JPH08300361A - Mold for molding resin - Google Patents

Mold for molding resin

Info

Publication number
JPH08300361A
JPH08300361A JP11153695A JP11153695A JPH08300361A JP H08300361 A JPH08300361 A JP H08300361A JP 11153695 A JP11153695 A JP 11153695A JP 11153695 A JP11153695 A JP 11153695A JP H08300361 A JPH08300361 A JP H08300361A
Authority
JP
Japan
Prior art keywords
mold
molding
resin
molds
fluorine ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11153695A
Other languages
Japanese (ja)
Inventor
Ikuo Kawakami
育雄 河上
雅道 ▲ひじ▼野
Masamichi Hijino
Natsue Momiyama
奈津江 籾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11153695A priority Critical patent/JPH08300361A/en
Publication of JPH08300361A publication Critical patent/JPH08300361A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a mold having sufficient corrosion resistance against a corrosive substance generated from a resin and preventing the peeling and destruction of layer by injecting fluorine ions into the cavity of a mold for molding a resin containing a specific metal to form a specific metal fluoride layer on the molding surface of the mold. CONSTITUTION: Fluorine ions are injected into the cavity 14 formed by molds 1, 2 for molding a resin containing either one of Ni, Fe, Cr and Zn to form layers 3 containing metal fluoride of either one of NiF2 , FeF2 , FeF3 , CrF3 and ZnF2 on the molding surfaces of the molds. Metal fluoride itself is chemically stable and the reactivity thereof against a corrosive substance becomes markedly low as compared with a metal into which no fluorine ions are injected. The layers 3 containing metal fluoride formed on the surfaces of the molds 1, 2 by injecting fluorine ions are obliquely distributed in the depth direction thereof and, therefore, no clear interface is formed. Therefore, the layers 3 are not peeled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は樹脂成形用金型に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin molding die.

【0002】[0002]

【従来の技術】樹脂成形金型は、成形する樹脂の種類に
よっては成形時にその樹脂から発生するガスにて成形面
が腐食されるという問題がある。その腐食性物質の代表
的な例としては、ポリカーボネートに添加される塩素系
重合触媒、各種フッ素変成樹脂より分解生成するフッ
素、フッ化水素、塩ビ樹脂より分解生成する塩素または
塩化水素などがあげられる。
2. Description of the Related Art A resin molding die has a problem that a molding surface is corroded by a gas generated from the resin at the time of molding depending on the kind of resin to be molded. Typical examples of the corrosive substances include chlorine-based polymerization catalysts added to polycarbonate, fluorine and hydrogen fluoride decomposed and produced by various fluorine-modified resins, and chlorine or hydrogen chloride decomposed and produced by vinyl chloride resin. .

【0003】これらの腐食性ガスによって金型成形面が
腐食されることを防止するために従来よりさまざまな対
策が採られている。この種の技術として例えば特開昭6
3−27223号公報または特公平04−27013号
公報に開示された発明が知られている。そして、前者の
公報に記載された金型の場合は、金型母型表面に気相成
長により耐磨耗性及び耐蝕性のある膜状態を付着形成さ
せたものであり、この膜状体をどのようにして金型成形
面に付着形成させるかということがポイントになってい
る。また後者の公報に記載された金型の場合は、アルミ
系金型表面に複合陽極酸化処理を施す方法であり、金型
表面の硬度、強度、潤滑性、非粘着性及び耐蝕性を向上
させるものである。
Various measures have heretofore been taken to prevent the mold molding surface from being corroded by these corrosive gases. As a technique of this kind, for example, Japanese Patent Laid-Open No.
The invention disclosed in Japanese Patent Publication No. 3-27223 or Japanese Patent Publication No. 04-27013 is known. And, in the case of the mold described in the former publication, a film state having abrasion resistance and corrosion resistance is adhered and formed on the surface of the mold master by vapor phase growth. The point is how to attach and form it on the mold surface. Further, in the case of the mold described in the latter publication, it is a method of subjecting an aluminum-based mold surface to a composite anodizing treatment, and improving the hardness, strength, lubricity, non-adhesiveness and corrosion resistance of the mold surface. It is a thing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
公報に開示された発明では、金型の母型表面に膜状体を
付着形成せているが、母型表面に対する膜状体の密着が
充分ではないために、金型の加熱冷却時あるいは離型時
に膜状体と金型母型との境界面に応力が集中して膜状体
が剥離または破壊するという問題がある。
However, in the invention disclosed in the former publication, the film-like body is adhered and formed on the mold surface of the mold, but the film-like body is sufficiently adhered to the surface of the mold. Therefore, there is a problem that stress concentrates on the interface between the film body and the die master during heating and cooling of the mold or during mold release, and the film body peels or breaks.

【0005】また、後者の公報に開示された発明では、
アルミ系金型表面に形成させた複合陽極酸化被膜の耐蝕
性が腐食物質の酸類に対して充分でないため、この金型
に適用可能な樹脂の種類が制限される他、酸類に対する
陽極酸化被膜の耐蝕性は金型のアルミ以外の合金成分が
増すに従って低下する傾向があるため、添加成分の多い
高強度アルミ合金の利用は困難であるという問題があ
る。
In the invention disclosed in the latter publication,
Since the corrosion resistance of the composite anodic oxide coating formed on the surface of the aluminum-based mold is not sufficient for corrosive substances such as acids, the types of resins applicable to this mold are limited, and the anodic oxide coating for acids is Since the corrosion resistance tends to decrease as the amount of alloy components other than aluminum in the mold increases, there is a problem that it is difficult to use a high-strength aluminum alloy containing many additive components.

【0006】よって本発明は前記問題点に鑑みてなされ
たものであり、成形する樹脂から発生する腐食性物質に
対して充分に耐蝕性を有するとともに、加熱冷却時ある
いは離型時に耐蝕性付与部が剥離しない樹脂成形用金型
の提供を目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems, and has sufficient corrosion resistance to a corrosive substance generated from a resin to be molded, and a corrosion resistance imparting portion at the time of heating / cooling or releasing. It is intended to provide a resin molding die that does not peel off.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の樹脂成形用金型は、図1の概念図に示すよ
うにNi,Fe,Cr,Znのいずれかを含有する樹脂
成形用金型1及び2のキャビティー14内にフッ素イオ
ンを注入し、少なくとも金型成形面にNiF2,Fe
2,FeF3,CrF3,ZnF2のいずれかの層3を形
成させて成ることを特徴とするものである。
In order to achieve the above object, the resin molding die of the present invention has a resin molding containing any one of Ni, Fe, Cr and Zn as shown in the conceptual diagram of FIG. Fluorine ions are injected into the cavities 14 of the molding dies 1 and 2 and at least the molding surface of the mold is made of NiF 2 ,
It is characterized by being formed by forming a layer 3 of any one of F 2 , FeF 3 , CrF 3 , and ZnF 2 .

【0008】この場合のイオン注入は、金型表面に添加
することを目的とする粒子をイオン化し、超高真空中に
て数KeVから数100KeVに加速して固体基板に添
加することにより、その表面に金型材料と異なった特定
の性質を有する層を形成する手法である。
The ion implantation in this case is performed by ionizing particles intended to be added to the surface of the mold, accelerating them from several KeV to several 100 KeV in an ultrahigh vacuum, and adding them to a solid substrate. This is a method of forming a layer having specific properties different from the mold material on the surface.

【0009】なお、本発明に用いる金型1及び2の材質
としては、Fe,Ni基の磁性金属、またはFe,Cr
等を主成分とするSUS系鋼材、またはZn合金等の非
鉄金属を用いることができる。またフッ素ガスとしては
2,HF等を用いているが、この内F2が特に好適であ
る。
The material of the molds 1 and 2 used in the present invention is Fe, Ni-based magnetic metal, or Fe, Cr.
It is possible to use a SUS-based steel material whose main component is, or a non-ferrous metal such as a Zn alloy. Further, as the fluorine gas, F 2 , HF and the like are used, of which F 2 is particularly preferable.

【0010】[0010]

【作用】本発明によれば、フッ素イオンを金型1及び2
のキャビティー14内に注入する方法により、成形面に
金属フッ化物を含む層3を形成させることができる。な
お、イオン注入以外の方法としての蒸着、スパッタ、C
VD等の薄膜処理では、成形面に付着形成した金属フッ
化物層と金属素地との間に明確な界面が形成されてい
て、このような界面が存在すると、ほとんどの場合、格
子定数が異なるため充分な密着力が得られていない。ま
た、金属とその塩の熱膨張率等の物性が異なるため、温
度変化、外力等のストレスにて界面に応力が集中しやす
いことにより金属フッ化物層が剥離または破壊すること
がある。
According to the present invention, fluorine ions are added to the molds 1 and 2
By the method of injecting into the cavity 14, the layer 3 containing the metal fluoride can be formed on the molding surface. Note that vapor deposition, sputtering, C as a method other than ion implantation
In thin film processing such as VD, a clear interface is formed between the metal fluoride layer adhered and formed on the molding surface and the metal base. If such an interface is present, the lattice constant is different in most cases. Insufficient adhesion is not obtained. Further, since the metal and its salt have different physical properties such as coefficient of thermal expansion, stress is likely to be concentrated at the interface due to stress such as temperature change and external force, so that the metal fluoride layer may be peeled or broken.

【0011】これに対して、イオンを注入して基材表面
に形成した金属フッ化物を含む層は深さ方向に傾斜的に
分布するために明確な界面が形成されない。従って、こ
の層は剥離する恐れがない。またこの層の耐蝕性につい
ては、ポリカーボネート、フッ素変成樹脂、塩ビ樹脂を
用いた射出成形を行い、成形面の腐食による成形不良発
生までの成形回数を比較試験した結果、イオンを注入し
た金型はイオン未注入の金型に比べて優れていることが
確認された。即ち、金属フッ化物はそれ自体が化学的に
安定であり、腐食性物質等に対する反応性がイオン未注
入の金属と比較して遙かに低いことによるものである。
On the other hand, the layer containing the metal fluoride formed on the surface of the base material by implanting ions is distributed in a gradient in the depth direction, so that no clear interface is formed. Therefore, this layer has no risk of peeling. Regarding the corrosion resistance of this layer, polycarbonate, fluorine-modified resin, and vinyl chloride resin were used for injection molding, and as a result of a comparative test of the number of moldings until the occurrence of molding failure due to corrosion of the molding surface, the ion-implanted mold was It was confirmed that it was superior to the mold without ion implantation. That is, the metal fluoride itself is chemically stable, and its reactivity to corrosive substances and the like is much lower than that of a metal that has not been ion-implanted.

【0012】[0012]

【実施例1】以下、本発明の実施例を図面とともに具体
的に説明する。図2は実施例1における耐蝕性層を形成
した金型の断面図である。本実施例では、軸付き歯車
(直径10mm、厚さ1mm)を成形するために、SU
S系の鋼材PD555(大同特殊鋼(株)製)を用いて
図2に示す金型4及び5を形成し、この金型4及び5の
成形面を洗浄した後、イオン注入装置にてイオンエネル
ギー40KeVのフッ素イオン(F+ )をキャビティー
15内に1×1018ions/cm2 の注入量で注入し
て成形面に耐蝕性の層6を形成させた。
Embodiment 1 An embodiment of the present invention will be specifically described below with reference to the drawings. FIG. 2 is a cross-sectional view of a mold having a corrosion resistant layer formed in Example 1. In this embodiment, in order to form a gear with a shaft (diameter 10 mm, thickness 1 mm), SU
The molds 4 and 5 shown in FIG. 2 are formed by using the S-based steel material PD555 (manufactured by Daido Steel Co., Ltd.), and the molding surfaces of the molds 4 and 5 are washed, and then ion-implanted by an ion implanter. Fluorine ions (F + ) with energy of 40 KeV were injected into the cavity 15 at an injection amount of 1 × 10 18 ions / cm 2 to form the corrosion resistant layer 6 on the molding surface.

【0013】この構成の金型に対して、フッ素樹脂添加
ポリカーボネート樹脂(三菱瓦斯化学(株)製のユーピ
ロンLS2010)を射出成形機(住友重機(株)製の
ネスタール50)にて射出成形し、成形面の腐食による
成形品の不良発生までの成形回数を、同一形状のイオン
未注入の金型を用いた場合と比べて評価した。
Fluorine resin-added polycarbonate resin (Upilon LS2010 manufactured by Mitsubishi Gas Chemical Co., Inc.) was injection-molded into the mold having this structure by an injection molding machine (Nestal 50 manufactured by Sumitomo Heavy Industries, Ltd.), The number of times of molding until the occurrence of a defective molded product due to corrosion of the molding surface was evaluated in comparison with the case of using a mold of the same shape but not implanted with ions.

【0014】その結果は、表1の実施例1の欄に示すよ
うに、約5万ショットの成形の結果、耐蝕性層6の剥
離、破壊、腐食は認められず、樹脂の型への焼き付き、
成形品の形状不良などが殆ど発生しなかった。これに対
して、イオン未注入の金型を用いた場合は約5千ショッ
トで成形面の一部分に腐食が認められ、樹脂の型への焼
き付き、成形品の形状不良が頻発した。また、イオン注
入後の成形面をXPS(X線光電子分光法)により分析
したところ、CrとF及びFeとFとの結合が認めら
れ、耐蝕性層6にはフッ化クロム及びフッ化鉄が形成さ
れたものと考えられる。
As a result, as shown in the column of Example 1 of Table 1, as a result of molding for about 50,000 shots, peeling, destruction and corrosion of the corrosion resistant layer 6 were not recognized, and the resin was seized on the mold. ,
Almost no defective shape of the molded product occurred. On the other hand, when a mold without ion implantation was used, a part of the molding surface was corroded after about 5,000 shots, and seizure of the resin on the mold and defective shape of the molded product frequently occurred. Further, when the molding surface after ion implantation was analyzed by XPS (X-ray photoelectron spectroscopy), bonding of Cr and F and Fe and F was recognized, and chromium fluoride and iron fluoride were found in the corrosion-resistant layer 6. It is considered to have been formed.

【0015】本実施例によれば、フッ素イオンを注入し
た金型は耐蝕性に優れ、さらに耐蝕性層の剥離、破壊が
生じない。従って、成形不良がなくなるので検査工程を
簡素化することができ、また成形型のメンテナンスも不
要となるので、生産性が大幅に向上する。
According to this embodiment, the mold into which the fluorine ions are implanted has excellent corrosion resistance, and the corrosion resistant layer is not peeled or broken. Therefore, the defective molding is eliminated, the inspection process can be simplified, and the maintenance of the molding die is not required, so that the productivity is significantly improved.

【0016】[0016]

【実施例2】図3は実施例2における耐蝕性層を形成し
た金型の断面図である。本実施例では、両凸レンズ(曲
率半径150mm、表面粗さRmax0.05μm、直
径10mm,肉厚2mm)を成形するために、SUS系
の鋼材PD555(大同特殊鋼(株)製)を用いて図3
に示す金型7及び8を形成し、この金型7及び8の成形
面に厚さ2μmの無電解Niメッキ9を施し、成形面を
洗浄した後、イオン注入装置にてイオンエネルギー40
KeVのフッ素イオン(F+)をキャビティー16内に
1×1018ions/cm2の注入量で注入して成形面
に耐蝕性の層10を形成させた。
[Embodiment 2] FIG. 3 is a sectional view of a mold having a corrosion resistant layer according to Embodiment 2. In this embodiment, in order to form a biconvex lens (curvature radius 150 mm, surface roughness Rmax 0.05 μm, diameter 10 mm, wall thickness 2 mm), SUS steel material PD555 (manufactured by Daido Steel Co., Ltd.) is used. Three
The molds 7 and 8 shown in FIG. 2 are formed, the molding surfaces of the molds 7 and 8 are subjected to electroless Ni plating 9 having a thickness of 2 μm, and the molding surfaces are washed, and then the ion energy
KeV fluoride ions (F + ) were injected into the cavity 16 at an injection amount of 1 × 10 18 ions / cm 2 to form the corrosion-resistant layer 10 on the molding surface.

【0017】この構成の金型に対して、ポリカーボネー
ト樹脂(三菱瓦斯化学(株)製のユーピロンS3000
R)を射出成形機(住友重機(株)製のネスタール5
0)にて射出成形し、成形面の腐食による成形品の不良
発生までの成形回数を、同一形状のイオン未注入の金型
を用いた場合と比べて評価した。
Polycarbonate resin (Iupilon S3000 manufactured by Mitsubishi Gas Chemical Co., Inc.)
R) is an injection molding machine (Nestal 5 manufactured by Sumitomo Heavy Industries Ltd.)
In (0), injection molding was performed, and the number of times of molding until defectiveness of the molded product due to corrosion of the molding surface was evaluated as compared with the case of using a mold of the same shape but not ion-implanted.

【0018】その結果は、表1の実施例2の欄に示すよ
うに、約5万ショットの成形の結果、耐蝕性層10の剥
離、破壊、腐食は認められず、樹脂の型への焼き付き、
成形品の形状不良などが殆ど発生しなかった。これに対
して、イオン未注入の金型を用いた場合は約2万ショッ
トで成形面の一部分に腐食が認められたとともに、樹脂
の型への焼き付き、成形品の形状不良が頻発した。ま
た、イオン注入後の成形面をXPS(X線光電子分光
法)により分析したところ、NiとFとの結合が認めら
れ、耐蝕性層10にはフッ化ニッケルが形成されたもの
と考えられる。
As a result, as shown in the column of Example 2 in Table 1, as a result of molding for about 50,000 shots, peeling, destruction and corrosion of the corrosion resistant layer 10 were not recognized, and the resin was seized on the mold. ,
Almost no defective shape of the molded product occurred. On the other hand, in the case of using a mold not implanted with ions, corrosion was observed on a part of the molding surface after about 20,000 shots, and the resin was often seized on the mold and the shape of the molded product was often defective. Further, when the molding surface after ion implantation was analyzed by XPS (X-ray photoelectron spectroscopy), a bond between Ni and F was recognized, and it is considered that nickel fluoride was formed in the corrosion resistant layer 10.

【0019】本実施例によれば、前記実施例1と同様な
効果を奏するとともに、フッ素イオンを注入前後の金型
成形面の表面粗さに変化がないことから、高い面精度が
要求される場合においても実施が可能である。
According to this embodiment, the same effect as that of the first embodiment is obtained, and since the surface roughness of the die molding surface before and after the implantation of fluorine ions does not change, high surface accuracy is required. It can be carried out in some cases.

【0020】[0020]

【実施例3】図4は実施例3における耐蝕性層を形成し
た金型の断面図である。本実施例では、ドーナツ状円盤
(直径89mm、表面粗さRmax0.05μm、穴の
直径10mm,肉厚1mm)を成形するために、亜鉛を
用いて金型11及び12を形成し、この金型11及び1
2の成形面を洗浄した後、イオン注入装置にてイオンエ
ネルギー40KeVのフッ素イオン(F+)をキャビテ
ィー17内に1×1018ions/cm2の注入量で注
入して成形面に耐蝕性の層13を形成させた。
[Embodiment 3] FIG. 4 is a cross-sectional view of a mold having a corrosion resistant layer according to Embodiment 3. In this example, in order to mold a donut-shaped disc (diameter 89 mm, surface roughness Rmax 0.05 μm, hole diameter 10 mm, wall thickness 1 mm), molds 11 and 12 were formed using zinc, and this mold was used. 11 and 1
After cleaning the molding surface of No. 2 , fluorine ions (F + ) having an ion energy of 40 KeV were injected into the cavity 17 at an injection amount of 1 × 10 18 ions / cm 2 by an ion implantation device to obtain corrosion resistance on the molding surface. Layer 13 of was formed.

【0021】この構成の金型に対して、塩ビ樹脂(三井
東圧化学(株)製のビニクロンE)を射出成形機(住友
重機(株)製のネスタール50)にて射出成形し、成形
面の腐食による成形品の不良発生までの成形回数を、同
一形状のイオン未注入の金型を用いた場合と比べて評価
した。
A vinyl chloride resin (Vinicron E manufactured by Mitsui Toatsu Chemicals, Inc.) was injection-molded with a mold of this construction using an injection molding machine (Nestal 50 manufactured by Sumitomo Heavy Industries, Ltd.) to form a molding surface. The number of times of molding up to the occurrence of a defective molded product due to corrosion was evaluated in comparison with the case of using a mold having the same shape but not injected with ions.

【0022】その結果は、表1の実施例3の欄に示すよ
うに、約1万ショットの成形の結果、耐蝕性層13の剥
離、破壊、腐食は認められず、樹脂の型への焼き付き、
成形品の形状不良などが殆ど発生しなかった。これに対
して、イオン未注入の金型を用いた場合は約3千ショッ
トで成形面の一部分に腐食が認められたとともに、樹脂
の型への焼き付き、成形品の形状不良が頻発した。ま
た、イオン注入後の成形面をXPS(X線光電子分光
法)により分析したところ、ZnとFとの結合が認めら
れ、耐蝕性層13にはフッ化亜鉛が形成されたものと考
えられる。
As a result, as shown in the column of Example 3 in Table 1, as a result of molding for about 10,000 shots, peeling, destruction and corrosion of the corrosion resistant layer 13 were not recognized, and the resin was seized on the mold. ,
Almost no defective shape of the molded product occurred. On the other hand, in the case of using a mold without ion implantation, corrosion was observed in a part of the molding surface after about 3,000 shots, and the resin was often seized on the mold and the shape of the molded product was defective. Further, when the molding surface after ion implantation was analyzed by XPS (X-ray photoelectron spectroscopy), a bond between Zn and F was recognized, and it is considered that zinc fluoride was formed in the corrosion resistant layer 13.

【0023】本実施例によれば、前記実施例2と同様な
効果を奏する。
According to this embodiment, the same effect as that of the second embodiment can be obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明によれば、フッ素イオンを注入し
て形成した層の耐蝕性は金型素地よりも高く、樹脂から
発生する腐食性物質に対して充分な耐蝕性を有する。ま
たこの層は剥離、破壊が発生しないため型の寿命が延
び、金型のメンテナンスが不要となる。これにより金型
腐食による成形不良が発生するまでの成形回数を大幅に
増加させ、製品当たりの型費を低減させ、また成形不良
が発生しないために成形品の検査工程を簡素化すること
ができるなどにより、生産性を大幅に向上させることが
可能となる。
According to the present invention, the corrosion resistance of the layer formed by implanting the fluorine ions is higher than that of the mold base, and the corrosion resistance of the corrosive substances generated from the resin is sufficient. Further, since this layer does not peel or break, the life of the mold is extended, and maintenance of the mold becomes unnecessary. As a result, the number of times of molding until a molding failure due to mold corrosion occurs can be significantly increased, the die cost per product can be reduced, and since the molding failure does not occur, the inspection process of the molded product can be simplified. As a result, productivity can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の樹脂成形用金型の概念図。FIG. 1 is a conceptual diagram of a resin molding die of the present invention.

【図2】本発明の実施例1における耐蝕性層を形成した
金型の断面図。
FIG. 2 is a cross-sectional view of a mold having a corrosion resistant layer according to the first embodiment of the present invention.

【図3】本発明の実施例2における耐蝕性層を形成した
金型の断面図。
FIG. 3 is a cross-sectional view of a mold having a corrosion resistant layer according to a second embodiment of the present invention.

【図4】本発明の実施例3における耐蝕性層を形成した
金型の断面図。
FIG. 4 is a cross-sectional view of a mold having a corrosion resistant layer according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2,4,5,7,8,11,12 樹脂成形用金型 3,6,10,13 耐蝕性層 9 Niメッキ層 14,15,16,17 キャビティー 1,2,4,5,7,8,11,12 Resin molding die 3,6,10,13 Corrosion resistant layer 9 Ni plating layer 14,15,16,17 Cavity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni,Fe,Cr,Znのいずれかを含
有する樹脂成形用金型のキャビティー内にフッ素イオン
を注入し、少なくとも金型成形面にNiF2,FeF2
FeF3,CrF3,ZnF2のいずれかの層を形成させ
て成ることを特徴とする樹脂成形用金型。
1. A fluorine ion is injected into a cavity of a resin molding die containing any one of Ni, Fe, Cr and Zn, and NiF 2 , FeF 2 ,
A resin molding die, comprising a layer of any one of FeF 3 , CrF 3 , and ZnF 2 .
JP11153695A 1995-05-10 1995-05-10 Mold for molding resin Withdrawn JPH08300361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153695A JPH08300361A (en) 1995-05-10 1995-05-10 Mold for molding resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153695A JPH08300361A (en) 1995-05-10 1995-05-10 Mold for molding resin

Publications (1)

Publication Number Publication Date
JPH08300361A true JPH08300361A (en) 1996-11-19

Family

ID=14563849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153695A Withdrawn JPH08300361A (en) 1995-05-10 1995-05-10 Mold for molding resin

Country Status (1)

Country Link
JP (1) JPH08300361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528921A (en) * 2006-03-07 2009-08-13 カーエス・アルミニウム−テヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Release layer for non-ferrous metal casting
CN111886125A (en) * 2018-03-28 2020-11-03 三菱化学株式会社 Molding device for fiber-reinforced composite material and method for producing molded article of fiber-reinforced composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528921A (en) * 2006-03-07 2009-08-13 カーエス・アルミニウム−テヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Release layer for non-ferrous metal casting
JP4779025B2 (en) * 2006-03-07 2011-09-21 カーエス・アルミニウム−テヒノロギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Release layer for non-ferrous metal casting
CN111886125A (en) * 2018-03-28 2020-11-03 三菱化学株式会社 Molding device for fiber-reinforced composite material and method for producing molded article of fiber-reinforced composite material
EP3778202A4 (en) * 2018-03-28 2021-04-28 Mitsubishi Chemical Corporation Fiber-reinforced composite material molding apparatus and method for manufacturing fiber-reinforced composite material molded article
CN111886125B (en) * 2018-03-28 2022-08-30 三菱化学株式会社 Molding device for fiber-reinforced composite material and method for producing molded article of fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
US20150111673A1 (en) Sporting goods article
EP0543293B1 (en) Coated article and method for producing same
JP2984228B2 (en) Mold for epoxy resin molding
TWI628314B (en) Mold, forming roll and peeled electroformed product
JP3453033B2 (en) Coating member and method of manufacturing the same
JP2011157610A (en) Member coated with dlc film and method for manufacturing the same
JPH08300361A (en) Mold for molding resin
US3493474A (en) Aluminum plating process
JP3252020B2 (en) Surface treatment method and apparatus for aluminum mold for injection molding
JP3423908B2 (en) Mold for plastic molding and method for producing the same
JP2001328121A (en) Die for molding
JPH06299328A (en) Article with corrosion and wear resistant coating film
JPH08244049A (en) Resin mold and production thereof
TW522174B (en) Method for coating metal substrate and metal material
JP5988144B2 (en) Coated article excellent in corrosion resistance and method for producing the same
JP2696002B2 (en) Composite cylinder with hole and method of manufacturing the same
JP3650795B2 (en) Gate bush manufacturing method by electroforming
JPS63109015A (en) Molding die
JP2736771B2 (en) Mold
KR102317383B1 (en) Covering member and manufacturing method thereof
JPH0813134A (en) Plastic forming metallic mold and its production
JPH08300362A (en) Mold for molding resin and production thereof
JPH09193165A (en) Resin molding tool and manufacture thereof
JP2001089870A (en) Solid plating material
JP4239081B2 (en) Magnesium-based member and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806