JPH0829974B2 - Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag - Google Patents

Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag

Info

Publication number
JPH0829974B2
JPH0829974B2 JP5121879A JP12187993A JPH0829974B2 JP H0829974 B2 JPH0829974 B2 JP H0829974B2 JP 5121879 A JP5121879 A JP 5121879A JP 12187993 A JP12187993 A JP 12187993A JP H0829974 B2 JPH0829974 B2 JP H0829974B2
Authority
JP
Japan
Prior art keywords
aluminum
waste
reinforcing material
inorganic waste
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5121879A
Other languages
Japanese (ja)
Other versions
JPH06305819A (en
Inventor
勝昭 高橋
学 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAPURAI KONTOROORU KK
Original Assignee
SAPURAI KONTOROORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAPURAI KONTOROORU KK filed Critical SAPURAI KONTOROORU KK
Priority to JP5121879A priority Critical patent/JPH0829974B2/en
Publication of JPH06305819A publication Critical patent/JPH06305819A/en
Publication of JPH0829974B2 publication Critical patent/JPH0829974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Finishing Walls (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉スラブ、汚泥残
渣、石材粉等の無機質の廃棄物を利用した壁材、床材等
の製造方法に関し、更に詳細には、その製造時に同壁材
及び床材に発生するクラックを防止し得る製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing wall materials, floor materials and the like using inorganic waste such as blast furnace slabs, sludge residues, stone powder and the like. And a manufacturing method capable of preventing cracks generated in a floor material.

【0002】[0002]

【従来の技術】従来、例えば高炉スラグを利用して壁
材、床材を作る場合には、壁材、床材を型とった型枠の
中心部に鉄筋等の補強材を挿入し、該枠内に補強材を埋
めるようにして廃棄物を充填し、これを一定時間乾燥さ
せた後、約1200〜1300℃程度の焼成温度まで加
熱し、焼固めて板状体又はブロック体に成形している。
しかし、単なる焼結処理では結合力が不足し、これを補
うべく補強材を挿入すると、鉄筋や補強ネットの膨張率
がセラミック状となっている高炉スラグや廃石粉体等の
膨張率が合致せず、鉄筋やネット金物が焼成時に膨張し
てクラックが入てしまうという欠点を有していた。そし
て、従来、これを防止するには、ニカワの状の液体を補
強材に塗布したり、紙テ−プを巻いたり、ニカワコ−テ
ィング等を補強材に施して鉄の膨張を緩和させる方法が
あった。
2. Description of the Related Art Conventionally, for example, in the case of making wall materials and floor materials by using blast furnace slag, a reinforcing material such as a reinforcing bar is inserted in the center of a mold made of the wall materials and floor materials. The waste is filled so as to fill the reinforcing material in the frame, dried for a certain period of time, then heated to a firing temperature of about 1200 to 1300 ° C., baked and molded into a plate-like body or a block body. ing.
However, the mere sintering process lacks the bonding force, and if a reinforcing material is inserted to compensate for this, the expansion coefficient of the reinforcing bars and reinforcing nets is ceramic, and the expansion coefficients of blast furnace slag and waste stone powder match. However, there was a drawback that the reinforcing bars and the net metal pieces expanded and cracked during firing. Conventionally, in order to prevent this, a method of applying a glue-like liquid to the reinforcing material, winding a paper tape, or applying a glue coating to the reinforcing material to alleviate the expansion of iron there were.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの方法
では焼成時に補強材としての鉄筋の周囲にカ−ボン等が
粉体状の結晶を作り、衝撃に対して弱く焼成板の中で補
強材が遊ぶ結果となり、又、隙間に空気が入り込んで鉄
筋等の錆の原因を作ってしまう等の問題が生じていた。
本発明者は、これら問題を解決すべく鋭意研究を重ねた
結果、アルミニウムの底融点性と固化後の金属強度とに
着目し、板材及びブロック材としての強度を向上させる
ことに成功し、本発明を完成させたものである。
However, in these methods, carbon powder or the like forms powdery crystals around the reinforcing bar as a reinforcing material during firing, and the reinforcing material is weak against impact and is reinforced in the fired plate. There was a problem that the result of playing was, and that air entered into the gaps and created the cause of rust such as reinforcing bars.
The present inventors have conducted extensive studies to solve these problems, focusing on the bottom melting point of aluminum and the metal strength after solidification, and succeeded in improving the strength as a plate material and a block material, The invention was completed.

【0004】[0004]

【課題を解決するための手段】本発明の対象とする廃棄
物は、高炉スラッグに限定されず、汚泥残渣、石材粉等
の焼成が可能な粉体の廃棄物を含めることができる。こ
れら廃棄物は、粉粒体であればそのまま用い、塊状物で
あればこれを粉砕して粉粒体として用いることができ
る。例えば、高炉スラグを用いた場合を説明すると、そ
の成分は一例を挙げると下記の如くである。
The waste subject to the present invention is not limited to blast furnace slag, but may include sludge residues, stone powder, and other pulverizable waste materials. These wastes can be used as they are if they are powdery particles, and can be used as powdery particles if they are lumps. For example, the case where blast furnace slag is used will be described. The components are as follows, for example.

【表1】 当該廃棄物に対し、アルミニウムの粉粒体を用意し、両
者を均一に混合攪拌する。アルミニウム粉粒体は、バ−
ジンのアルミニウムの外、再生のアルミニウムを粉体化
したものでも良い。両者の混合割合は、後述のアルミニ
ウムの結合作用が有効に働く割合とするが、一般的に
は、無機質廃棄物対し5〜10%の割合が有効である。
[Table 1] Aluminum powder is prepared for the waste, and both are uniformly mixed and stirred. Aluminum powder granules
In addition to gin aluminum, recycled aluminum powder may be used. The mixing ratio of both is a ratio at which the binding action of aluminum described later works effectively, but generally a ratio of 5 to 10% with respect to the inorganic waste is effective.

【0005】扨て、上記無機質廃棄物とアルミニウムと
の混合物を攪拌したら、目的とする壁材、又は、床材の
型枠を用意し、当該型枠内に粉粒体混合物を充填する
が、この充填の仕方は鉄筋等の補強材を入れる場合と、
補強材を用いない場合とで異なる。
After stirring the mixture of the above-mentioned inorganic waste and aluminum, a mold for a target wall material or floor material is prepared, and the powder / granular mixture is filled in the mold. This filling method is the case of inserting reinforcing materials such as reinforcing bars,
This differs from the case where no reinforcing material is used.

【0006】先ず、補強材を用いない場合には、該型枠
内にいっぱいに粉粒体混合物を充填し、上から転圧を加
える。次いで、補強材を用いる場合には、型枠の下半分
に粉粒体混合物を充填し、若干の転圧を加え、その上に
補強材を載置する。該補強材には、鉄筋棒やエキスパン
ドメタルと呼ばれるネット状鉄板等を用いることができ
る。そして、該補強材の周囲にアルミニウムの粉粒体を
散布し、補強材の周囲をアルミニウム粉粒体で囲僥す
る。散布後、残りの粉粒体混合物を型枠いっぱい迄充填
し、転圧を加える(図2,図3参照)。
First, when the reinforcing material is not used, the powder / granular mixture is filled in the mold and a compaction is applied from above. Then, when a reinforcing material is used, the lower half of the mold is filled with the powder / granular mixture, a slight rolling pressure is applied, and the reinforcing material is placed thereon. As the reinforcing material, a reinforcing bar, a net-shaped iron plate called expanded metal, or the like can be used. Then, aluminum powder particles are scattered around the reinforcing material, and the periphery of the reinforcing material is surrounded by the aluminum powder particles. After spraying, the remaining mixture of powder and granules is filled up to the full size of the mold, and rolling pressure is applied (see FIGS. 2 and 3).

【0007】次に、上記混合粉粒体を充填した型枠の加
熱に移り、加熱室に型枠を入れ、先ず、400℃〜50
0℃に昇温する。すると、アルミニウム粉体が溶解を始
め、表面から軟化し、徐々に内部にいたり、廃棄物粉粒
体に挟まれたアルミニウムが変形する。又、補強材を入
れた場合には、その周囲をアルミニウム粉体で囲僥させ
てあるので、そのアルミニウムが溶解し、補強材に接触
して周囲に膜を形成する。尚、昇温の過程で、酸素が介
在し大きな酸化熱が発生する虞がある場合には、空気を
遮断するか周囲の雰囲気を炭酸ガスや窒素等の不活性気
体で覆うのが望ましい。
Next, the heating of the mold filled with the mixed powder and granules is started, the mold is put in the heating chamber, and first, 400 ° C to 50 ° C.
Heat to 0 ° C. Then, the aluminum powder begins to melt, softens from the surface, gradually enters the inside, or the aluminum sandwiched between the waste powder particles is deformed. Further, when the reinforcing material is added, since the periphery thereof is surrounded by the aluminum powder, the aluminum is melted and comes into contact with the reinforcing material to form a film on the periphery. If there is a possibility that a large amount of heat of oxidation will be generated due to the presence of oxygen during the temperature rising process, it is desirable to shut off the air or cover the surrounding atmosphere with an inert gas such as carbon dioxide or nitrogen.

【0008】その後、粉体混合物を焼結させる為、更に
加熱室を1300℃程度までの焼結温度まで昇温させ、
上記配合例に示す如く、多くの無機質を含む粉粒体混合
物を焼き固める。
Thereafter, in order to sinter the powder mixture, the heating chamber is further heated to a sintering temperature up to about 1300 ° C.,
As shown in the above formulation example, a mixture of powder and granules containing many inorganic substances is baked and solidified.

【0009】焼結後、冷却し、徐々に固化を促すが、そ
の際、一端溶解したアルミニウムは上記粉粒体混合物に
挟まれて変形し、廃棄物粒子の間隙に沿った形となっ
て、そのまま固化する。すると、図1に示す如く、廃棄
物粒子と粒子との間に楔を打込む形態となり、廃棄物粒
子の自由度を奪い、且つ、アルミニウムの金属特性によ
り、その物理的強度が強いから楔の締結力が大きく、廃
棄物粒子同士を強く結合させる。同時に、焼結によって
廃棄物粒子が焼き固められる力が加わるので、互いが協
奏して結合を強め合い、従って、冷却過程にあって、膨
張率の違いによる歪の発生や、施工後の振動等を受けた
場合でも、これらの外力を抑制してクラックが発生する
のを防止する。勿論、一端軟化したアルミニウムは隣接
する廃棄物粒子と接着する場合もあり、その場合は両者
の結合は一層増強される。
After the sintering, the material is cooled and gradually solidified. At this time, the molten aluminum is sandwiched by the above-mentioned mixture of particles and deformed to form a shape along the gap of the waste particles. Solidify as it is. Then, as shown in FIG. 1, a wedge is formed between the waste particles, depriving the waste particles of the degree of freedom, and the metal characteristic of aluminum has a strong physical strength. It has a large fastening force and strongly bonds waste particles together. At the same time, a force is applied to the waste particles to be solidified by sintering, so that they cooperate with each other to strengthen the bond, so that in the cooling process, distortion due to the difference in expansion coefficient, vibration after construction, etc. Even when receiving a crack, these external forces are suppressed to prevent the occurrence of cracks. Of course, the aluminum once softened sometimes adheres to the adjacent waste particles, in which case the bond between the two is further enhanced.

【0010】又、上記冷却過程にあって、補強材を入れ
た場合は、溶解時に鉄筋等の補強材を囲僥してアルミニ
ウムがそのまま固化する為、その後に空気酸化を受けて
徐々にアルミニウムの酸化膜が形成される。その結果、
壁材又は床材として使用中に空気酸化を受けても、それ
が保護膜として機能し、鉄錆び等の発生を抑制する(図
3参照)。
Further, in the cooling process, when a reinforcing material is added, the reinforcing material such as a reinforcing bar is surrounded during melting and aluminum is solidified as it is. An oxide film is formed. as a result,
Even when it is subjected to air oxidation during use as a wall material or floor material, it functions as a protective film and suppresses the generation of iron rust and the like (see FIG. 3).

【0011】更に、補強材と粉粒体混合物とは、その膨
張率の違いや接着性の違いから、両者が分離し易いが、
本発明にあっては、補強材の周囲に囲僥させたアルミニ
ウムに粉体混合物中のアルミニウムが融合し、その同質
性から結合を深め、補強材と混合物との一体化を促す。
Further, the reinforcing material and the powder / granular mixture are easily separated from each other due to the difference in expansion coefficient and the difference in adhesiveness.
In the present invention, the aluminum contained in the powder mixture is fused with the aluminum surrounded by the reinforcing material, and due to its homogeneity, the bond is deepened and the reinforcing material and the mixture are integrated.

【0012】[0012]

【発明の効果】以上の構成に基づく本発明は、高炉スラ
ッグ等の廃棄物を壁材及び床材に利用するにあたって、
その製造過程又は使用中にクラックが発生し易かったも
のを、その結合強度を増加させることによってクラック
の発生を防止することができるという優れた効果を発揮
する。又、補強材を入れた場合には、補強材の錆び発生
を抑制すると共に補強材と充填物との密着性を増し、耐
久性を向上させることができる極めて有利な発明であ
る。
According to the present invention having the above-described structure, when waste such as blast furnace slag is used as wall materials and floor materials,
An excellent effect that cracks can be prevented by increasing the bonding strength of a material that easily cracks during the manufacturing process or use is exhibited. Further, when a reinforcing material is added, it is a very advantageous invention which can suppress the generation of rust in the reinforcing material and increase the adhesion between the reinforcing material and the filling material to improve the durability.

【0013】[0013]

【実施例1】高炉スラグ9kgにアルミニウムの粉体1
kgを混合して均一に攪拌し、これを300×400×
30mmの壁材の型枠内に充填し、ロ−ラ−で転圧を加
えた。該混合物を充填した型枠を電気炉に投入し、密閉
室として酸素の流入を防ぎ、先ず、250℃で40分間
予熱し、その後約1時間をかけて1300℃まで昇温
し、アルミニウム粉を溶解させると共に高炉スラグの一
部がセラミック化する焼結温度とした。その後、室温に
放置して約1時間程度冷却し、冷却固化の過程で高炉ス
ラグと溶解アルミニウムとの結合を促し、上記大きさの
壁材を得た。該壁材は、製造過程でクラックを生じるこ
とは全くなく、又、製造後約6ケ月を経過してもクラッ
クの発生、その他の変化もなかった。
Example 1 Aluminum powder 1 in 9 kg of blast furnace slag
Mix kg and stir uniformly, and mix this with 300 x 400 x
It was filled in a mold of a wall material of 30 mm, and rolling pressure was applied by a roller. The mold filled with the mixture was placed in an electric furnace to prevent oxygen from flowing in as a closed chamber, first preheated at 250 ° C. for 40 minutes, and then heated up to 1300 ° C. over about 1 hour to remove aluminum powder. The sintering temperature was set such that a part of the blast furnace slag was made into ceramic while being melted. Then, it was left to stand at room temperature and cooled for about 1 hour, and in the process of cooling and solidification, the bonding of the blast furnace slag and molten aluminum was promoted to obtain a wall material of the above size. The wall material did not crack at all during the manufacturing process, and cracks did not occur even after about 6 months had passed since the manufacturing, and other changes did not occur.

【0014】[0014]

【実施例2】高炉スラグ9kgにアルミニウムの粉体1
kgを混合して均一に攪拌し、これを300×400×
30mmの壁材の型枠内の下半分に充填し、ロ−ラ−で
転圧を加えた。該型枠内に断面積6mmφのエキスパン
ドメタルを補強材として挿添し、その周囲にアルミニウ
ム粉体0.5kgを散布した。型枠の残り上半分に上記
粉体混合物を充填し、ロ−ラ−で転圧を加えた。該混合
物を充填した型枠を電気炉に投入し、先ず、250℃で
40分間予熱し、その後約1時間をかけて1300℃ま
で昇温し、アルミニウム粉を溶解させると共に高炉スラ
グの一部がセラミック化する焼結温度とした。その後、
室温に放置して約1時間程度冷却し、冷却固化の過程で
高炉スラグと溶解アルミニウムとの結合を促し、上記大
きさの床材を得た。該床材は、製造過程でクラックを生
じることは全くなく、又、製造後約6ケ月を経過しても
クラックの発生はなく、且つ、補強材と混合物との分離
もなく完全に一体化していた。
[Example 2] Aluminum powder 1 in 9 kg of blast furnace slag
Mix kg and stir uniformly, and mix this with 300 x 400 x
The lower half of the 30 mm wall material was filled in the mold and a roller was used to apply a rolling pressure. Expanded metal having a cross-sectional area of 6 mmφ was inserted into the mold as a reinforcing material, and 0.5 kg of aluminum powder was sprinkled around the expanded metal. The remaining upper half of the mold was filled with the above powder mixture, and a roller was used to apply a compaction pressure. The mold filled with the mixture is put into an electric furnace, firstly preheated at 250 ° C. for 40 minutes, and then heated to 1300 ° C. over about 1 hour to melt the aluminum powder and part of the blast furnace slag. It was set to the sintering temperature at which it was made into ceramic. afterwards,
It was left to stand at room temperature and cooled for about 1 hour, and in the process of cooling and solidification, the bonding of blast furnace slag and molten aluminum was promoted to obtain a flooring material of the above size. The flooring did not crack at all during the manufacturing process, no cracking occurred even after about 6 months from the manufacturing process, and the reinforcing material and the mixture were completely integrated without separation. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明製造方法に基づく製品の一部拡大模式図
である。
FIG. 1 is a partially enlarged schematic view of a product based on the manufacturing method of the present invention.

【図2】本発明製造方法を示す縦断面図である。FIG. 2 is a vertical sectional view showing a manufacturing method of the present invention.

【図3】本発明製造方法を示す一部拡大縦断面図であ
る。
FIG. 3 is a partially enlarged vertical sectional view showing the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 廃棄物粒子 2 アルミニウム粒子 3 混合粉粒体 4 補強材 5 型枠 1 Waste particles 2 Aluminum particles 3 Mixed powder particles 4 Reinforcing material 5 Formwork

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/63 35/74 E04F 13/14 103 A 9127−2E B09B 3/00 ZAB 303 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C04B 35/63 35/74 E04F 13/14 103 A 9127-2E B09B 3/00 ZAB 303 D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉粒状の又は粉粒化させた無機質の廃棄
物を用い、当該無機質廃棄物にアルミニウムの粉粒体を
混入し、該混合物を型枠内に充填し、アルミニウムの融
点を経て無機質廃棄物の焼結温度まで加熱し、焼結後の
冷却固化の過程で溶解アルミニウムと廃棄物粒子との結
合を促すことを特徴とする壁材、床材の製造方法。
1. A powdery or powdered inorganic waste is used, and aluminum powder is mixed into the inorganic waste, the mixture is filled in a mold, and the mixture is passed through the melting point of aluminum. A method for producing a wall material or a floor material, which comprises heating the inorganic waste to a sintering temperature and promoting the binding between the molten aluminum and the waste particles in the process of cooling and solidifying after the sintering.
【請求項2】 粉粒状の又は粉粒化させた無機質の廃棄
物を用い、当該無機質廃棄物にアルミニウムの粉粒体を
混入し、該混合物を型枠内の一部に充填し、該型枠内に
補強材を挿添し、該補強材の周囲にアルミニウムの粉粒
体を充填し、残部に混合物を充填し、アルミニウムの融
点を経て無機質廃棄物の焼結温度まで加熱し、焼結後の
冷却固化の過程で溶解アルミニウムと廃棄物粒子、及び
補強材との結合を促すことを特徴とする壁材、床材の製
造方法。
2. A granular or powdered inorganic waste is used, aluminum powder is mixed into the inorganic waste, and the mixture is filled in a part of a mold to form the mold. A reinforcing material is inserted in the frame, aluminum particles are filled around the reinforcing material, the rest is filled with a mixture, heated to the sintering temperature of the inorganic waste through the melting point of aluminum, and sintered. A method for producing a wall material and a floor material, which promotes the bonding of molten aluminum with waste particles and a reinforcing material in the subsequent cooling and solidification process.
JP5121879A 1993-04-26 1993-04-26 Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag Expired - Lifetime JPH0829974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5121879A JPH0829974B2 (en) 1993-04-26 1993-04-26 Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5121879A JPH0829974B2 (en) 1993-04-26 1993-04-26 Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag

Publications (2)

Publication Number Publication Date
JPH06305819A JPH06305819A (en) 1994-11-01
JPH0829974B2 true JPH0829974B2 (en) 1996-03-27

Family

ID=14822191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5121879A Expired - Lifetime JPH0829974B2 (en) 1993-04-26 1993-04-26 Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag

Country Status (1)

Country Link
JP (1) JPH0829974B2 (en)

Also Published As

Publication number Publication date
JPH06305819A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP4295342B1 (en) Heavy concrete
JPH0829974B2 (en) Method for manufacturing wall materials and floor materials using inorganic waste such as blast furnace slag
JP2003212667A (en) Process for recycling used refractory
JP2000072523A (en) Sulfur concrete product
CN106518108A (en) Preparation method for flow guiding sand used for alloy steel
JP3540788B2 (en) Manufacturing method of casting mold
US4783377A (en) Tundish lid
JP2905953B2 (en) Manufacturing method of porous slag
JPS6212648A (en) Manufacture of artificial granite
JPH03237047A (en) Precast concrete armour unit and its production
JP4431765B2 (en) Manufacturing method of concrete and concrete products mainly using industrial waste
JPH09164377A (en) Method for solidifying waste sand generated in casting stage
JPS58145628A (en) Block made of glassy material
JPH11228242A (en) Ramming material for induction furnace
JP2000319052A (en) Artificial aggregate and its production
JPH0452303A (en) Non-skid architectural and consturctional materials utilizing grained waste
JP2002321968A (en) Precast block using coarse aggregate and method of manufacturing the precast block
JPS6133742A (en) Production of tundish gate
RU2122038C1 (en) Method of manufacturing products from composite materials
JPH0676899U (en) Coarse aggregate for shielding concrete
JPH0531474A (en) Treatment of bauxite residual slag and production of building material formed by using the bauxite residual slag
JPH03236458A (en) Laminated plate and its production
RU2096844C1 (en) Method for insulating and chemically immobilizing radioactive wastes
JPS62238989A (en) Hot repair method of molten-metal vessel
JPH0737350B2 (en) Composite plate and manufacturing method thereof