated by marking with ○ (good) and × (bad).
When marked with X, welding was stopped. The presence or absence of cracks is marked with a circle (no crack) and a cross (crack).

第1表及び第2表に示すとおり、本発明による溶接法
の場合、各種低合金鋼の溶接に際し、極めて良好な耐低
温割れ性を示し、溶接性も良好であることがわかる。そ
の場合、同表中、No.にカッコを付した参考ワイヤの例
に示すように、ワイヤの電気抵抗、キャストを適切にコ
ントロールするのが好ましい。
As shown in Tables 1 and 2, it can be seen that, in the case of the welding method according to the present invention, extremely low temperature crack resistance is exhibited in welding of various low alloy steels, and weldability is also good. In that case, it is preferable to appropriately control the electric resistance and the cast of the wire as shown in the example of the reference wire with parentheses in No. in the table.

(発明の効果) 以上詳述したように、本発明によれば、フラックス入
りワイヤを使用して低合金鋼を溶接する際にワイヤのポ
テンシャル水素量とワイヤ突出し長さの関係を規制する
ので、極めて良好な耐低温割れ性を得ることができ、溶
接性も良好である。
(Effect of the Invention) As described in detail above, according to the present invention, when welding a low alloy steel using a flux-cored wire, the relationship between the potential hydrogen amount of the wire and the wire protrusion length is regulated. Very good cold crack resistance can be obtained, and weldability is also good.

【図面の簡単な説明】[Brief description of drawings]

第1図はフラックス入りワイヤ中のポテンシャル水素量
とワイヤ突出し長さの関係を示す図、 第2図はワイヤ突出し長さを説明する図、 第3図は実施例に用いた試験板の形状、寸法(mm)を示
す平面図、 第4図は第3図のA−A′断面図である。 1……フラックス入りワイヤ、2……コンタクトチッ
プ、3……母材、4……アーク長。
FIG. 1 is a diagram showing the relationship between the amount of potential hydrogen in the flux-cored wire and the wire protrusion length, FIG. 2 is a diagram for explaining the wire protrusion length, and FIG. 3 is the shape of the test plate used in the examples. FIG. 4 is a plan view showing dimensions (mm), and FIG. 4 is a sectional view taken along the line AA ′ in FIG. 1 ... Flux-cored wire, 2 ... Contact tip, 3 ... Base metal, 4 ... Arc length.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】低合金鋼をフラックス入りワイヤを用いて
溶接するに際し、次式 但し、 〔H〕W:ワイヤのポテンシャル水素量(ppm) EX:ワイヤの突出し長さ(mm) を満たす条件で溶接を行うことを特徴とするフラックス
入りワイヤによる低合金鋼の溶接方法。
1. When welding a low alloy steel using a flux-cored wire, However, [H] W: potential amount of hydrogen in the wire (ppm) E X: Welding method low alloy steel by the flux cored wire, wherein the welding is performed under a condition satisfying wire protruding length a (mm).
【請求項2】前記フラックス入りワイヤとして、1m当り
の電気抵抗にワイヤの実質断面積を乗じた値が(1.0〜1
5)×10-3Ω・cm2のものを用いる特許請求の範囲第1項
記載の方法。
2. A value obtained by multiplying the electrical resistance per 1 m by the substantial cross-sectional area of the wire as the flux-cored wire is (1.0 to 1).
5) The method according to claim 1, which uses x10 -3 Ω · cm 2 .
【請求項3】前記フラックス入りワイヤとして、キャス
ト径が300〜1000mmものを用いる特許請求の範囲第1項
又は第2項記載の方法。
3. The method according to claim 1 or 2, wherein the flux cored wire has a cast diameter of 300 to 1000 mm.
JP28264987A 1987-11-09 1987-11-09 Welding method of low alloy steel with flux cored wire Expired - Fee Related JPH08301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28264987A JPH08301B2 (en) 1987-11-09 1987-11-09 Welding method of low alloy steel with flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28264987A JPH08301B2 (en) 1987-11-09 1987-11-09 Welding method of low alloy steel with flux cored wire

Publications (2)

Publication Number Publication Date
JPH01127178A JPH01127178A (en) 1989-05-19
JPH08301B2 true JPH08301B2 (en) 1996-01-10

Family

ID=17655260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28264987A Expired - Fee Related JPH08301B2 (en) 1987-11-09 1987-11-09 Welding method of low alloy steel with flux cored wire

Country Status (1)

Country Link
JP (1) JPH08301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131637A (en) * 2008-12-04 2010-06-17 Kobe Steel Ltd Gas shielded arc welding method
JP2013193124A (en) * 2012-03-22 2013-09-30 Hitachi Zosen Corp Welding method of structural steel, and welded steel structure

Also Published As

Publication number Publication date
JPH01127178A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
AU691440B2 (en) Metal-core weld wire for welding galvanized steels
US5003155A (en) Basic metal cored electrode
US3726668A (en) Welding filling material
KR890009525A (en) Consumable welding electrode and its use
Harwig et al. Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas shielded flux cored arc welds
US4086463A (en) Flux-cored wire
US3221136A (en) Method and electrode for electric arc welding
US5272305A (en) Girth-welding process for a pipe and a high cellulose type coated electrode
JP2018130749A (en) Flux-cored wire for gas shield arc welding, and method for production of weld joint
JPH08301B2 (en) Welding method of low alloy steel with flux cored wire
US3215814A (en) Welding of high yield strength steel
US3124479A (en) Copper-nickel alloy welding electrode
US3404249A (en) Welding of high yield strength steel
US3457388A (en) Electrode for welding and building up metals and their alloys
JPS5937157B2 (en) Single-sided welding method for stainless steel fittings
JPS5847959B2 (en) Low hydrogen coated arc welding rod
Slania et al. Welding of austenitic, acid-resistant steels with flux-cored wires in shields of gas mixtures
JP3208556B2 (en) Flux-cored wire for arc welding
US2704317A (en) Sheathed welding electrode for welding of intergranular corrosion resistant stainlesssteel
JPH0521677B2 (en)
US3597583A (en) Consumable welding electrode
US3524765A (en) Welding rod for welding steel containing 9% ni
JP2528341B2 (en) Solid wire for gas shield arc welding
JPS586791A (en) Gas shielded welding material for austenitic stainless steel
US2458688A (en) Welding cupro-nickel alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees