JPH08301695A - Optical material and its production - Google Patents

Optical material and its production

Info

Publication number
JPH08301695A
JPH08301695A JP7134743A JP13474395A JPH08301695A JP H08301695 A JPH08301695 A JP H08301695A JP 7134743 A JP7134743 A JP 7134743A JP 13474395 A JP13474395 A JP 13474395A JP H08301695 A JPH08301695 A JP H08301695A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical material
activator
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7134743A
Other languages
Japanese (ja)
Other versions
JP3456557B2 (en
Inventor
Yasuaki Tamura
保暁 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13474395A priority Critical patent/JP3456557B2/en
Publication of JPH08301695A publication Critical patent/JPH08301695A/en
Application granted granted Critical
Publication of JP3456557B2 publication Critical patent/JP3456557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain an optical material in a valence state of an activator element modulated in terms of space by irradiating an optical material containing a rare earth element or a transition metal element as an activator with a specific light during its synthesis. CONSTITUTION: In at least one process for synthesizing an optical material containing at least one of a rare earth element and a transition element as an activator and a process for heat treatment after the synthesis, the following treatment is carried out. Namely, the optical material is irradiated with a light in a light absorption wavelength range of the activator ion or a light including a wavelength in a light absorption wavelength range of the activator ion and the irradiation dose is modulated in terms of space to give the objective optical material. The optical material can provide a filter of a narrow range capable of designing an oscillation wavelength, and form an arbitrary indication pattern by few production processes and supply an eliminable indication element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学材料とその製造方法
に係わり、特に発振波長の設計が可能な狭帯域レーザー
材料、狭帯域フィルター材料並びに、少ない製造工程で
任意の表示パターンの形成ができると共に表示パターン
の消去書き換えが可能な表示光学材料とこれら光学材料
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical material and a method for manufacturing the same, and in particular, a narrow band laser material and a narrow band filter material whose oscillation wavelength can be designed, and an arbitrary display pattern can be formed by a small number of manufacturing steps. In addition, the present invention relates to a display optical material in which a display pattern can be erased and rewritten, and a manufacturing method of these optical materials.

【0002】[0002]

【従来の技術】希土類元素あるいは遷移金属元素を活性
剤として含有する光学材料は、蛍光体材料、固体レーザ
ー材料、あるいは波長校正用光学フィルター材料として
従来より広く用いられている。これら、光学材料の光学
的特性は、活性剤イオンが持つ固有の電子準位間での遷
移、すなわち、希土類元素を活性剤として用いた場合に
は、希土類イオンの4f電子準位と5d電子準位間での
遷移(以後f−d遷移と記載)、あるいは4f電子準位
間での遷移(以後f−f遷移と記載)を利用し、遷移金
属元素を活性剤として用いた場合には、遷移金属元素イ
オンの3d電子準位間での遷移(以後d−d遷移と記
載)を利用している。
2. Description of the Related Art Optical materials containing a rare earth element or a transition metal element as an activator have been widely used as fluorescent material, solid-state laser material, or optical filter material for wavelength calibration. The optical characteristics of these optical materials are such that the transition between the intrinsic electronic levels of the activator ion, that is, when a rare earth element is used as the activator, the 4f electronic level and the 5d electronic level of the rare earth ion are used. When a transition metal element is used as an activator using a transition between positions (hereinafter described as fd transition) or a transition between 4f electronic levels (hereinafter described as ff transition), A transition between 3d electronic levels of a transition metal element ion (hereinafter referred to as d-d transition) is used.

【0003】これらの遷移のうち、f−d遷移とd−d
遷移は母体材料に応じて波長が大きく変化し、ブロード
な吸収、発光特性を示すのに対し、f−f遷移は母体材
料による波長変動は小さく、複数本の線状の吸収、発光
特性を示すという特徴がある。したがって、波長可変レ
ーザーなど広帯域の発光特性が必要な光学材料として
は、f−d遷移とd−d遷移が用いられ、波長校正用フ
ィルターなど鋭い吸収線が必要とされる材料ではf−f
遷移を利用している。
Of these transitions, fd transitions and dd transitions
The transition has a broad wavelength change depending on the base material and exhibits broad absorption and emission characteristics, whereas the ff transition has a small wavelength variation due to the base material and exhibits a plurality of linear absorption and emission characteristics. There is a feature called. Therefore, fd transitions and dd transitions are used as optical materials such as wavelength tunable lasers that require broadband emission characteristics, and fd for materials that require sharp absorption lines such as wavelength calibration filters.
You are using transitions.

【0004】d−d遷移を利用した光学材料としては、
チタンTiを添加したチタンサファイヤレーザー、Cr
を添加したCr:YAGレーザーなどの波長可変レーザ
ーがあり、特に後者は、光通信波長帯である1.3μm
〜1.5μmにかけての波長域で発振するレーザーとし
て有用である。また、f−f遷移を利用した光学材料と
しては、Hoを添加したホルミウムガラスフィルターな
どが分光器等の波長校正用フィルターとして広く用いら
れている。
As an optical material utilizing the d-d transition,
Titanium Titanium sapphire laser with Ti added, Cr
There is a wavelength tunable laser such as a Cr: YAG laser with addition of Al, in particular the latter is 1.3 μm, which is the optical communication wavelength band.
It is useful as a laser that oscillates in the wavelength range of up to 1.5 μm. Further, as an optical material utilizing the f-f transition, a holmium glass filter containing Ho is widely used as a wavelength calibration filter for a spectroscope or the like.

【0005】前述したように、活性剤として添加された
希土類元素、遷移金属元素が示す光吸収特性、発光特性
は元素の種類、イオンの価数、加えて母体材料の種類に
応じて変化するが、これら3者が決まれば光吸収特性、
発光特性は一意的に決まるという特徴がある。このた
め、カラーブラウン管など青、緑、赤色と発光色が異な
る蛍光体が必要な場合には、それぞれ青色、緑色、赤色
に発光する3種類の蛍光体を空間的に分離して用いられ
ている。
As described above, the light absorption characteristics and the light emission characteristics of the rare earth element and the transition metal element added as the activator change depending on the kind of the element, the valence of the ion and the kind of the base material. , Light absorption characteristics if these three are decided,
The light emission characteristic is uniquely determined. Therefore, when a phosphor such as a color CRT that emits different colors from blue, green, and red is required, three types of phosphors that emit blue, green, and red, respectively, are spatially separated and used. .

【0006】[0006]

【発明が解決しようとする課題】従来の広帯域レーザー
を用いてその発振波長帯域から必要な発振波長を選択し
発振させようとした場合、波長選択素子を共振器内に組
み込み発振させなければならないため、共振器構成が複
雑になるという欠点があると共に、周囲温度の変化によ
って共振器として用いた光学素子の位置変動が生じ発振
波長の変動が生じやすいという欠点があった。
When a conventional broadband laser is used to select a desired oscillation wavelength from the oscillation wavelength band to oscillate, a wavelength selection element must be incorporated in the resonator to oscillate. In addition to the drawback that the structure of the resonator becomes complicated, there is also the drawback that the position of the optical element used as the resonator changes due to changes in the ambient temperature and the oscillation wavelength easily changes.

【0007】また、波長校正用フィルターにおいては、
希土類の固有の遷移による吸収線の波長が離散的なもの
であるために、吸収線の波長を任意に選択できないとい
う欠点があった。
Further, in the wavelength calibration filter,
Since the wavelength of the absorption line due to the characteristic transition of rare earth is discrete, there is a drawback that the wavelength of the absorption line cannot be arbitrarily selected.

【0008】また、カラーブラウン管などの表示素子に
おいては、異なる蛍光体を空間的に分離して配置するた
めに、蛍光体塗布工程とエッチング工程とを繰り返し行
う必要があり工程が多くなるという欠点を有すると共
に、エッチングにより空間的分離を行うために、蛍光体
配置の空間的分離能、すなわち解像度に限界があり高々
数μmほどの分離能しか得られないという欠点があっ
た。さらにこのようにして形成された蛍光体の配列パタ
ーンは固定的なものであり、表示素子製造後に配列パタ
ーンを変更することはできないという欠点も有してい
た。
In addition, in a display device such as a color cathode ray tube, different phosphors are spatially separated, so that the phosphor coating process and the etching process need to be repeatedly performed, resulting in a large number of processes. In addition to the above, since the spatial separation is performed by etching, there is a drawback that the spatial resolution of the phosphor arrangement, that is, the resolution is limited and only a resolution of several μm can be obtained at most. Furthermore, the array pattern of the phosphors formed in this manner is fixed, and there is a drawback that the array pattern cannot be changed after the display element is manufactured.

【0009】[0009]

【課題を解決するための手段】本発明は上記の欠点に鑑
みなされたものであり、光学材料の合成工程、あるいは
合成後の熱処理工程の少なくとも一つの工程において、
活性剤イオンの光吸収波長帯域内の波長の光、あるいは
活性剤イオンの光吸収波長帯域の波長を含む光を照射
し、且つ、照射光の強度あるいは、照射時間を空間的に
変調して照射することにより、活性剤元素の価数状態が
空間的に変調されてなる光学材料とすることにより上記
課題を解決することができる。
The present invention has been made in view of the above-mentioned drawbacks, and in at least one of the step of synthesizing an optical material and the heat treatment step after the synthesis,
Irradiate light with a wavelength within the light absorption wavelength band of the activator ion, or light including a wavelength within the light absorption wavelength band of the activator ion, and irradiate by modulating the intensity of the irradiation light or the irradiation time spatially. By doing so, the above problem can be solved by using an optical material in which the valence state of the activator element is spatially modulated.

【0010】[0010]

【作用】本発明は、光学材料の合成工程、あるいは合成
後の熱処理工程の少なくとも一つの工程において、活性
剤イオンの光吸収波長帯域内の波長の光、あるいは活性
剤イオンの光吸収波長帯域の波長を含む光を照射する
と、活性剤の価数状態が変化する作用を利用するもので
ある。
According to the present invention, in at least one of the step of synthesizing an optical material and the heat treatment step after synthesis, the light having a wavelength within the light absorption wavelength band of the activator ion or the light absorption wavelength band of the activator ion is It utilizes the effect of changing the valence state of the activator when irradiated with light containing a wavelength.

【0011】作用をわかりやすく説明するために、Cr
添加YAG単結晶を例にとり説明を進める。通常Cr添
加YAG単結晶において、Crは3価イオンの状態で含
有されているが、熱処理工程で3価Crの光吸収波長に
相当する光を照射して熱処理を行うと、Crの価数状態
が3価から4価へと変化する。価数変化して生成される
4価Cr濃度は照射された光の強度と照射時間との積で
ある照射光エネルギーの総量に比例する。このため、照
射時間が一定であるならば、光強度に、光強度が一定で
あるならば照射時間に比例して4価Crの濃度が変化す
る。
In order to explain the operation in an easy-to-understand manner, Cr
The description will proceed with the added YAG single crystal as an example. Usually, in Cr-added YAG single crystal, Cr is contained in the state of trivalent ions. However, when heat treatment is performed by irradiating with light corresponding to the light absorption wavelength of trivalent Cr, the valence state of Cr is Changes from trivalent to tetravalent. The tetravalent Cr concentration generated by changing the valence is proportional to the total amount of irradiation light energy which is the product of the irradiation light intensity and the irradiation time. Therefore, the concentration of tetravalent Cr changes in proportion to the light intensity if the irradiation time is constant and in proportion to the irradiation time if the light intensity is constant.

【0012】したがって、照射光の強度を空間的に変調
して光照射を行った場合には、強度の強い光が照射され
た部分では4価Cr濃度が高く、強度の弱い光が照射さ
れた部分では4価Cr濃度が低くなるため、Crの価数
状態が空間的に変調された、すなわち3価Crと4価C
rの存在比率が部分的に異なるYAG単結晶が得られ
る。また、照射時間を変調した場合にも同様に、照射時
間の長い部分では4価Cr濃度が高く、照射時間の短い
部分では4価Cr濃度が低くなるため強度変調を行った
場合と同様に、Crの価数状態が空間的に変調されたY
AG単結晶が得られる。
Therefore, when the intensity of the irradiation light is spatially modulated and the light irradiation is performed, the tetravalent Cr concentration is high in the portion irradiated with the high intensity light and the weak intensity light is emitted. Since the tetravalent Cr concentration becomes low in the part, the valence state of Cr was spatially modulated, that is, trivalent Cr and tetravalent C.
A YAG single crystal having a partially different abundance ratio of r is obtained. Similarly, when the irradiation time is modulated, the tetravalent Cr concentration is high in the portion where the irradiation time is long, and the tetravalent Cr concentration is low in the portion where the irradiation time is short. Y in which the valence state of Cr is spatially modulated
An AG single crystal is obtained.

【0013】[0013]

【実施例1】活性剤としてCrを含有したイットリウム
アルミニウムガーネット(YAG)(以後Cr:YAG
と記載)の単結晶において、3価Crの光吸収波長帯域
内にある光を照射して熱処理を行うことによりCrの価
数状態が空間的に変調されたYAGを製造した例につい
て述べる。
Example 1 Yttrium aluminum garnet (YAG) containing Cr as an activator (hereinafter Cr: YAG
The following describes an example of producing a YAG in which the valence state of Cr is spatially modulated by irradiating light within the light absorption wavelength band of trivalent Cr in the single crystal (described above) and performing heat treatment.

【0014】本実施例では、Crを6×1017個/cm
3添加したYAG単結晶を用い、照射光として波長51
4nmのArイオンレーザーを用いた。波長514nm
は、YAG中の3価Crの光吸収帯域内の波長である。
In this embodiment, Cr is 6 × 10 17 pieces / cm 2.
Using YAG single crystal with 3 added, wavelength of 51
A 4 nm Ar ion laser was used. Wavelength 514nm
Is the wavelength within the light absorption band of trivalent Cr in YAG.

【0015】図1は本実施例で用いた装置の構成を示す
図である。Arイオンレーザー11からの光はビームエ
キスパンダー12によりビーム径が広げられ、ハーフミ
ラー13により光路が2分され一方は直進し、加熱機構
16上に設置されたCr:YAG(光学材料試料)15
に直接照射される。他方は、全反射ミラー14により反
射された後、Cr:YAG15に照射される。この2つ
のビームの干渉により空間的且つ周期的に強度が変調さ
れた干渉縞が生じるため、Cr:YAG15のうち、光
ビームの干渉領域内に設置された部分には空間的且つ周
期的に強度が変調された光が照射される。Cr:YAG
にレーザーを照射する際に、Cr:YAG全体にレーザ
ービームを照射するのではなく、Cr:YAGの長手方
向の両端面に当たらないようにして部分的に照射した。
これはCr:YAG内部に侵入した光が端面で反射して
不必要な干渉を起こすことを防ぐためである。
FIG. 1 is a view showing the arrangement of the apparatus used in this embodiment. The beam diameter of the light from the Ar ion laser 11 is expanded by the beam expander 12, the optical path is divided into two by the half mirror 13, and one of them travels straight. Cr: YAG (optical material sample) 15 installed on the heating mechanism 16
It is directly irradiated on. The other is reflected by the total reflection mirror 14 and then irradiated on the Cr: YAG 15. The interference of these two beams produces an interference fringe whose intensity is spatially and periodically modulated. Therefore, in the portion of Cr: YAG15, which is installed in the interference region of the light beam, the intensity is spatially and periodically. The modulated light is emitted. Cr: YAG
In irradiating the laser with the laser beam, the entire Cr: YAG was not irradiated with the laser beam but was partially irradiated with the laser beam so that it did not hit both end faces in the longitudinal direction of Cr: YAG.
This is to prevent light that has entered the interior of Cr: YAG from being reflected by the end faces and causing unnecessary interference.

【0016】図2は、試料内にできた干渉縞の様子を表
す図である。結晶長手方向をY軸、それと垂直方向をX
軸としたとき、ミラー14によって反射されて間接的に
入射する間接入射光aとX軸とのなす角、直接入射光b
とX軸とのなす角のそれぞれが等しくなるように結晶を
設置する。このような配置で結晶を設置すると、結晶長
手方向に対して垂直方向に干渉縞ができる。この状態で
熱処理を行うと、光照射された部分の3価Crは4価C
rに価数変化し、変化量は光強度と共に増大するので、
干渉縞の周期、すなわち光強度の強弱の周期に応じて4
価Cr濃度が変調されたCr:YAG結晶が得られる。
このように、周期dで周期的に4価Cr濃度が変調され
た結晶内のY軸方向に進行する波長λの光は、λ=nd
(但しnは整数)を満たす波長の光が干渉効果により強
めあう。
FIG. 2 is a diagram showing the appearance of interference fringes formed in the sample. The crystal longitudinal direction is the Y axis, and the vertical direction is the X axis.
The angle between the indirect incident light a reflected by the mirror 14 and indirectly incident on the axis and the X axis, the direct incident light b.
The crystals are set so that the angles formed by the X axis and the X axis are equal. When the crystal is placed in such an arrangement, interference fringes are formed in the direction perpendicular to the crystal longitudinal direction. When heat treatment is performed in this state, the trivalent Cr in the light-irradiated portion becomes tetravalent C.
The valence changes to r, and the amount of change increases with the light intensity.
4 depending on the cycle of the interference fringes, that is, the cycle of the intensity of light
A Cr: YAG crystal in which the valence Cr concentration is modulated is obtained.
In this way, the light having the wavelength λ that travels in the Y-axis direction in the crystal in which the tetravalent Cr concentration is periodically modulated at the period d is λ = nd
Light having a wavelength satisfying (where n is an integer) reinforces each other due to the interference effect.

【0017】干渉縞の周期dは入射光の波長をλ、入射
光aと入射光bとの交差角をαとすると、d=λ/2s
in(α/2)で与えられる。本実施例では入射光の波
長λは514nmであり、図1の装置構成において入射
光a、bの交差角αは0<α<180の範囲にあるか
ら、αを連続的に変えることにより、干渉縞の間隔dは
0<d<257nmの範囲で連続的に変えることができ
る。
The period d of the interference fringes is d = λ / 2s, where λ is the wavelength of the incident light and α is the cross angle between the incident light a and the incident light b.
It is given by in (α / 2). In the present embodiment, the wavelength λ of the incident light is 514 nm, and the crossing angle α of the incident lights a and b in the device configuration of FIG. 1 is in the range of 0 <α <180. Therefore, by continuously changing α, The interval d of the interference fringes can be continuously changed within the range of 0 <d <257 nm.

【0018】本試料を製造するにあたり、加熱機構16
を用いてCr:YAG15を加熱し1600℃まで昇温
した後、温度を一定に保持した状態で、光照射を行っ
た。このときの試料温度の変動は50℃以内であった。
レーザー光の強度は10mWであった。温度保持時間は
2時間とし、2時間経過後、毎時150℃の降温速度で
降温し試料温度が300度以下に低下した時点で光照射
を停止した。この製造工程は、交差角αを変えて15回
行い、干渉縞間隔dがそれぞれ異なる15種類の結晶を
製造した。交差角αは、全反射ミラー14と試料15と
の配置、加えて全反射ミラー14の角度を変えることに
よって変化させた。それぞれの結晶を製造する際の交差
角αは、干渉縞間隔dの6倍が、それぞれ、1.37μ
mから1.51μmまでの範囲で0.01μmずつ異な
る離散的な値となるように決定した。これは、Y軸方向
に結晶内を進行する光は、周期的に4価Cr濃度が変調
し且つその周期がdである場合、レーザー発振波長をλ
としたとき、λ=nd(但しnは整数)を満たす波長の
光が干渉効果により強めあうためである。
In manufacturing this sample, the heating mechanism 16
Was used to heat Cr: YAG15 and the temperature was raised to 1600 ° C., and then light irradiation was performed while the temperature was kept constant. The fluctuation of the sample temperature at this time was within 50 ° C.
The intensity of laser light was 10 mW. The temperature was kept for 2 hours, and after 2 hours, the temperature was lowered at a temperature lowering rate of 150 ° C./hour and the light irradiation was stopped when the sample temperature dropped to 300 ° C. or lower. This manufacturing process was performed 15 times by changing the crossing angle α to manufacture 15 types of crystals having different interference fringe intervals d. The crossing angle α was changed by changing the arrangement of the total reflection mirror 14 and the sample 15 and the angle of the total reflection mirror 14. The crossing angle α at the time of manufacturing each crystal is 1.37 μ when 6 times the interference fringe spacing d is
It was determined so as to have discrete values that differ by 0.01 μm in the range from m to 1.51 μm. This is because the light traveling in the crystal in the Y-axis direction has a lasing wavelength of λ when the tetravalent Cr concentration is periodically modulated and the period is d.
This is because light having a wavelength that satisfies λ = nd (where n is an integer) reinforces each other due to the interference effect.

【0019】このようにして製造した15種類のCr:
YAG結晶は、両端面をカットした後、鏡面研磨しレー
ザー用結晶とした。これらレーザー結晶を用いてレーザ
ー発振させたところ、それぞれ単一波長で発振し、それ
ぞれの発振波長は1.37μmから1.51μmまで
0.01μm間隔で離散的に異なるものであった。これ
は、Crの価数状態が周期的に変調され、4価Cr濃度
が周期的に増減しているために、干渉効果が生じ単一波
長の発振をするようになったものである。
15 kinds of Cr produced in this way:
After cutting both end faces of the YAG crystal, it was mirror-polished to obtain a laser crystal. When laser oscillation was carried out using these laser crystals, they each oscillated at a single wavelength, and the respective oscillation wavelengths were discretely different from 1.37 μm to 1.51 μm at 0.01 μm intervals. This is because the valence state of Cr is periodically modulated and the tetravalent Cr concentration is periodically increased or decreased, so that an interference effect occurs and oscillation of a single wavelength occurs.

【0020】従来の方法で製造した4価Crを含有する
YAGレーザーにおいて、単一波長で発振させる場合、
レーザー共振器に波長選択用素子を組み入れて波長選択
を行う必要があったが本発明のCr:YAG結晶を用い
ることにより波長選択素子を用いることなく、単一波長
で発振するレーザー素子が提供できた。また、従来のC
r:YAG結晶を用いたレーザー素子は、動作中の温度
変化による共振器長の変動によって発振波長が変動した
が、本発明のCr:YAG結晶は結晶自身が波長選択機
能を有するため、発振波長の変動は生じていない。さら
に、本発明のCr:YAG結晶は照射光の干渉縞の間隔
を制御することにより、4価Cr添加YAGの発振可能
波長域内で所望の発振波長を持つ狭帯域レーザーを提供
できるという長所を有している。
When a YAG laser containing tetravalent Cr produced by the conventional method is oscillated at a single wavelength,
It was necessary to incorporate a wavelength selection element into the laser resonator to perform wavelength selection, but by using the Cr: YAG crystal of the present invention, it is possible to provide a laser element that oscillates at a single wavelength without using a wavelength selection element. It was Also, conventional C
In the laser element using the r: YAG crystal, the oscillation wavelength fluctuates due to the variation of the cavity length due to the temperature change during operation. However, the Cr: YAG crystal of the present invention has a wavelength selecting function, and therefore the oscillation wavelength Has not fluctuated. Further, the Cr: YAG crystal of the present invention has an advantage that it can provide a narrow band laser having a desired oscillation wavelength within the oscillating wavelength range of tetravalent Cr-doped YAG by controlling the interval of the interference fringes of the irradiation light. are doing.

【0021】[0021]

【実施例2】活性剤としてCr、電荷補償剤としてCa
が添加されたCr、Ca:YAGの単結晶において、4
価Crの光吸収波長帯域内にある光を照射して熱処理を
行うことによりCrの価数状態が空間的に変調されたY
AGを製造した例について述べる。
Example 2 Cr as an activator and Ca as a charge compensator
In the single crystal of Cr, Ca: YAG added with
The valence state of Cr is spatially modulated by irradiating light within the light absorption wavelength band of valence Cr and performing heat treatment.
An example of manufacturing AG will be described.

【0022】本実施例では、4価Crが6×1017個/
cm3添加したYAG単結晶を用い、照射光として波長
1.064μmのNd:YAGレーザーを用いた。波長
1.064μmは、YAG中の4価Crの光吸収帯域内
の波長である。装置構成は図1と同じ装置構成とし、A
rイオンレーザーの変わりにNd:YAGレーザーを用
いた。この装置構成で熱処理を行うと、光照射された部
分の4価Crは3価Crに価数変化し、変化量は光強度
と共に増大するので、干渉縞の周期、すなわち光強度の
強弱の周期に応じて4価Cr濃度が変調されたCr:Y
AG結晶が得られる。このように、周期dで周期的に4
価Cr濃度が変調された結晶内のY軸方向に進行する波
長λの光は、λ=nd(但しnは整数)を満たす波長の
光が干渉効果により強めあう。
In this embodiment, 6 × 10 17 tetravalent Cr /
cm 3 added YAG single crystal was used, and Nd: YAG laser having a wavelength of 1.064 μm was used as irradiation light. The wavelength 1.064 μm is a wavelength within the light absorption band of tetravalent Cr in YAG. The device configuration is the same as that of FIG.
An Nd: YAG laser was used instead of the r-ion laser. When heat treatment is performed with this apparatus configuration, the valence of the tetravalent Cr in the light-irradiated portion changes to trivalent Cr, and the amount of change increases with the light intensity. Therefore, the period of the interference fringes, that is, the period of light intensity Cr: Y whose tetravalent Cr concentration is modulated according to
AG crystals are obtained. In this way, it is 4 at the cycle d.
Light having a wavelength λ that propagates in the Y-axis direction in the crystal in which the valence Cr concentration is modulated, is strengthened by light having a wavelength satisfying λ = nd (where n is an integer) due to the interference effect.

【0023】干渉縞の周期dは入射光の波長をλ、入射
光aと入射光bとの交差角をαとすると、d=λ/2s
in(α/2)で与えられる。本実施例では入射光の波
長λは1.064μmであり、図1の装置構成において
入射光a、bの交差角αは0<α<180の範囲にある
から、αを連続的に変えることにより、干渉縞の間隔d
は0<d<532nmの範囲で連続的に変えることがで
きる。
The period d of the interference fringes is d = λ / 2s, where λ is the wavelength of the incident light and α is the cross angle between the incident light a and the incident light b.
It is given by in (α / 2). In this embodiment, the wavelength λ of the incident light is 1.064 μm, and the crossing angle α of the incident lights a and b is in the range of 0 <α <180 in the device configuration of FIG. 1, so α should be continuously changed. Therefore, the spacing d of the interference fringes
Can be continuously changed in the range of 0 <d <532 nm.

【0024】本試料を製造するにあたり、加熱機構16
を用いてCr:YAG15を加熱し1600℃まで昇温
した後、温度を一定に保持した状態で、光照射を行っ
た。このときの試料温度の変動は50℃以内であった。
レーザー光の強度は50mWであった。温度保持時間は
2時間とし、2時間経過後、毎時150℃の降温速度で
降温し試料温度が300度以下に低下した時点で光照射
を停止した。この製造工程は、交差角αを変えて15回
行い、干渉縞間隔dがそれぞれ異なる15種類の結晶を
製造した。交差角αは、全反射ミラー14と試料15と
の配置、加えて全反射ミラー14の角度を変えることに
よって変化させた。それぞれの結晶を製造する際の交差
角αは、干渉縞間隔dの3倍が、それぞれ、1.37μ
mから1.51μmまでの範囲で0.01μmずつ異な
る離散的な値となるように決定した。これは、Y軸方向
に結晶内を進行する光は、周期的に4価Cr濃度が変調
し且つその周期がdである場合、レーザー発振波長をλ
としたとき、λ=nd(但しnは整数)を満たす波長の
光が干渉効果により強めあうためである。
In producing this sample, the heating mechanism 16
Was used to heat Cr: YAG15 and the temperature was raised to 1600 ° C., and then light irradiation was performed while the temperature was kept constant. The fluctuation of the sample temperature at this time was within 50 ° C.
The intensity of laser light was 50 mW. The temperature was kept for 2 hours, and after 2 hours, the temperature was lowered at a temperature lowering rate of 150 ° C./hour and the light irradiation was stopped when the sample temperature dropped to 300 ° C. or lower. This manufacturing process was performed 15 times by changing the crossing angle α to manufacture 15 types of crystals having different interference fringe intervals d. The crossing angle α was changed by changing the arrangement of the total reflection mirror 14 and the sample 15 and the angle of the total reflection mirror 14. The crossing angle α at the time of manufacturing each crystal is 1.37 μm when three times the interference fringe spacing d is obtained.
It was determined so as to have discrete values that differ by 0.01 μm in the range from m to 1.51 μm. This is because the light traveling in the crystal in the Y-axis direction has a lasing wavelength of λ when the tetravalent Cr concentration is periodically modulated and the period is d.
This is because light having a wavelength that satisfies λ = nd (where n is an integer) reinforces each other due to the interference effect.

【0025】このようにして製造した15種類のCr:
YAG結晶は、両端面をカットした後、鏡面研磨しレー
ザー用結晶とした。これらレーザー結晶を用いてレーザ
ー発振をさせたところ、それぞれ単一波長で発振し、そ
れぞれの発振波長は1.37μmから1.51μmまで
0.01μm間隔で離散的に異なるものであった。これ
は、Crの価数状態が周期的に変調され、4価Cr濃度
が周期的に増減しているために、干渉効果が生じ単一波
長の発振をするようになったものである。
15 kinds of Cr produced in this way:
After cutting both end faces of the YAG crystal, it was mirror-polished to obtain a laser crystal. When laser oscillation was carried out using these laser crystals, they each oscillated at a single wavelength, and the respective oscillation wavelengths were discretely different from 1.37 μm to 1.51 μm at 0.01 μm intervals. This is because the valence state of Cr is periodically modulated and the tetravalent Cr concentration is periodically increased or decreased, so that an interference effect occurs and oscillation of a single wavelength occurs.

【0026】従来の方法で製造した4価Crを含有する
YAGレーザーにおいて、単一波長で発振させる場合、
レーザー共振器に波長選択用素子を組み入れて波長選択
を行う必要があったが本発明のCr:YAG結晶を用い
ることにより波長選択素子を用いることなく、単一波長
で発振するレーザー素子が提供できた。また、従来のC
r:YAG結晶を用いたレーザー素子は、動作中の温度
変化による共振器長の変動によって発振波長が変動した
が、本発明のCr:YAG結晶は結晶自身が波長選択機
能を有するため、発振波長の変動は生じていない。さら
に、本発明のCr:YAG結晶は照射光の干渉縞の間隔
を制御することにより、4価Cr添加YAGの発振可能
波長域内で所望の発振波長を持つ狭帯域レーザーを提供
できるという長所を有している。
When a YAG laser containing tetravalent Cr produced by the conventional method is oscillated at a single wavelength,
It was necessary to incorporate a wavelength selection element into the laser resonator to perform wavelength selection, but by using the Cr: YAG crystal of the present invention, it is possible to provide a laser element that oscillates at a single wavelength without using a wavelength selection element. It was Also, conventional C
In the laser element using the r: YAG crystal, the oscillation wavelength fluctuates due to the variation of the cavity length due to the temperature change during operation. However, the Cr: YAG crystal of the present invention has a wavelength selecting function, and therefore the oscillation wavelength Has not fluctuated. Further, the Cr: YAG crystal of the present invention has an advantage that it can provide a narrow band laser having a desired oscillation wavelength within the oscillating wavelength range of tetravalent Cr-doped YAG by controlling the interval of the interference fringes of the irradiation light. are doing.

【0027】[0027]

【実施例3】合成工程で、電子ビーム蒸着法による薄膜
合成法を用い、薄膜合成過程で光強度を変調して光を膜
厚方向に価数状態が変調されたCr:YAGを製造した
例について述べる。
Example 3 An example of manufacturing Cr: YAG in which the valence state of light is modulated in the film thickness direction by modulating the light intensity in the thin film synthesizing process using the thin film synthesizing method by electron beam evaporation in the synthesizing process. I will describe.

【0028】基板として単結晶YAG基板を用い、Y2
3、Al23、Cr23を混合し燒結したサラミクス
を蒸発源とし、このセラミクスを電子ビームにより加熱
蒸発させ基板上に薄膜形成を行った。
A single crystal YAG substrate is used as the substrate, and Y 2
The salamics obtained by mixing and sintering O 3 , Al 2 O 3 and Cr 2 O 3 was used as an evaporation source, and this ceramics was heated and evaporated by an electron beam to form a thin film on the substrate.

【0029】薄膜形成中はチャンバー内に設置したハロ
ゲンランプからの光を基板上、薄膜成長面から照射し
た。ハロゲンランプ前面には500〜700nmの波長
の光を透過する帯域フィルターを設置し、薄膜成長面に
はハロゲンランプからの光のうち、500〜700nm
の波長の光が照射されるようにした。この波長の光は3
価Crイオンのd−d遷移による光吸収帯を含んでい
る。このように波長カットフィルターを用いた方が、レ
ーザーを用いる場合よりも簡便に光源を構成できるとい
う長所がある。薄膜成長速度は10nm毎分とし、10
分周期でハロゲンランプの点灯、消灯を繰り返した。
During the thin film formation, light from a halogen lamp installed in the chamber was irradiated onto the substrate from the thin film growth surface. A bandpass filter that transmits light with a wavelength of 500 to 700 nm is installed on the front surface of the halogen lamp, and 500 to 700 nm of the light from the halogen lamp is installed on the thin film growth surface.
The light of the wavelength is radiated. Light of this wavelength is 3
It contains a light absorption band due to the d-d transition of valent Cr ions. Thus, the use of the wavelength cut filter has an advantage that the light source can be configured more easily than the case of using the laser. The thin film growth rate is 10 nm / min, and 10
The halogen lamp was turned on and off repeatedly in a minute cycle.

【0030】ハロゲンランプ点灯中は3価Crが光吸収
により励起されて価数変化を起こして4価Crに変化し
やすい。したがって、ハロゲンランプ点灯中に形成され
た層は4価Cr濃度の高い層となる。一方、YAG中で
は元来、Crは3価の状態が安定であるので、消灯中
は、3価Crのみが含まれる層となる。このため、上述
の周期でハロゲンランプの点灯、消灯を繰り返すことに
よって、膜厚方向100nm毎に4価Cr濃度が高い領
域と低い領域が交互に繰り返され、繰り返し周期が20
0nmとなるようにCrの価数状態が変調された光学材
料が形成される。4価Crは0.8μm〜1.1μmに
わたり幅広い波長域で光吸収を示すため、この波長域の
光を、本素子の膜面垂直方向から入射した場合、入射光
は200nmの周期で吸収領域と透過領域を交互に通過
しながら進行することになる。この周期的光吸収によっ
て、入射光の内、吸収の周期の整数倍、すなわち波長が
200nmの整数倍である光は、特に強く吸収される。
While the halogen lamp is lit, trivalent Cr is excited by light absorption to cause a valence change and is likely to change to tetravalent Cr. Therefore, the layer formed during lighting of the halogen lamp has a high tetravalent Cr concentration. On the other hand, since the trivalent state of Cr is originally stable in YAG, it becomes a layer containing only trivalent Cr during extinguishment. Therefore, by repeatedly turning on and off the halogen lamp in the above-described cycle, a region having a high tetravalent Cr concentration and a region having a low tetravalent Cr concentration are alternately repeated every 100 nm in the film thickness direction, and the repeating period is 20.
An optical material is formed in which the valence state of Cr is modulated to 0 nm. Since tetravalent Cr absorbs light in a wide wavelength range from 0.8 μm to 1.1 μm, when light in this wavelength range is incident from the direction perpendicular to the film surface of this element, the incident light has an absorption region with a cycle of 200 nm. And the transparent area are alternately passed. Due to this periodic light absorption, of the incident light, light having an integral multiple of the absorption period, that is, a wavelength having an integral multiple of 200 nm is particularly strongly absorbed.

【0031】上述の方法で製造した試料の光透過特性の
波長分散を検査した結果、4価Crの吸収波長帯域であ
る0.8μm〜1.1μmの領域において波長1.00
μmに鋭い吸収が確認された。これは、Cr:YAG内
で4価Crが200nm間隔で変調した周期構造ができ
ていることを意味する。このように、本発明の構造であ
る活性剤の価数状態が周期的に変化する構造の素子とす
ることにより狭帯域のフィルターを提供することができ
た。さらに、本実施例においてハロゲンランプの点灯、
消灯の周期を変えて製造すれば波長を任意に設計できる
ので、所望の波長における狭帯域フィルターを提供する
ことができる。
As a result of inspecting the wavelength dispersion of the light transmission characteristics of the sample manufactured by the above-mentioned method, the wavelength 1.00 in the region of 0.8 μm to 1.1 μm which is the absorption wavelength band of tetravalent Cr.
Sharp absorption was confirmed at μm. This means that tetravalent Cr is modulated in 200 nm intervals in Cr: YAG to form a periodic structure. As described above, a narrow band filter could be provided by using the element having the structure of the present invention in which the valence state of the activator changes periodically. Further, in this embodiment, the halogen lamp is turned on,
Since the wavelength can be arbitrarily designed by manufacturing by changing the turn-off period, it is possible to provide a narrow band filter having a desired wavelength.

【0032】[0032]

【実施例4】ユーロピウム(Eu)を添加した弗化カル
シウム(CaF2)(以後CaF2:Euと記載)を用い
て表示素子を製造した例について述べる。
Example 4 An example of producing a display element using calcium fluoride (CaF 2 ) (hereinafter referred to as CaF 2 : Eu) to which europium (Eu) is added will be described.

【0033】弗化カルシウム中では、ユーロピウムは2
価イオンの状態が熱力学的に最も安定であるので、従来
の製法で製造したCaF2:Euは、Euを2価イオン
として含有する。このCaF2:Euを紫外線で励起し
て発光させると420nm近傍にピークを持つブロード
な発光スペクトルを示し、濃青色の発光が得られる。本
実施例ではEuを0.3mol%添加した板状Ca
2:Euを用い表示素子を製造した。
In calcium fluoride, europium is 2
Since the state of valent ions is the most thermodynamically stable, CaF 2 : Eu produced by the conventional production method contains Eu as divalent ions. When CaF 2 : Eu is excited by ultraviolet rays to emit light, a broad emission spectrum having a peak in the vicinity of 420 nm is exhibited, and deep blue emission is obtained. In this example, plate-like Ca containing 0.3 mol% of Eu added
A display element was manufactured using F 2 : Eu.

【0034】図3は本実施例で用いた装置構成を示す図
である。板状CaF2:Eu31(光学材料試料)は、
試料加熱機構32上に設置され、光源33としてHe−
Cdレーザーを用い、He−Cdレーザー(光源)33
からの光はビームエキスパンダー34によりビーム径が
広げられ、ミラー35により反射されマスクパターン3
6を通して板状CaF2:Eu31に照射される。マス
クパターン36にはあらかじめ、所望の表示パターンに
応じて透過光強度が変調されるようにパターニングが施
されている。
FIG. 3 is a diagram showing the structure of the apparatus used in this embodiment. The plate-like CaF 2 : Eu31 (optical material sample) is
It is installed on the sample heating mechanism 32, and He- serves as the light source 33.
He-Cd laser (light source) 33 using Cd laser
The beam diameter of the light from the laser beam is expanded by the beam expander 34 and reflected by the mirror 35.
The plate-like CaF 2 : Eu31 is irradiated through 6. The mask pattern 36 is patterned in advance so that the transmitted light intensity is modulated according to a desired display pattern.

【0035】本素子を作製するに当たり、まず板状Ca
2:Eu31を試料加熱機構32により1000℃に
加熱し、温度が1000℃に達した時点でHe−Cdレ
ーザーの照射を開始した。He−Cdレーザーからの波
長325nmの光は2価Euの光吸収波長帯域内にある
ため、この光が照射された部分は2価Euが光吸収によ
り励起されエネルギーが上昇し、3価Euの方が2価E
uよりも熱力学的に安定な状態となる。この状態で1時
間保持して熱処理を行うと、熱エネルギーによって3価
Euがさらに安定に含有できるようにCaF2中の原子
空孔や原子が再配列するため、3価Euが安定に含有さ
れる状態となる。温度を1000℃一定に保った状態で
1時間保持して熱処理を行い、熱処理終了後温度を徐々
に低下させて冷却し温度が室温に低下してから光照射を
停止した。
In producing this element, first, a plate-like Ca
F 2 : Eu 31 was heated to 1000 ° C. by the sample heating mechanism 32, and when the temperature reached 1000 ° C., irradiation with He—Cd laser was started. Since the light with a wavelength of 325 nm from the He-Cd laser is in the light absorption wavelength band of divalent Eu, the energy of the portion irradiated with this light is increased due to the excitation of the divalent Eu by the light absorption, and the energy of the trivalent Eu is increased. Two-value E
It will be thermodynamically more stable than u. When heat treatment is carried out while holding this state for 1 hour, atomic vacancy and atoms in CaF 2 are rearranged so that trivalent Eu can be contained more stably by thermal energy, so that trivalent Eu is stably contained. It will be in a state of being. The heat treatment was performed for 1 hour while keeping the temperature constant at 1000 ° C. After completion of the heat treatment, the temperature was gradually lowered and cooled, and the temperature was lowered to room temperature, and then the light irradiation was stopped.

【0036】得られたCaF2:EuをPL法を用いて
検査した結果、光照射部は3価が2価Euに対して1桁
以上高濃度に含有され、一方、光未照射部は2価Euの
みが含有されていることが確認された。本方法により、
空間的に価数状態が変調された表示素子が実現されてい
ることが確認された。この素子に紫外線を照射して発光
させたところ、光照射部分は3価Euの発光色である橙
色に、光未照射部分は2価Euの発光色である濃青色に
発光し2色発光の発光素子が実現できた。
The CaF 2 : Eu thus obtained was inspected by the PL method. As a result, the light-irradiated portion contained trivalent at a high concentration of one digit or more relative to the divalent Eu, while the light-irradiated portion contained 2 %. It was confirmed that only the valence Eu was contained. By this method,
It was confirmed that a display element in which the valence state was spatially modulated was realized. When this element was irradiated with ultraviolet light to emit light, the light-irradiated portion emitted light of orange, which is the emission color of trivalent Eu, and the non-irradiated portion emitted light of deep blue, which was the emission color of divalent Eu, and thus emitted two-color light. A light emitting device was realized.

【0037】さらに、このようにして製造した表示素子
を再び1000℃に加熱し光照射を行わずに一時間熱処
理を行うと、本来、2価Euの方が3価Euよりも熱力
学的に安定な材料であるので、熱処理による原子空孔や
原子の再配列により、3価Euは2価Euに価数変化し
素子全体が2価Euのみを含む状態となる。熱処理後、
紫外線照射により検査したところ素子全体は濃青色に発
光し先ほど書き込んだパターンが消去されていることが
確認された。この後、前回と異なるパターニングが施さ
れたマスクパターンを用いて再び光照射を行ってEuの
価数状態が空間的に変調された表示素子を作製したとこ
ろ、マスクパターンのパターニングにしたがって価数状
態が空間的に変調された表示素子を製造することがで
き、本方法によれば繰り返しパターニングが行えること
が確認できた。
Furthermore, when the display element thus manufactured is heated again to 1000 ° C. and heat-treated for 1 hour without light irradiation, divalent Eu is thermodynamically more thermodynamic than trivalent Eu. Since it is a stable material, the valence of trivalent Eu changes to divalent Eu due to the rearrangement of atomic vacancies and atoms due to the heat treatment, and the entire element is in a state containing only divalent Eu. After heat treatment,
When inspected by irradiation with ultraviolet rays, it was confirmed that the entire device emitted dark blue light and the previously written pattern was erased. After that, light was irradiated again using a mask pattern that was patterned differently from the previous time to fabricate a display element in which the valence state of Eu was spatially modulated. It was confirmed that a spatially modulated display element could be manufactured, and that repeated patterning could be performed by this method.

【0038】従来の方法では、多色発光の発光素子を実
現する場合、2種類以上の発光材料を用いる必要があっ
たが、本発明の方法では1種類の発光材料に光照射を行
うのみで2色発光の発光素子が実現でき、少ない製造工
程で2色発光の表示素子が実現できると共に、表示パタ
ーンを消去し異なる表示パターンを書き込むことが可能
な発光素子を提供することができた。
In the conventional method, it was necessary to use two or more kinds of light emitting materials in order to realize a multicolor light emitting device, but in the method of the present invention, only one kind of light emitting material is irradiated with light. A two-color light-emitting device can be realized, a two-color light-emitting display device can be realized with a small number of manufacturing steps, and a light-emitting device capable of erasing a display pattern and writing a different display pattern can be provided.

【0039】[0039]

【実施例5】セリウム(Ce)あるいはテルビウム(T
b)を添加したイットリウムアルミニウムガーネット
(YAG)(以後それぞれをCe:YAG、Tb:YA
Gと記載)を用いて光学素子を製造した例について述べ
る。
Fifth Embodiment: Cerium (Ce) or Terbium (T)
b) added yttrium aluminum garnet (YAG) (hereinafter Ce: YAG, Tb: YA, respectively)
An example in which an optical element is manufactured using (G) is described.

【0040】YAG中では、セリウムとテルビウムは共
に3価イオンの状態が熱力学的に最も安定であるので、
従来の製法で製造したCe:YAG、Tb:YAGは、
CeまたはTbを3価イオンとして含有する。このC
e:YAG、Tb:YAGを紫外線で励起して発光させ
ると両者ともに緑色に発光する。一方、3価Ce、Tb
を価数変化させ4価のCe、Tbとすると、電子準位構
造が変化し両者ともに可視領域に発光遷移を持たなくな
るため、紫外線を当てても可視域の発光が生じない。
In YAG, both cerium and terbium are thermodynamically most stable in the state of trivalent ions.
Ce: YAG and Tb: YAG manufactured by the conventional manufacturing method are
It contains Ce or Tb as trivalent ions. This C
When e: YAG and Tb: YAG are excited by ultraviolet rays to emit light, both emit green light. On the other hand, trivalent Ce, Tb
When the valence is changed to tetravalent Ce or Tb, the electron level structure changes and both do not have a luminescence transition in the visible region, and therefore, no light emission in the visible region occurs even if ultraviolet rays are applied.

【0041】本実施例ではCeまたはTbを0.3mo
l%添加した板状Ce:YAGと板状Tb:YAGを用
い表示素子を製造した。本実施例で用いた装置構成を図
4に示す。板状Ce:YAGまたは板状Tb:YAGか
らなる板状光学素子(光学材料試料)41は、試料加熱
機構42上に設置され、He−Cdレーザー43からの
光はレーザービームスキャナーによってビーム進行方向
が制御され、板状光学素子41に照射される。本素子を
作製するにあたり、まず板状光学素子41を試料加熱機
構42により1500℃に加熱し、温度が1500℃に
達した時点でHe−Cdレーザーの照射を開始した。
In this embodiment, Ce or Tb is 0.3 mo.
A display element was manufactured using plate-like Ce: YAG and plate-like Tb: YAG added with 1%. The apparatus configuration used in this example is shown in FIG. A plate-shaped optical element (optical material sample) 41 made of a plate-shaped Ce: YAG or a plate-shaped Tb: YAG is installed on a sample heating mechanism 42, and light from a He-Cd laser 43 is directed by a laser beam scanner in a beam traveling direction. Is controlled to irradiate the plate-shaped optical element 41. In manufacturing this element, first, the plate-shaped optical element 41 was heated to 1500 ° C. by the sample heating mechanism 42, and when the temperature reached 1500 ° C., irradiation with He—Cd laser was started.

【0042】He−Cdレーザーからの波長325nm
の光は図5に示す3価Ce、Tb両者の光吸収波長帯域
内にあるため、この光が照射された部分は3価Ceまた
はTbの価数が変化し4価CeまたはTbとなる。温度
を1500℃一定に保った状態でレーザービームスキャ
ナー44によりビーム進行方向をX−Y軸方向に制御
し、X座標を変えるごとに、Y軸方向のビームスキャン
を一回ずつ増加させ板状光学素子41面状をレーザービ
ームを繰り返し走査させX座標の増加と共に光照射時間
が増大するようにした。この状態で試料温度を1時間保
持して熱処理を行い、熱処理終了後、温度を徐々に低下
させて冷却し温度が室温に低下してから光照射を停止し
た。
Wavelength 325 nm from He-Cd laser
Since the light is within the light absorption wavelength band of both trivalent Ce and Tb shown in FIG. 5, the valence of trivalent Ce or Tb is changed to become tetravalent Ce or Tb in the portion irradiated with this light. With the temperature kept constant at 1500 ° C., the beam traveling direction is controlled in the XY axis direction by the laser beam scanner 44, and each time the X coordinate is changed, the beam scanning in the Y axis direction is increased once, and the plate-like optics is obtained. The surface of the element 41 was repeatedly scanned with a laser beam so that the light irradiation time increased as the X coordinate increased. In this state, the sample temperature was held for 1 hour to perform heat treatment, and after the heat treatment was finished, the temperature was gradually lowered and cooled, and the temperature was lowered to room temperature, and then the light irradiation was stopped.

【0043】得られたCe:YAG、Tb:YAGをP
L法を用いて検査した結果、光照射時間に応じて3価C
eまたはTbが減少していることが確認された。本方法
により、空間的に価数状態が変調された表示素子が実現
されていることが確認された。この素子に紫外線を照射
して発光させたところ、X座標の増大と共に緑色発光強
度が低下する発光素子が実現できた。
The obtained Ce: YAG and Tb: YAG were added to P
As a result of inspection using L method, trivalent C depending on the light irradiation time
It was confirmed that e or Tb was decreased. By this method, it was confirmed that a display element in which the valence state was spatially modulated was realized. When this device was irradiated with ultraviolet rays to emit light, it was possible to realize a light-emitting device in which the green light emission intensity decreased as the X coordinate increased.

【0044】またCe:YAG、Tb:YAGの光透過
率を検査した結果、図5に示す波長領域の光の透過率が
X座標の増大と共に増大する帯域フィルターが実現でき
た。
Further, as a result of inspecting the light transmittances of Ce: YAG and Tb: YAG, a bandpass filter in which the light transmittance of the wavelength region shown in FIG. 5 increases with the increase of the X coordinate can be realized.

【0045】従来の方法では、同一光学素子内で一軸方
向に発光強度または光透過率が連続的に変化する光学素
子が実現された例がなく、本方法による光学素子は従来
にない機能を有する光学素子を提供するものであること
が示された。
In the conventional method, there is no example in which an optical element in which the emission intensity or the light transmittance continuously changes in the uniaxial direction within the same optical element has been realized, and the optical element according to the present method has a function not existed in the related art. It has been shown to provide an optical element.

【0046】[0046]

【発明の効果】以上述べてきたように希土類元素あるい
は遷移金属元素から選択される少なくとも1種の元素を
活性剤として含有する光学材料を、本発明の製造方法に
より本発明の光学材料、すなわち活性剤元素のうち少な
くとも1種の元素の価数状態が空間的に変調されてなる
ことを特徴とする光学材料とすることにより、発振波長
の設計が可能な狭帯域レーザー、狭帯域フィルターが提
供できると共に、少ない製造工程で任意の表示パターン
の形成ができ、さらに消去が可能な表示素子を提供でき
た。
As described above, an optical material containing at least one element selected from rare earth elements or transition metal elements as an activator is prepared by the production method of the present invention, that is, an active material. A narrow band laser and a narrow band filter capable of designing an oscillation wavelength can be provided by using an optical material characterized in that the valence state of at least one of the agent elements is spatially modulated. At the same time, it was possible to provide an erasable display element in which an arbitrary display pattern can be formed by a small number of manufacturing steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、実施例2で用いた装置の構成を示す
図。
FIG. 1 is a diagram showing a configuration of an apparatus used in Examples 1 and 2.

【図2】実施例1、実施例2で用いた装置構成において
試料内にできた干渉縞の様子を表す図。
FIG. 2 is a diagram showing a state of interference fringes formed in a sample in the device configuration used in Examples 1 and 2.

【図3】実施例4で用いた装置構成を示す図。FIG. 3 is a diagram showing a device configuration used in Example 4;

【図4】実施例5で用いた装置構成を示す図。FIG. 4 is a diagram showing a device configuration used in Example 5;

【図5】YAG中のCe3+、Tb3+それぞれのf−d遷
移に起因する吸収帯を示す図。
FIG. 5 is a diagram showing absorption bands resulting from fd transitions of Ce 3+ and Tb 3+ in YAG.

【符号の説明】[Explanation of symbols]

11 Arイオンレーザー 12 ビームエキスパンダー 13 ハーフミラー 14 全反射ミラー 15 光学材料試料 16 加熱機構 31 光学材料試料 32 加熱機構 33 He−Cdレーザー 34 ビームエキスパンダー 35 ミラー 36 マククパターン 41 板状光学素子(光学材料試料) 42 加熱機構 43 He−Cdレーザー 44 ビームスキャナー 11 Ar Ion Laser 12 Beam Expander 13 Half Mirror 14 Total Reflection Mirror 15 Optical Material Sample 16 Heating Mechanism 31 Optical Material Sample 32 Heating Mechanism 33 He-Cd Laser 34 Beam Expander 35 Mirror 36 Mack Pattern 41 Plate-shaped Optical Element (Optical Material) Sample) 42 Heating mechanism 43 He-Cd laser 44 Beam scanner

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類元素あるいは遷移金属元素から選択
される少なくとも1種の元素を活性剤として含有する光
学材料であり、且つ、活性剤元素のうち少なくとも1種
の価数状態が空間的に変調されてなることを特徴とする
光学材料。
1. An optical material containing, as an activator, at least one element selected from rare earth elements and transition metal elements, and the valence state of at least one of the activator elements is spatially modulated. An optical material characterized by being formed.
【請求項2】希土類元素あるいは遷移金属元素から選択
される少なくとも1種の元素を活性剤として含有する光
学材料の製造方法であり、該光学材料の合成工程、ある
いは合成後の熱処理工程の少なくとも一つの工程におい
て、活性剤イオンの光吸収波長帯域内の光、あるいは活
性剤イオンの光吸収波長帯域の波長を含む光を照射し、
且つ、照射光量を空間的に変調することを特徴とする光
学材料の製造方法。
2. A method for producing an optical material containing, as an activator, at least one element selected from rare earth elements and transition metal elements, and at least one of a step of synthesizing the optical material and a heat treatment step after the synthesis. In one step, light within the light absorption wavelength band of the activator ion or light including a wavelength within the light absorption wavelength band of the activator ion is irradiated,
Moreover, a method for manufacturing an optical material, characterized in that the irradiation light amount is spatially modulated.
JP13474395A 1995-05-08 1995-05-08 Optical material and method for manufacturing the same Expired - Fee Related JP3456557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13474395A JP3456557B2 (en) 1995-05-08 1995-05-08 Optical material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13474395A JP3456557B2 (en) 1995-05-08 1995-05-08 Optical material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08301695A true JPH08301695A (en) 1996-11-19
JP3456557B2 JP3456557B2 (en) 2003-10-14

Family

ID=15135549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13474395A Expired - Fee Related JP3456557B2 (en) 1995-05-08 1995-05-08 Optical material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3456557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036171A1 (en) * 1998-01-13 1999-07-22 Japan Science And Technology Corporation Method of selectively chemically changing inside of inorganic material and inorganic material inside of which is selectively chemically changed

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233986A (en) * 1988-07-22 1990-02-05 Nec Corp Manufacture of solid state laser oscillator
JPH05335678A (en) * 1992-05-29 1993-12-17 Kurosaki Refract Co Ltd Yag single crystal for laser
JPH0692647A (en) * 1992-09-16 1994-04-05 Nippon Telegr & Teleph Corp <Ntt> Production of cr ion-containing glass
JPH06226084A (en) * 1993-02-04 1994-08-16 Rikagaku Kenkyusho Formation of solid-state laser crystal thin film and device for forming solid-state laser crystal thin film
JPH06260322A (en) * 1993-01-11 1994-09-16 Murata Mfg Co Ltd Material for static magnetic wave element
JPH07215798A (en) * 1994-01-26 1995-08-15 Nippon Telegr & Teleph Corp <Ntt> Aluminum garnet crystal film
JPH07291799A (en) * 1993-12-27 1995-11-07 Natl Inst For Res In Inorg Mater Single crystal for wavelength variable laser
JPH08288582A (en) * 1995-04-19 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> Production of optical material
WO1999036171A1 (en) * 1998-01-13 1999-07-22 Japan Science And Technology Corporation Method of selectively chemically changing inside of inorganic material and inorganic material inside of which is selectively chemically changed

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233986A (en) * 1988-07-22 1990-02-05 Nec Corp Manufacture of solid state laser oscillator
JPH05335678A (en) * 1992-05-29 1993-12-17 Kurosaki Refract Co Ltd Yag single crystal for laser
JPH0692647A (en) * 1992-09-16 1994-04-05 Nippon Telegr & Teleph Corp <Ntt> Production of cr ion-containing glass
JPH06260322A (en) * 1993-01-11 1994-09-16 Murata Mfg Co Ltd Material for static magnetic wave element
JPH06226084A (en) * 1993-02-04 1994-08-16 Rikagaku Kenkyusho Formation of solid-state laser crystal thin film and device for forming solid-state laser crystal thin film
JPH07291799A (en) * 1993-12-27 1995-11-07 Natl Inst For Res In Inorg Mater Single crystal for wavelength variable laser
JPH07215798A (en) * 1994-01-26 1995-08-15 Nippon Telegr & Teleph Corp <Ntt> Aluminum garnet crystal film
JPH08288582A (en) * 1995-04-19 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> Production of optical material
WO1999036171A1 (en) * 1998-01-13 1999-07-22 Japan Science And Technology Corporation Method of selectively chemically changing inside of inorganic material and inorganic material inside of which is selectively chemically changed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036171A1 (en) * 1998-01-13 1999-07-22 Japan Science And Technology Corporation Method of selectively chemically changing inside of inorganic material and inorganic material inside of which is selectively chemically changed
US6729161B1 (en) 1998-01-13 2004-05-04 Japan Science And Technology, Corporation Method of selectively reforming an inner part of an inorganic body

Also Published As

Publication number Publication date
JP3456557B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP4032116B1 (en) High-intensity light source with high cri
EP4038312B1 (en) High-intensity color tunable white laser light source using green phosphor
US4782494A (en) Method of providing continuous lasing operation
JP3456557B2 (en) Optical material and method for manufacturing the same
US4132962A (en) Tunable laser system
JPH01201976A (en) Manufacture and oscillation of diamond solid laser element
US20110159617A1 (en) Dual layer color-center patterned light source
US6768762B2 (en) High repetition rate UV excimer laser
US5471493A (en) Sc2+ based active crystalline luminescent media for laser systems tunable in UV-visible spectral range
Gellerman et al. Tuneable laser operation of F+ 2 and (F+ 2) A centers in OH-and SH-doped alkali halides
US4233570A (en) Tunable, rare earth-doped solid state lasers
JP3412726B2 (en) Optical material manufacturing method
Koepke et al. Excited state absorption in chromium doped Li2B4O7 glass
US5638394A (en) Blue and green laser oscillation method and device adopting the same
US20230235873A1 (en) High-intensity light source with high cri
JP2007031668A (en) TRANSITION METAL DOPED SPINEL TYPE MgGa2O4 PHOSPHOR AND MANUFACTURING METHOD THEREOF
JPWO2010024447A1 (en) Magnesium oxide containing color center and its thin film, tunable laser medium, laser device, light source device
JPWO2010079779A1 (en) Fabrication method of tunable laser oscillation oxide crystal
JPWO2004101711A1 (en) Transition metal doped spinel type MgAl2O4 phosphor, laser device using the same, and method for producing the phosphor
JP3768398B2 (en) Luminescent material and light source device using the same
Kvapil et al. Laser properties of YAG: Nd grown from the melt contained in molybdenum crucibles
US20060243197A1 (en) Transition metal doped spinel type mgal2o4 fluorescent material and laser apparatus using, and method of making, such fluorescent material
JP3655402B2 (en) Optical memory material and manufacturing method thereof
JPH04315138A (en) Self-light emitting screen and method for displaying image information by using this self-light emitting screen
Arkhangel'skaya et al. Tunable lasers utilizing color centers in ionic crystals

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees