JPH0829952B2 - Porous glass manufacturing method - Google Patents

Porous glass manufacturing method

Info

Publication number
JPH0829952B2
JPH0829952B2 JP1245947A JP24594789A JPH0829952B2 JP H0829952 B2 JPH0829952 B2 JP H0829952B2 JP 1245947 A JP1245947 A JP 1245947A JP 24594789 A JP24594789 A JP 24594789A JP H0829952 B2 JPH0829952 B2 JP H0829952B2
Authority
JP
Japan
Prior art keywords
solution
solidified
porous
dried
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1245947A
Other languages
Japanese (ja)
Other versions
JPH038729A (en
Inventor
和樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1245947A priority Critical patent/JPH0829952B2/en
Publication of JPH038729A publication Critical patent/JPH038729A/en
Publication of JPH0829952B2 publication Critical patent/JPH0829952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は触媒担体、酵素担体、分離膜素材のようにサ
ブミクロンからミクロンオーダーの細孔が要求される広
い範囲に利用することができる多孔質ガラスをゾル−ゲ
ル法により製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is applicable to a wide range of pores such as catalyst carriers, enzyme carriers, and separation membrane materials that require submicron to micron order pores. The present invention relates to a method for producing a high quality glass by a sol-gel method.

[従来の技術] 従来の多孔質セラミックスのうちサブミクロン以下の
極微細孔径を持つものは主としてホウケイ酸塩ガラスの
熱処理による分相現象を利用して、からみ合い分相構造
をとらせた後、片方の相を酸溶出させることにより作製
されている。
[Prior Art] Among conventional porous ceramics, those having an extremely fine pore size of submicron or less are mainly used for the entanglement phase-separation structure after the entanglement phase-separation structure is obtained by utilizing the phase-separation phenomenon by the heat treatment of borosilicate glass. It is made by acid eluting one phase.

これに対し、ミクロン以上の細孔径のものはセラミッ
クス原料粉体を仮焼し熱分解させて粒子又は粒子間に開
気孔を作った後、適切な条件で焼結して作られている。
しかしながらこれらの方法ではサブミクロンから数拾ミ
クロンの範囲の揃った細孔径の多孔質セラミックスを製
造することが困難である。更に、用途により要求される
膜状、繊維状のものを作製しにくい欠点がある。このよ
うなことから最近、バルク状、膜状あるいは繊維状のい
ずれの形状のセラミックスも作製できる金属アルコキシ
ドを原料としたゾル−ゲル法が多孔質セラミックスの作
製にも適用されるようになった。
On the other hand, those having a pore size of not less than micron are produced by calcining and thermally decomposing ceramic raw material powder to form particles or open pores between particles, and then sintering them under appropriate conditions.
However, it is difficult to produce porous ceramics having a uniform pore size in the range of submicron to several micron by these methods. Further, there is a drawback that it is difficult to produce a film-shaped or fibrous material required for some purposes. For these reasons, recently, the sol-gel method using a metal alkoxide as a raw material, which is capable of producing bulk-shaped, film-shaped, or fibrous shaped ceramics, has also been applied to the production of porous ceramics.

しかし、珪素アルコキシドをアルコール等の有機溶媒
中で加水分解・重合して反応溶液系のゲル化を行なった
後、生成した多孔質ゲルをその後焼成する上記の方法で
作製される多孔質ゲル体の細孔径は、数拾ナノメーター
以下と極めて小さい。そこで細孔をミクロンオーダーと
するため塩酸を多量に加えて加水分解させることも試み
られているが、細孔径分布が広くなる課題がある。
However, after the silicon alkoxide is hydrolyzed and polymerized in an organic solvent such as alcohol to gelate the reaction solution system, the resulting porous gel is then fired to produce a porous gel body prepared by the above method. The pore size is extremely small, less than a few nanometers. Therefore, it has been attempted to add a large amount of hydrochloric acid for hydrolysis in order to make the pores on the micron order, but there is a problem that the pore size distribution becomes wide.

また、特開昭62−123032号公報にはシリコンエトキシ
ドのゾル液にポリ酢酸ビニルエマルジョンを添加し混合
してゲル化し焼成して多孔質ガラスを製造する方法が開
示されている。しかしながら、かかる方法により製造さ
れた多孔質ガラスの細孔径分布は広くなるという課題が
あった。
Further, JP-A-62-123032 discloses a method for producing a porous glass by adding a polyvinyl acetate emulsion to a sol solution of silicon ethoxide, mixing and gelling the mixture and firing it. However, there has been a problem that the pore size distribution of the porous glass produced by such a method becomes wide.

[発明が解決しようとする課題] 本発明は従来技術が有していた上記課題を解消し、細
孔径がミクロンオーダーでありその細孔径分布が狭い多
孔質セラミックの得られる製造法の提供を目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the prior art and aims to provide a method for producing a porous ceramic having a pore size of the order of microns and a narrow pore size distribution. And

[課題を解決するための手段] 本発明は、金属アルコキシド又はそのオリゴマーと有
機高分子とを含む反応溶液を準備し、該溶液中で該金属
アルコキシド又はそのオリゴマーを加水分解・重合して
ゲルを作成し、該ゲルを焼成して多孔質ガラスを製造す
る方法であって、該有機高分子は、該金属アルコキシド
又はそのオリゴマーの溶液と相溶性を有し、該加水分解
・重合の工程で、相分離を生じ、かつ実質的に沈殿を生
じないものである多孔質ガラスの製造法を提供するもの
である。
[Means for Solving the Problem] The present invention provides a gel by preparing a reaction solution containing a metal alkoxide or an oligomer thereof and an organic polymer, and hydrolyzing / polymerizing the metal alkoxide or the oligomer in the solution. A method for producing a porous glass by making the gel and firing the gel, wherein the organic polymer has compatibility with a solution of the metal alkoxide or an oligomer thereof, and in the hydrolysis / polymerization step, It is intended to provide a method for producing a porous glass which causes phase separation and does not substantially cause precipitation.

本発明は均一に溶解した有機高分子が金属アルコキシ
ド又はのそのオリゴマーの加水分解・重合の過程で相分
離する現象を利用するものである。かかる有機高分子と
しては、金属アルコキシド又はそのオリゴマーの加水分
解により生成する溶液に均一に溶解する相溶性を有し、
該加水分解の過程で相分離を生じ、しかも沈殿を生じな
いものが使用される。
The present invention utilizes the phenomenon that a uniformly dissolved organic polymer undergoes phase separation in the process of hydrolysis / polymerization of a metal alkoxide or its oligomer. As such an organic polymer, it has the compatibility of being uniformly dissolved in a solution produced by hydrolysis of a metal alkoxide or an oligomer thereof,
A substance that causes phase separation in the hydrolysis process and does not cause precipitation is used.

かかる特性を有する有機高分子としては適当な濃度の
水溶液となし得る水溶性有機高分子であって、金属アル
コキシド又はそのオリゴマーの加水分解により生成する
アルコキシド又はそのオリゴマーの加水分開により生成
するアルコール含有液に均一に溶解するものであればよ
い。具体的には高分子金属塩であるポリスチレンスルホ
ン酸のナトリウム塩、高分子酸であって解離してポリア
ニオンとなるポリアクリル酸等、高分子塩基であって水
溶液中でポリカオチンを生ずるポリアリルアミン及びポ
リエチレンイミン等あるいは中性高分子であって主鎖に
エーテル結合を持つポリエチレンオキシド等側鎖にγ−
ラクタムを有するポリビニルピロリドン等が好適であ
る。
An organic polymer having such characteristics is a water-soluble organic polymer that can be formed into an aqueous solution having an appropriate concentration, and is an alcohol-containing liquid produced by hydrolysis of an alkoxide or an oligomer thereof produced by hydrolysis of a metal alkoxide or an oligomer thereof. Any substance that can be uniformly dissolved in Specifically, it is a sodium salt of polystyrene sulfonic acid, which is a polymeric metal salt, polyacrylic acid, which is a polymeric acid that dissociates into a polyanion, and polyallylamine and polyethylene, which are polymeric bases and produce polykaotine in an aqueous solution. Imines or neutral polymers such as polyethylene oxide with ether bond in the main chain γ- in the side chain
Polyvinylpyrrolidone having a lactam is suitable.

金属アルコキシド又はそのオリゴマーとしてはメトキ
シ基、エトキシ基、プロポキシ基等の炭素数の少ないも
のが好ましい。また、その金属としては、最終的に形成
される酸化物の金属例えば、Si,Ti,Zr,Alが使用され
る。この金属としては1種又は2種以上であっても良
い。一方、オリゴマーとしてはアルコールに均一に溶解
分散できるものであればよく、具体的には10量体程度ま
で使用することができる。有機高分子は、金属アルコキ
シド又はそのオリゴマー1重量部に対し、0.03〜0.40重
量部の割合で混合することが好ましい。
As the metal alkoxide or its oligomer, those having a small number of carbon atoms such as methoxy group, ethoxy group and propoxy group are preferable. Further, as the metal, a metal of an oxide finally formed, for example, Si, Ti, Zr, Al is used. The metal may be one kind or two or more kinds. On the other hand, the oligomer may be any oligomer as long as it can be uniformly dissolved and dispersed in alcohol, and specifically, up to about 10-mer can be used. The organic polymer is preferably mixed in a proportion of 0.03 to 0.40 parts by weight with respect to 1 part by weight of the metal alkoxide or its oligomer.

有機高分子の量が上記範囲より多くなると、次の点で
好ましくない。即ち、ゲル化時にSiO2ポリマー相が連続
的な骨格を形成せず粒子状に析出する。一方、有機高分
子の量が上記範囲より少なくなると、有機高分子相とシ
リカポリマー相が、からみあった状態でゲル加しないた
め、均一な細孔径の連続貫通孔を有した多孔体ができな
い。有機高分子と金属アルコキシド又はそのオリゴマー
との混合に当たっては特に限定されるものではないが、
有機高分子を酸性水溶液に溶解し、この溶液と金属アル
コキシド又はそのオリゴマーとを撹拌することにより達
成される。酸性水溶液と金属アルコキシド又はそのオリ
ゴマーとを混合した後、有機高分子を添加してもよく、
金属アルコキシド又はそのオリゴマーが一部加水分解・
重合した後、有機高分子を添加することもできる。この
際使用される酸性水溶液としては、通常塩酸、硝酸等の
鉱酸0.001規定以上のものが好ましい。なお、テトラメ
トキシシラン又はそのオリゴマーを使用する場合には酸
を含有しない水溶液を使用して加水分解すると、強度の
高い多孔質ガラスが得られることがある。加水分解に当
たっては、かかる溶液を密閉容器に入れ、室温40〜80℃
で0.5〜5時間保持することにより達成される。加水分
解は当初透明な溶液が白濁して有機高分子との相分離を
生じついにゲル化する過程を経る。この加水分解過程で
有機高分子又はその重合体は分散状態にありそれらの沈
殿は実質的に生じない。
When the amount of the organic polymer exceeds the above range, it is not preferable in the following point. That is, during gelation, the SiO 2 polymer phase does not form a continuous skeleton and precipitates in the form of particles. On the other hand, when the amount of the organic polymer is less than the above range, the organic polymer phase and the silica polymer phase do not add gel in a entangled state, so that a porous body having continuous through holes having a uniform pore diameter cannot be obtained. The mixing of the organic polymer and the metal alkoxide or the oligomer thereof is not particularly limited,
It is achieved by dissolving an organic polymer in an acidic aqueous solution and stirring the solution with a metal alkoxide or an oligomer thereof. After mixing the acidic aqueous solution and the metal alkoxide or the oligomer thereof, an organic polymer may be added,
Partial hydrolysis of metal alkoxide or its oligomer
An organic polymer can be added after the polymerization. The acidic aqueous solution used at this time is usually preferably a mineral acid such as hydrochloric acid or nitric acid of 0.001 N or more. When tetramethoxysilane or its oligomer is used, hydrolysis may be performed using an acid-free aqueous solution to obtain a porous glass having high strength. When hydrolyzing, put the solution in a closed container and store at room temperature 40-80 ℃.
At 0.5 to 5 hours. Hydrolysis goes through a process in which an initially transparent solution becomes cloudy, undergoes phase separation from an organic polymer, and finally gels. During this hydrolysis process, the organic polymer or its polymer is in a dispersed state and their precipitation is substantially not caused.

かくしてゲル化したものは、40〜80℃に数時間〜数十
時間程度放置して熟成した後、水により洗浄して有機高
分子を除去し、800〜1000℃程度で焼成して多孔質ガラ
スを得る。
The thus gelled product is aged at 40 to 80 ° C for several hours to several tens of hours and then aged, then washed with water to remove the organic polymer and baked at about 800 to 1000 ° C to obtain a porous glass. To get

本発明の目的物の細孔立体構造は、反応系の温度やpH
値、有機高分子の分子量及び含有量、その他金属アルコ
キシド又はそのオリゴマーの反応性および共存する有機
高分子の溶解度に影響を及ぼす各種条件によって変わ
る。従って、細孔立体構造の制御の手法を一律に述べる
ことは困難であるが、前述した条件が同じであれば孔径
等がほぼ同じの目的物を再現性よく提供できる。
The pore three-dimensional structure of the object of the present invention is the temperature and pH of the reaction system.
It depends on the value, the molecular weight and content of the organic polymer, the reactivity of the metal alkoxide or its oligomer, and the various conditions that affect the solubility of the coexisting organic polymer. Therefore, it is difficult to uniformly describe the method of controlling the three-dimensional structure of the pores, but if the conditions described above are the same, it is possible to reproducibly provide the target substance having the same pore diameter and the like.

中間物質として生成する多孔質ゲルは、そのままでこ
れを利用することも考えられるが、水中で膨潤し、また
機械的強度も小さいため、その利用は制限される。
The porous gel formed as an intermediate substance may be used as it is, but its use is limited because it swells in water and has low mechanical strength.

上記の多孔質ゲルは、これを焼成すれば機械的強度の
向上したSiO2系多孔質セラミックスとなるが、有機高分
子を除去することなく焼成すると、この有機高分子の種
類によってはその分解に伴って生成する物質がSiO2のガ
ラス化を妨げる等の問題を生ぜしめる。
The above-mentioned porous gel becomes a SiO 2 -based porous ceramics with improved mechanical strength if it is fired, but if it is fired without removing the organic polymer, it may decompose depending on the type of this organic polymer. The resulting substance causes problems such as hindering the vitrification of SiO 2 .

中間物質として生成する多孔質ゲルからの有機高分子
の除去は、乾燥前のゲルを水で洗浄することによってあ
る程度なすことができるが、洗浄過程の後に更に有機高
分子が分解あるいは燃焼する程度までゲルを十分長時間
加熱してこれを完全に除去する方が有利である。
The removal of the organic polymer from the porous gel produced as an intermediate substance can be performed to some extent by washing the gel before drying with water, but to the extent that the organic polymer is further decomposed or burned after the washing process. It is advantageous to heat the gel for a sufficiently long time to completely remove it.

[実施例] 以下本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

実施例1:有機高分子としてポリスチレンスルホン酸を用
いる場合 実施例1−1 まず高分子金属塩であるポリスチレンスルホン酸ナト
リウム(アルドリッチ製商品番号24305−1)を、1規
定硝酸水溶液5.51gに溶解して、20重量%溶液とした。
これにメタノール5mlを加え、均一溶液とした後テトラ
メトキシシラン5mlを約1分間かけて滴下し、加水分解
反応を行なった。数分攪拌した後得られた透明溶液を密
閉容器に移し、40℃の恒温槽中に保持したところ約20時
間後に固化した。固化した試料を更に数日熟成させ、60
℃で乾燥した後100℃/hの昇温速度で500℃まで加熱し
た。蒸留水でポリスチレンスルホン酸ナトリウムの分解
生成物を洗浄し、最後に800℃で2時間熱処理した。得
られた多孔質シリカガラス中には5μm程度の揃った細
孔がからみあい構造で存在した。なお、60℃で乾燥した
試料の微細構造および細孔径は、熱処理を終えた多孔質
シリカガラスのそれにほぼ一致していた。
Example 1: When polystyrene sulfonic acid is used as an organic polymer Example 1-1 First, sodium polystyrene sulfonate which is a polymer metal salt (product number 24305-1 manufactured by Aldrich) is dissolved in 5.51 g of 1N aqueous nitric acid solution. To give a 20 wt% solution.
To this, 5 ml of methanol was added to form a uniform solution, and 5 ml of tetramethoxysilane was added dropwise over about 1 minute to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 20 hours. Aged the solidified sample for a few more days,
After drying at ℃, it was heated up to 500 ℃ at a heating rate of 100 ℃ / h. The decomposition product of sodium polystyrene sulfonate was washed with distilled water and finally heat-treated at 800 ° C. for 2 hours. In the obtained porous silica glass, uniform pores of about 5 μm were present in an entangled structure. The microstructure and pore size of the sample dried at 60 ° C were almost the same as those of the porous silica glass that had been heat-treated.

実施例1−2 メタノール5mlを加えないこととした外は実施例1と
同様にポリスチレンスルホン酸ナトリウムの硝酸水溶液
中でテトラメトキシシランの加水分解を行なった。その
後保持条件を密閉容器中25℃で10時間以内と変え、固化
した試料を実施例1−1と同じ条件で熟成、乾燥、加
熱、洗浄、熱処理することにより多孔質ガラスの細孔径
を1μm程度に制御できた。
Example 1-2 Tetramethoxysilane was hydrolyzed in an aqueous nitric acid solution of sodium polystyrene sulfonate in the same manner as in Example 1 except that 5 ml of methanol was not added. Thereafter, the holding condition was changed to 25 ° C. within 10 hours in a closed container, and the solidified sample was aged, dried, heated, washed, and heat-treated under the same conditions as in Example 1-1, so that the pore diameter of the porous glass was about 1 μm. I was able to control it.

実施例1−3 ポリスチレンスルホン酸ナトリウムを、1規定硝酸水
溶液5.51gに溶解して、33重量%溶液とした。これにメ
タノール5mlを加えた後、テトラメトキシシラン5mlを約
1分間かけて滴下し、加水分解反応を行なった。数分攪
拌した後得られた透明溶液を密閉容器に移し、40℃の恒
温槽中に保持したところ約20時間後に固化した。固化し
た試料を実施例1−1と同じ条件で熟成、乾燥、加熱、
洗浄、熱処理することにより3μm程度の球状粒子の凝
集構造からなる多孔質シリカガラスが得られた。
Example 1-3 Sodium polystyrene sulfonate was dissolved in 5.51 g of a 1N aqueous nitric acid solution to give a 33 wt% solution. After adding 5 ml of methanol thereto, 5 ml of tetramethoxysilane was added dropwise over about 1 minute to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 20 hours. The solidified sample was aged, dried and heated under the same conditions as in Example 1-1.
By washing and heat treatment, a porous silica glass having an agglomerated structure of spherical particles of about 3 μm was obtained.

実施例1−4 ポリスチレンスルホン酸ナトリウムの分子量範囲の明
確なもの((株)東ソー製、PS1;分子量1万〜3万)
を、1規定硝酸水溶液5.51gに溶解して、24.1重量%と
し、この溶液に攪拌下でテトラメトキシシラン5mlを滴
下して加水分解反応を行なった。数分攪拌した後得られ
た透明溶液を密閉容器に移し、40℃の恒温槽中に保持し
たところ約2時間以内に固化した。固化した試料を乾燥
に先立って1規定硝酸水溶液に浸漬し、ポリスチレンス
ルホン酸ナトリウムを固化体から洗い出した。この後60
℃で乾燥させた試料は、100μm程度の細孔径の絡み合
った構造からなる多孔質であった。この試料を100℃/h
の昇温速度で更に900℃まで加熱することにより、ほぼ
同様の構造を持った多孔質シリカガラスが得られた。
Examples 1-4 Those having a clear molecular weight range of sodium polystyrene sulfonate (PS1 manufactured by Tosoh Corp .; molecular weight 10,000 to 30,000)
Was dissolved in 5.51 g of 1N aqueous nitric acid solution to make it 24.1% by weight, and 5 ml of tetramethoxysilane was added dropwise to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out sodium polystyrene sulfonate from the solidified body. After this 60
The sample dried at 0 ° C. was porous having an intertwined structure with a pore size of about 100 μm. This sample is 100 ℃ / h
By further heating at 900 ° C. at a heating rate of 1, a porous silica glass having almost the same structure was obtained.

実施例1−5 ポリスチレンスルホン酸ナトリウムの分子量範囲の明
確なもの((株)東ソー製、PS1;分子量1万〜3万)
を、1規定硝酸水溶液5.51gに溶解して、25.0重量%と
し、この溶液に攪拌下でテトラメトキシシラン5mlを滴
下して加水分解反応を行なった。数分攪拌した後得られ
た透明溶液を密閉容器に移し、60℃の恒温槽中に保持し
たところ約1時間以内に固化した。固化した試料を乾燥
に先立って1規定硝酸水溶液に浸漬し、ポリスチレンス
ルホン酸ナトリウムを固化体から洗い出した。この後60
℃で乾燥させた試料は、0.3μm程度の細孔径の絡み合
った構造からなる多孔質であった。また、ポリスチレン
スルホン酸ナトリウムの濃度を27.5重量%まで増加する
ことにより、細孔径を約20μmまで連続的に制御するこ
とができた。乾燥した試料に所定の熱処理を行なうこと
により、ほぼ同様の構造を持った多孔質シリカガラスが
得られた。
Example 1-5 Those having a clear molecular weight range of sodium polystyrene sulfonate (manufactured by Tosoh Corp., PS1; molecular weight 10,000 to 30,000)
Was dissolved in 5.51 g of 1N aqueous nitric acid solution to 25.0% by weight, and 5 ml of tetramethoxysilane was added dropwise to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 60 ° C., whereupon it solidified within about 1 hour. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out sodium polystyrene sulfonate from the solidified body. After this 60
The sample dried at 0 ° C. was porous having an entangled structure with a pore size of about 0.3 μm. Further, by increasing the concentration of sodium polystyrene sulfonate to 27.5% by weight, the pore diameter could be continuously controlled to about 20 μm. By subjecting the dried sample to a predetermined heat treatment, a porous silica glass having a substantially similar structure was obtained.

実施例1−6 ポリスチレンスルホン酸ナトリウムの分子量範囲の明
確なもの((株)東ソー製、PS5;分子量5万〜10万)
を、1規定硝酸水溶液5.51gに溶解して、19.1重量%と
し、この溶液に攪拌下でテトラメトキシシラン5mlを滴
下して加水分解反応を行なった。数分攪拌した後得られ
た透明溶液を密閉容器に移し、40℃の恒温槽中に保持し
たところ約2時間以内に固化した。固化した試料を乾燥
に先立って1規定硝酸水溶液に浸漬し、ポリスチレンス
ルホン酸ナトリウムの分解生成物を固化体から洗い出し
た。この後60℃で乾燥させた試料は、50μm程度の細孔
径の絡み合った構造からなる多孔質であった。
Examples 1-6 Those having a clear molecular weight range of sodium polystyrenesulfonate (PS5, manufactured by Tosoh Corp .; molecular weight 50,000 to 100,000)
Was dissolved in 5.51 g of a 1N aqueous nitric acid solution to 19.1% by weight, and 5 ml of tetramethoxysilane was added dropwise to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out the decomposition product of sodium polystyrene sulfonate from the solidified body. After that, the sample dried at 60 ° C. was porous having an intertwined structure with a pore size of about 50 μm.

また、ポリスチレンスルホン酸ナトリウムの濃度を1
6.6重量%まで減少させることにより、細孔径の大きさ
を約0.3μmまで連続的に制御することができた。同様
に、ポリスチレンスルホン酸ナトリウムの添加量を固定
して、1規定硝酸水溶液の量を6.17gまで増加すること
により、細孔径を約0.1μmまで、連続的に制御するこ
とができた。乾燥した試料に所定の熱処理を行なうこと
により、こほぼ同様の構造を持った多孔質シリカガラス
が得られた。
Also, set the concentration of sodium polystyrene sulfonate to 1
By reducing the amount to 6.6% by weight, the size of the pore diameter could be continuously controlled to about 0.3 μm. Similarly, by fixing the amount of sodium polystyrene sulfonate added and increasing the amount of the 1N nitric acid aqueous solution to 6.17 g, the pore diameter could be continuously controlled to about 0.1 μm. By subjecting the dried sample to a predetermined heat treatment, a porous silica glass having substantially the same structure was obtained.

なお、ポリスチレンスルホン酸ナトリウム1.20g,1規
定硝酸水溶液5.51g,テトラメトキシシラン5mlよりなる
溶液から作成した多孔質ガラスについて水銀圧入法によ
り測定した細孔径の分布を第1図に●印で示す。
The pore size distribution measured by mercury porosimetry on a porous glass prepared from a solution consisting of 1.20 g of sodium polystyrene sulfonate, 5.51 g of 1N aqueous nitric acid solution and 5 ml of tetramethoxysilane is shown by a circle in FIG.

実施例1−7 ポリスチレンスルホン酸ナトリウムの分子量範囲の明
確なもの((株)東ソー製、PS5;分子量5万〜10万)
を、1規定硝酸水溶液5.51gに溶解して、19.1重量%と
し、この溶液に攪拌下でテトラメトキシシラン5mlを滴
下して加水分解反応を行なった。数分攪拌した後得られ
た透明溶液を密閉容器に移し、60℃の恒温槽中に保持し
たところ約1時間以内に固化した。固化した試料を乾燥
に先立って1規定硝酸水溶液に浸漬し、ポリスチレンス
ルホン酸ナトリウムを固化体から洗い出した。この後60
℃で乾燥させた試料は、0.5μm程度の細孔径の絡み合
った構造からなる多孔質であった。また、ポリスチレン
スルホン酸ナトリウムの濃度を21.4重量%まで増加させ
ることにより、細孔径を約20μmまで連続的に制御する
ことができた。同様に、ポリスチレンスルホン酸ナトリ
ウムの添加量を固定して、1規定硝酸水溶液の量を5.07
gまで減少することにより、細孔径を約20μmまで連続
的に制御することができた。乾燥した試料に所定の熱処
理を行なうことにより、ほぼ同様の構造を持った多孔質
シリカガラスが得られた。
Examples 1-7 Definite molecular weight range of sodium polystyrene sulfonate (Tosoh Corp., PS5; molecular weight 50,000 to 100,000)
Was dissolved in 5.51 g of a 1N aqueous nitric acid solution to 19.1% by weight, and 5 ml of tetramethoxysilane was added dropwise to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 60 ° C., whereupon it solidified within about 1 hour. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out sodium polystyrene sulfonate from the solidified body. After this 60
The sample dried at 0 ° C. was porous having an intertwined structure with a pore size of about 0.5 μm. Further, by increasing the concentration of sodium polystyrene sulfonate to 21.4% by weight, the pore diameter could be continuously controlled to about 20 μm. Similarly, fix the amount of sodium polystyrene sulfonate added and adjust the amount of 1N nitric acid aqueous solution to 5.07.
By reducing to g, the pore size could be controlled continuously to about 20 μm. By subjecting the dried sample to a predetermined heat treatment, a porous silica glass having a substantially similar structure was obtained.

実施例1−8 ポリスチレンスルホン酸ナトリウムの分子量範囲の明
確なもの((株)東ソー製、PS50;分子量40〜60万)
を、1規定硝酸水溶液5.51gに溶解して、14.0重量%と
し、この溶液に攪拌下でテトラメトキシシラン5mlを滴
下して加水分解反応を行なった。数分攪拌した後得られ
た透明溶液を密閉容器に移し、40℃の恒温槽中に保持し
たところ約2時間以内に固化した。固化した試料を乾燥
に先立って1規定硝酸水溶液に浸漬し、ポリスチレンス
ルホン酸ナトリウムを固化体から洗い出した。この後60
℃で乾燥させた試料は、0.3μm程度の細孔径の絡み合
った構造からなる多孔質であった。また、ポリスチレン
スルホン酸ナトリウムの濃度を13.2重量%とし、反応時
にメタノール1mlを共存させると、細孔径の大きさは約
0.5μmとなった。乾燥した試料に所定の熱処理を行な
うことにより、ほぼ同様の構造を持った多孔質シリカガ
ラスが得られた。
Example 1-8 Those having a clear molecular weight range of sodium polystyrene sulfonate (PS50, manufactured by Tosoh Corporation; molecular weight 40,000 to 600,000)
Was dissolved in 5.51 g of a 1N aqueous nitric acid solution to 14.0% by weight, and 5 ml of tetramethoxysilane was added dropwise to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out sodium polystyrene sulfonate from the solidified body. After this 60
The sample dried at 0 ° C. was porous having an entangled structure with a pore size of about 0.3 μm. When the concentration of sodium polystyrene sulfonate is 13.2% by weight and 1 ml of methanol is allowed to coexist during the reaction, the pore size is about
It became 0.5 μm. By subjecting the dried sample to a predetermined heat treatment, a porous silica glass having a substantially similar structure was obtained.

実施例1−9 ポリスチレンスルホン酸ナトリウムの分子量範囲の明
確なもの((株)東ソー製、PS5;分子量5〜10万)を、
1規定硝酸水溶液9.36gに溶解して、11.4重量%とし、
この溶液に攪拌下でテトラエトキシシラン7mlを滴下し
て加水分解反応を行なった。数分攪拌した後得られた透
明溶液を密閉容器に移し、60℃の恒温槽中に保持したと
ころ約2時間以内に固化した。固化した試料を乾燥に先
立って1規定硝酸水溶液に浸漬し、ポリスチレンスルホ
ン酸ナトリウムを固化体から洗い出した。この後60℃で
乾燥させた試料は、2μm程度の細孔径の絡み合った構
造からなる多孔質であった。また、ポリスチレンスルホ
ン酸ナトリウムの濃度を10.5重量%から11.8重量%まで
変化させることにより、細孔径を約0.3μm〜約15μm
まで連続的に制御することができた。同様に、ポリスチ
レンスルホン酸ナトリウムの添加量を固定して、1規定
硝酸水溶液の量を9.64gから9.09gまで変化させることに
より、細孔径を約0.5μmから約50μmまで連続的に制
御することができた。更に反応温度を40℃から80℃まで
変化させることにより、細孔径を1μm以下から数拾μ
mまで制御することができた。乾燥した試料に所定の熱
処理を行なうことにより、ほぼ同様の構造を持った多孔
質シリカガラスが得られた。
Example 1-9 A polystyrene polystyrene sulfonate having a clear molecular weight range (manufactured by Tosoh Corp., PS5; molecular weight of 5 to 100,000) was used.
Dissolved in 9.36 g of 1N nitric acid aqueous solution to make 11.4% by weight,
7 ml of tetraethoxysilane was added dropwise to this solution with stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 60 ° C., whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out sodium polystyrene sulfonate from the solidified body. After that, the sample dried at 60 ° C. was porous having an intertwined structure with a pore size of about 2 μm. In addition, by changing the concentration of sodium polystyrene sulfonate from 10.5% by weight to 11.8% by weight, the pore diameter is about 0.3 μm to about 15 μm.
Could be controlled continuously. Similarly, by fixing the amount of sodium polystyrene sulfonate added and changing the amount of 1N nitric acid aqueous solution from 9.64 g to 9.09 g, it is possible to continuously control the pore size from about 0.5 μm to about 50 μm. did it. Furthermore, by changing the reaction temperature from 40 ℃ to 80 ℃, the pore size can be reduced from 1μm or less to several μ
I was able to control up to m. By subjecting the dried sample to a predetermined heat treatment, a porous silica glass having a substantially similar structure was obtained.

実施例2;有機高分子としてポリアクリル酸を用いる場合 実施例2−1 まず高分子酸であるポリアクリル酸の25重量%水溶液
(アルドリッチ製商品番号19205−8、分子量9万)を
蒸留水で希釈して7.4%水溶液とし、これに濃硝酸を加
えて1規定硝酸酸性とした。この溶液5.19gに攪拌下で
テトラエトキシシラン7mlを加えて加水分解反応を行な
った。数分後得られた透明溶液を密閉容器に移し、60℃
の恒温槽中に保持したところ約2時間後に固化した。固
化した試料を更に数時間熟成し、蒸留水とエタノールで
数回洗浄した後、60℃で乾燥した。乾燥した試料には3
μm程度の揃った細孔がからみあい構造で存在してい
た。なお、第2図に水銀圧入法で測定した細孔径分布を
●印で示す。上記反応溶液にはエタノールを最大5mlま
で添加して固化させると、得られる多孔質体の細孔径は
小さくなり、最小0.5μm程度までこれを連続的に制御
することができた。また、用いる1規定硝酸水溶液の量
を最小3.3gから最大16.5gまで変化させて、生成する多
孔質体の細孔径を最大約20μmから最小約0.5μmの範
囲で制御することができた。更に、ポリアクリル酸の濃
度や、反応温度を変化させても同様に細孔径を制御する
ことができた。これらの乾燥した試料を100℃/hの昇温
速度で900℃まで加熱して、この温度に2時間保持した
ところ、ほぼ同じ構造を持った多孔質シリカガラスが得
られた。
Example 2; When polyacrylic acid is used as an organic polymer Example 2-1 First, a 25 wt% aqueous solution of polyacrylic acid which is a polymer acid (Aldrich product number 19205-8, molecular weight 90,000) is distilled water. It was diluted to a 7.4% aqueous solution, and concentrated nitric acid was added to this to make 1N nitric acid acidic. 7 ml of tetraethoxysilane was added to 5.19 g of this solution under stirring to carry out a hydrolysis reaction. After a few minutes, transfer the resulting clear solution to a closed container and hold at 60 ° C.
When it was kept in a constant temperature bath, it solidified after about 2 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. 3 for dried samples
Uniform pores of about μm existed in an entangled structure. The pore size distribution measured by the mercury porosimetry is shown in FIG. When ethanol was added to the above reaction solution at a maximum of 5 ml and solidified, the pore diameter of the obtained porous body became small, and this could be controlled continuously to a minimum of about 0.5 μm. Further, the amount of the 1N nitric acid aqueous solution used was changed from a minimum of 3.3 g to a maximum of 16.5 g, and the pore diameter of the produced porous body could be controlled within the range of about 20 μm to about 0.5 μm. Further, the pore size could be controlled in the same manner even if the concentration of polyacrylic acid or the reaction temperature was changed. When these dried samples were heated to 900 ° C. at a heating rate of 100 ° C./h and held at this temperature for 2 hours, porous silica glass having almost the same structure was obtained.

実施例2−2 まず高分子酸であるポリアクリル酸の25重量%水溶液
(アルドリッチ製商品番号19205−8;分子量9万)を蒸
留水で希釈して7.4%水溶液とした後、濃硝酸を加えて
1規定硝酸酸性とした。ポリアクリル酸0.4gと1規定硝
酸5.51gとからなるこの溶液に攪拌下でテトラメトキシ
シラン5mlを加えて加水分解反応を行なった。数分後得
られた透明溶液を密閉容器に移し、60℃の恒温槽中に保
持したとこ約2時間後に固化した。固化した試料を更に
数時間熟成し、蒸留水とエタノールで数回洗浄した後、
60℃で乾燥した。乾燥した試料には300μm程度の骨格
と骨格内に微小な細孔を含む絡み合い構造が存在してい
た。上記反応溶液にメタノールを最大5mlまで添加して
固化させると、得られる多孔質体の細孔径は小さくな
り、最小10μm程度までこれを連続的に制御することが
できた。また、メタノールを加えずに1規定硝酸水溶液
の量を最大11gまで増加させると、細孔径を最小30μm
程度まで連続的に制御することができた。これらの乾燥
した試料に所定の熱処理を行なうことによほぼ同じ構造
を持った多孔質シリカガラスが得られた。
Example 2-2 First, a 25% by weight aqueous solution of polyacrylic acid, which is a polymeric acid, (Aldrich product number 19205-8; molecular weight 90,000) was diluted with distilled water to obtain a 7.4% aqueous solution, and then concentrated nitric acid was added. To 1N nitric acid acidity. To this solution consisting of 0.4 g of polyacrylic acid and 5.51 g of 1N nitric acid, 5 ml of tetramethoxysilane was added with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 60 ° C. and solidified after about 2 hours. After aging the solidified sample for a few more hours and washing it several times with distilled water and ethanol,
It was dried at 60 ° C. The dried sample had a skeleton of about 300 μm and an entangled structure containing fine pores in the skeleton. When methanol was added to the above reaction solution at a maximum of 5 ml and solidified, the pore diameter of the obtained porous body became small, and this could be controlled continuously to a minimum of about 10 μm. When the amount of 1N nitric acid aqueous solution is increased up to 11g without adding methanol, the pore diameter becomes 30μm minimum.
It was possible to control continuously to a degree. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having almost the same structure was obtained.

実施例2−3 まず高分子酸であるポリアクリル酸(アルドリッチ製
商品番号18128−5;分子量25万)を1規定硝酸水溶液5.5
1gに溶解して3.50重量%とした。この溶液に攪拌下でテ
トラエトキシシラン7mlを加えて加水分解反応を行なっ
た。数分後得られた透明溶液を密閉容器に移し、80℃の
恒温槽中に保持したところ約1時間後に固化した。固化
した試料を更に数時間熟成し、蒸留水とエタノールで数
回洗浄した後、60℃で乾燥した。乾燥した試料には30μ
m程度の骨格と、骨格内に微小な細孔を含む絡み合い構
造が存在していた。上記反応溶液にはエタノールを最大
5mlまで添加して固化させると、得られる多孔質体の細
孔径は小さくなり、最小10μm程度までこれを連続的に
制御することができた。また、エタノールを加えずに1
規定硝酸水溶液の量を最大11gまで増加させると、細孔
径を最小10μm程度まで連続的に制御することができ
た。更に、ポリアクリル酸の濃度や、反応温度を変化さ
せても同様に細孔径を制御することができた。これらの
乾燥した試料に所定の熱処理を行なうことによほぼ同じ
構造を持った多孔質シリカガラスが得られた。
Example 2-3 First, polyacrylic acid (product number 18128-5 manufactured by Aldrich; molecular weight 250,000), which is a high molecular weight acid, was added with 1N nitric acid aqueous solution 5.5.
It was dissolved in 1 g to make 3.50% by weight. 7 ml of tetraethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a thermostat at 80 ° C., whereupon it solidified after about 1 hour. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. 30μ for dried samples
There was a skeleton of about m and an entangled structure containing minute pores in the skeleton. Maximum ethanol in the above reaction solution
By adding up to 5 ml and solidifying, the pore diameter of the obtained porous body became small, and this could be controlled continuously to a minimum of about 10 μm. Also, 1 without adding ethanol
When the amount of the normal nitric acid aqueous solution was increased up to 11 g, the pore diameter could be controlled continuously to a minimum of about 10 μm. Further, the pore size could be controlled in the same manner even if the concentration of polyacrylic acid or the reaction temperature was changed. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having almost the same structure was obtained.

実施例2−4 まず高分子酸であるポリアクリル酸(アルドリッチ製
商品番号18128−5;分子量25万)を蒸留水5.0gに溶解し
て7.4重量%とした。この溶液に加水分解触媒の酸を加
えずに、攪拌下でテトラメトキシシラン5mlを加えて加
水分解反応を行なった。数分後得られた透明溶液を密閉
容器に移し、60℃の恒温槽中に保持したところ約1時間
後に固化した。固化した試料を更に数時間熟成し、蒸留
水とエタノールで数回洗浄した後、60℃で乾燥した。乾
燥した試料には0.5μm程度の揃った細孔が絡み合い構
造で存在していた。上記反応溶液にメタノールを最大2m
lまで添加して固化させると、得られる多孔質体の細孔
径は小さくなり、最小0.2μm程度までこれを連続的に
制御することができた。また、メタノールを加えずに蒸
留水の量を最小4.0gから最大6.0gまで変化させると、細
孔径を最大5μmから最小0.1μm程度まで連続的に制
御することができた。更に、ポリアクリル酸の濃度や、
反応温度を変化させても同様に細孔径を制御することが
できた。これらの乾燥した試料に所定の熱処理を行なう
ことにより、ほぼ同じ構造を持った多孔質シリカガラス
が得られた。
Example 2-4 First, polyacrylic acid (product number 18128-5 manufactured by Aldrich; molecular weight 250,000), which is a polymer acid, was dissolved in 5.0 g of distilled water to make 7.4% by weight. Hydrolysis reaction was carried out by adding 5 ml of tetramethoxysilane under stirring without adding an acid as a hydrolysis catalyst to this solution. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 60 ° C., whereupon it solidified after about 1 hour. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. In the dried sample, uniform pores of about 0.5 μm existed in an entangled structure. Up to 2m of methanol in the above reaction solution
When it was added up to 1 and solidified, the pore size of the obtained porous body became small, and this could be controlled continuously to a minimum of about 0.2 μm. When the amount of distilled water was changed from a minimum of 4.0 g to a maximum of 6.0 g without adding methanol, the pore diameter could be continuously controlled from a maximum of 5 μm to a minimum of 0.1 μm. Furthermore, the concentration of polyacrylic acid,
Even if the reaction temperature was changed, the pore size could be controlled similarly. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having almost the same structure was obtained.

実施例2−5 まず高分子酸であるポリアクリル酸(アルドリッチ製
商品番号18128−5;分子量25万)を1規定硝酸5.51gに溶
解して3.50重量%とした。この溶液にあらかじめ混合・
溶解したテトラメトキシシラン5.15gおよびチタンテト
ラブトキシド(オルトチタン酸ブチル)0.515gを攪拌下
で加えて、加水分解反応を行なった。数分後得られた透
明溶液を密閉容器に移し、40℃の恒温槽中に保持したと
ころ約1時間後に固化した。固化した試料を更に数時間
熟成し、1規定硝酸とエタノールで数回洗浄した後、60
℃で乾燥した。乾燥した試料には1μm程度の揃った細
孔が絡み合い構造で存在していた。乾燥した試料をさら
に100℃/hの昇温速度で加熱し、800℃で1時間保持した
ところ、ほぼ同じ構造を持ち、X線回折法によって微結
晶析出の認められないシリカ−チタニア系多孔質ガラス
が得られた。
Example 2-5 First, polyacrylic acid (product number 18128-5 manufactured by Aldrich; molecular weight 250,000), which is a polymer acid, was dissolved in 5.51 g of 1N nitric acid to make 3.50% by weight. Pre-mix with this solution
5.15 g of dissolved tetramethoxysilane and 0.515 g of titanium tetrabutoxide (butyl orthotitanate) were added with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 1 hour. The solidified sample was aged for a few more hours, washed with 1N nitric acid and ethanol several times, and then 60
It was dried at ° C. The dried sample had entangled structures with uniform pores of about 1 μm. When the dried sample was further heated at a heating rate of 100 ° C / h and kept at 800 ° C for 1 hour, it had the same structure and silica-titania-based porous material in which fine crystal precipitation was not observed by X-ray diffraction method. A glass was obtained.

実施例3;有機高分子としてポリエチレンオキシド(ポリ
エチレングリコール)を用いる場合 実施例3−1 まず中性高分子であるポリエチレンオキシド(アルド
リッチ製商品番号18198−6:分子量10万)を、1規定硝
酸水溶液6.61gに溶解して13.1重量%とした。この溶液
に攪拌下でテトラエトキシシラン7mlを加えて加水分解
反応を行なった。数分後得られた透明溶液を密閉容器に
移し、40℃の恒温槽中に保持したとこ約8時間後に固化
した。固化した試料を更に数時間熟成し、蒸留水とエタ
ノールで数回洗浄した後、60℃で乾燥した。乾燥した試
料には3μm程度の揃った細孔が絡み合い構造で存在し
ていた。上記反応溶液のポリエチレングリコールの濃度
を最小12.6重量%から14.3重量%まで変化しさせると、
細孔径を最大6μmから最小0.5μm程度まで連続的に
制御することができた。さらに1規定硝酸水溶液及びエ
タノールの濃度や反応温度を変化させても同様に細孔径
を制御することができた。これらの乾燥した試料を100
℃/hの昇温速度で900℃まで加熱して、この温度に2時
間保持したところ、ほぼ同様の構造を持った多孔質シリ
カガラスが得られた。
Example 3; When Polyethylene Oxide (Polyethylene Glycol) is Used as Organic Polymer Example 3-1 First, a neutral high molecular weight polyethylene oxide (Aldrich product number 18198-6: molecular weight 100,000) was added to a 1N aqueous nitric acid solution. It was dissolved in 6.61 g to make 13.1% by weight. 7 ml of tetraethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 40 ° C. and solidified after about 8 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. In the dried sample, uniform pores of about 3 μm existed in an entangled structure. When the concentration of polyethylene glycol in the above reaction solution is changed from a minimum of 12.6% by weight to 14.3% by weight,
The pore size could be controlled continuously from a maximum of 6 μm to a minimum of about 0.5 μm. Further, even if the concentrations of the 1N aqueous nitric acid solution and ethanol and the reaction temperature were changed, the pore size could be controlled similarly. 100 of these dried samples
When heated to 900 ° C. at a temperature rising rate of ° C./h and kept at this temperature for 2 hours, a porous silica glass having almost the same structure was obtained.

実施例3−2 まず中性高分子であるポリエチレンオキシド(アルド
リッチ製商品番号18199−4:分子量20万)を、1規定硝
酸水溶液6.61gに溶解して13.1重量%とした。この溶液
に攪拌下でテトラエトキシシラン7mlを加えて加水分解
反応を行なった。数分後得られた透明溶液を密閉容器に
移し、40℃の恒温槽中に保持したところ約8時間後に固
化した。固化した試料を更に数時間熟成し、蒸留水とエ
タノールで数回洗浄した後、60℃で乾燥した。乾燥した
試料には1μm程度の揃った細孔が絡み合い構造で存在
していた。反応溶液中のポリエチレングリコール、1規
定硝酸水溶液及びエタノールの濃度や反応温度を変化さ
せることにより細孔径を制御することができた。これら
の乾燥した試料に所定の熱処理を行なうことにより、ほ
ぼ同様の構造を持った多孔質シリカガラスが得られた。
Example 3-2 First, a neutral polymer polyethylene oxide (manufactured by Aldrich, product number 18199-4: molecular weight 200,000) was dissolved in 6.61 g of 1N aqueous nitric acid solution to make 13.1% by weight. 7 ml of tetraethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 8 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. The dried sample had entangled structures with uniform pores of about 1 μm. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution and ethanol in the reaction solution and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

実施例3−3 まず中性高分子であるポリエチレングリコール(和光
純薬工業(株)製商品番号16812221:分子量4万〜6
万)を、1規定硝酸水溶液6.61gに溶解して12.6重量%
とした。この溶液に攪拌下でテトラエトキシシラン7ml
を加えて加水分解反応を行なった。数分後得られた透明
溶液を密閉容器に移し、40℃の恒温槽中に保持したとこ
ろ約8時間後に固化した。固化した試料を更に数時間熟
成し、蒸留水とエタノールで数回洗浄した後、60℃で乾
燥した。乾燥した試料には2μm程度の揃った細孔が絡
み合い構造で存在していた。反応溶液中のポリエチレン
グリコール、1規定硝酸水溶液及びエタノールの濃度や
反応温度を変化させることにより細孔径を制御すること
ができた。これらの乾燥した試料に所定の熱処理を行な
うことにより、ほぼ同様の構造を持った多孔質シリカガ
ラスが得られた。
Example 3-3 First, a neutral polymer polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., product number 16812221: molecular weight 40,000-6)
10,000) dissolved in 6.61 g of 1N nitric acid aqueous solution to yield 12.6% by weight
And 7 ml of tetraethoxysilane under stirring in this solution
Was added to carry out hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 8 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. In the dried sample, uniform pores of about 2 μm were present in an entangled structure. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution and ethanol in the reaction solution and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

実施例3−4 まず中性高分子であるポリエチレングリコール(林純
薬工業(株)製:分子量2万)を、1規定硝酸水溶液6.
61gに溶解して12.0重量%水溶液とした。この溶液に攪
拌下でテトラエトキシシラン7mlを加えて加水分解反応
を行なった。数分後得られた透明溶液を密閉容器に移
し、40℃の恒温槽中に保持したところ約8時間後に固化
した。固化した試料を更に拾数時間熟成し、蒸留水とエ
タノールで数回洗浄した後、60℃で乾燥した。乾燥した
試料には1μm程度の揃った細孔が絡み合い構造で存在
していた。反応溶液中のポリエチレングリコール、1規
定硝酸水溶液及びエタノールの濃度や反応温度を変化さ
せることにより細孔径を制御することができた。これら
の乾燥した試料に所定の熱処理を行なうことにより、ほ
ぼ同様の構造を持った多孔質シリカガラスが得られた。
Example 3-4 First, a neutral polymer polyethylene glycol (manufactured by Hayashi Pure Chemical Industries, Ltd .: molecular weight 20,000) was added to a 1N aqueous nitric acid solution 6.
It was dissolved in 61 g to give a 12.0 wt% aqueous solution. 7 ml of tetraethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 8 hours. The solidified sample was further picked up and aged for several hours, washed with distilled water and ethanol several times, and then dried at 60 ° C. The dried sample had entangled structures with uniform pores of about 1 μm. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution and ethanol in the reaction solution and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

実施例3−5 まず中性高分子であるポリエチレングリコール(林純
薬工業(株)製:分子量6000)を、1規定硝酸水溶液6.
16gに溶解して7.03重量%水溶液とした。この溶液に攪
拌下でテトラエトキシシラン7mlを加えて加水分解反応
を行なった。数分後得られた透明溶液を密閉容器に移
し、40℃の恒温槽中に保持したところ約8時間後に固化
した。固化した試料を更に拾数時間熟成し、蒸留水とエ
タノールで数回洗浄した後、60℃で乾燥した。乾燥した
試料には1μm程度の揃った細孔が絡み合い構造で存在
していた。反応溶液中のポリエチレングリコール、1規
定硝酸水溶液及びエタノールの濃度や反応温度を変化さ
せることにより細孔径を制御することができた。これら
の乾燥した試料に所定の熱処理を行なうことにより、ほ
ぼ同様の構造を持った多孔質シリカガラスが得られた。
Example 3-5 First, a neutral high molecular weight polyethylene glycol (Hayashi Pure Chemical Industries, Ltd .: molecular weight 6000) was added to a 1N aqueous nitric acid solution 6.
It was dissolved in 16 g to give a 7.03% by weight aqueous solution. 7 ml of tetraethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 8 hours. The solidified sample was further picked up and aged for several hours, washed with distilled water and ethanol several times, and then dried at 60 ° C. The dried sample had entangled structures with uniform pores of about 1 μm. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution and ethanol in the reaction solution and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

実施例4;有機高分子としてポリビニルピロリドンを用い
る場合 実施例4−1 まず中性高分子であるポリビニルピロリドン(アルド
リッチ製商品番号85645−2:分子量1万)を、1規定硝
酸水溶液5.51gに溶解して21.4重量%とした。この溶液
に攪拌下でテトラメトキシシラン5mlを加えて加水分解
反応を行なった。数分後得られた透明溶液を密閉容器に
移し、60℃の恒温槽中に保持したところ約1時間後に固
化した。固化した試料を更に拾数時間熟成し、蒸留水と
エタノールで数回洗浄した後、60℃で乾燥した。乾燥し
た試料には3μm程度の揃った細孔が絡み合い構造で存
在していた。反応溶液中の高分子の濃度や反応温度を変
化させることによって、異なる細孔径を持つ多孔体が得
られた。これらの乾燥した試料を100℃/hの昇温速度で9
00℃まで加熱してこの温度に2時間保持したところ、ほ
ぼ同様の構造を持った多孔質シリカガラスが得られた。
Example 4; When using polyvinylpyrrolidone as an organic polymer Example 4-1 First, polyvinylpyrrolidone (Aldrich product number 85645-2: molecular weight 10,000), which is a neutral polymer, is dissolved in 5.51 g of a 1N aqueous nitric acid solution. To be 21.4% by weight. 5 ml of tetramethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was transferred to a closed container and kept in a constant temperature bath at 60 ° C., whereupon it solidified after about 1 hour. The solidified sample was further picked up and aged for several hours, washed with distilled water and ethanol several times, and then dried at 60 ° C. In the dried sample, uniform pores of about 3 μm existed in an entangled structure. Porous substances having different pore sizes were obtained by changing the concentration of the polymer in the reaction solution and the reaction temperature. These dried samples were heated at a heating rate of 100 ° C / h for 9
When heated to 00 ° C. and kept at this temperature for 2 hours, a porous silica glass having a substantially similar structure was obtained.

実施例4−2 まず中性高分子であるポリビニルピロリドン(アルド
リッチ製商品番号85656−8:分子量4万)を蒸留水5.0g
に溶解して23.1重量%とした。この溶液に攪拌下でテト
ラメトキシシラン5mlを加えて加水分解反応を行なっ
た。数分後得られた透明溶液を密閉容器に移し、60℃の
恒温槽中に保持したところ約30分以内に固化した。固化
した試料を更に数時間熟成し、蒸留水とエタノールで数
回洗浄した後、60℃で乾燥した試料には0.3μm程度の
揃った細孔が絡み合い構造で存在していた。なお、第3
図水銀圧入法で測定した細孔径分布を示す。反応溶液中
の高分子の濃度や反応温度を変化させることによって、
異なる細孔径を持つ多孔体が得られた。これらの乾燥し
た試料に所定の熱処理を行なうことにより、ほぼ同様の
構造を持った多孔質シリカガラスが得られた。
Example 4-2 First, 5.0 g of distilled water was added to polyvinylpyrrolidone (Aldrich product number 85656-8: molecular weight 40,000), which is a neutral polymer.
To 23.1% by weight. 5 ml of tetramethoxysilane was added to this solution with stirring to carry out a hydrolysis reaction. After a few minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 60 ° C, whereupon it solidified within about 30 minutes. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. In the sample, uniform pores of about 0.3 μm were present in an entangled structure. The third
Figure shows the pore size distribution measured by mercury porosimetry. By changing the concentration of the polymer in the reaction solution and the reaction temperature,
Porous bodies with different pore sizes were obtained. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

実施例5;有機高分子としてポリアリルアミンを用いる場
合 実施例5−1 まず側鎖に第一アミンのみを有するポリアリルアミン
(日東紡績製 PAA−HCL−L:分子量8000〜11000)を、0.
5規定硝酸水溶液に溶解して11.8重量%とした。この溶
液10.51gに攪拌下でテトラメトキシシラン5mlを加え
て、加水分解反応を行なった。数分後得られた透明溶液
を密閉容易に移し、40℃の恒温槽中に保持したところ約
2時間以内に固化した。固化した試料を更に数時間熟成
し、蒸留水とエタノールで数回洗浄した後、60℃で乾燥
した。乾燥した試料には3μm程度の揃った細孔が絡み
合い構造で存在していた。反応溶液中の高分子の濃度や
反応温度を変化させることによって、異なる細孔径を持
つ多孔体が得られた。これらの乾燥した試料を100℃/h
の昇温速度で900℃まで加熱してこの温度に2時間保持
したところ、ほぼ同様の構造を持った多孔質シリカガラ
スが得られた。
Example 5; When polyallylamine is used as the organic polymer Example 5-1 First, polyallylamine having only a primary amine in the side chain (PAA-HCL-L manufactured by Nitto Boseki: molecular weight 8000 to 11000) was used.
It was dissolved in 5N aqueous nitric acid solution to make 11.8% by weight. To 10.51 g of this solution, 5 ml of tetramethoxysilane was added with stirring to carry out a hydrolysis reaction. The transparent solution obtained after a few minutes was easily transferred in a sealed manner and kept in a constant temperature bath at 40 ° C., whereupon it solidified within about 2 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. In the dried sample, uniform pores of about 3 μm existed in an entangled structure. Porous substances having different pore sizes were obtained by changing the concentration of the polymer in the reaction solution and the reaction temperature. These dried samples were run at 100 ° C / h
When heated to 900 ° C. at a heating rate of and held at this temperature for 2 hours, a porous silica glass having almost the same structure was obtained.

実施例5−2 まず側鎖に第一アミンのみを有するポリアリルアミン
の塩酸塩(日東紡績製 PAA−HCL−H:分子量50000〜6500
0)を、0.5規定硝酸水溶液に溶解して3.67重量%とし
た。この溶液10.51gに攪拌下でテトラメトキシシラン3m
lを加えて、加水分解反応を行なった。数分後得られた
透明溶液を密閉容器に移し、60℃の恒温槽中に保持した
ところ約1時間以内に固化した。固化した試料を更に数
時間熟成し、蒸留水とエタノールで数回洗浄した後、60
℃で乾燥した。乾燥した試料には0.5μm程度の揃った
細孔が絡み合い構造で存在していた。反応溶液中の高分
子の濃度や反応温度を変化させることによって、異なる
細孔径を持つ多孔体が得られた。これらの乾燥した試料
を所定の熱処理を行なうことにより、ほぼ同様の構造を
持った多孔質シリカガラスが得られた。
Example 5-2 First, a polyallylamine hydrochloride having only a primary amine in a side chain (PAA-HCL-H manufactured by Nitto Boseki: molecular weight 50000 to 6500).
0) was dissolved in 0.5N nitric acid aqueous solution to make 3.67% by weight. To 10.51 g of this solution was added 3 m of tetramethoxysilane under stirring.
l was added to carry out a hydrolysis reaction. After a few minutes, the obtained transparent solution was transferred to a closed container and kept in a constant temperature bath at 60 ° C. When it was solidified within about 1 hour. The solidified sample is aged for several more hours, washed with distilled water and ethanol several times, and then 60
It was dried at ° C. In the dried sample, uniform pores of about 0.5 μm existed in an entangled structure. Porous substances having different pore sizes were obtained by changing the concentration of the polymer in the reaction solution and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

実施例6;有機高分子としてポリエチレンイミンを用いる
場合 実施例6−1 まず主鎖に窒素原始を有するポリエチレンイミンの50
重量%水溶液(アルドリッチ製商品番号18197−8)を2
0重量%に希釈し、この溶液6.25gに62重量%の濃硝酸2.
54gと水1mlを加えて均一溶液とした。この溶液に攪拌下
でテトラメトキシシラン5mlを加えて、加水分解反応を
行なった。数分後得られた透明溶液を密閉容器に移し、
60℃の高温槽中に保持したところ約2時間以内に固化し
た。固化した試料を更に数時間熟成し、蒸留水とエタノ
ールで数回洗浄した後、60℃で乾燥した。乾燥した試料
には0.1μm程度の揃った細孔が絡み合い構造で存在し
ていた。反応溶液中の高分子の濃度や反応温度を変化さ
せることによって、異なる細孔径を持つ多孔体が得られ
た。これらの乾燥した試料を所定の熱処理を行なうこと
により、ほぼ同様の構造を持った多孔質シリカガラスが
得られた。
Example 6; Using polyethyleneimine as an organic polymer Example 6-1 First, 50 of polyethyleneimine having a nitrogen primitive in its main chain is used.
2% by weight aqueous solution (Aldrich product number 18197-8)
Dilute to 0 wt% and add to this solution 6.25 g 62 wt% concentrated nitric acid 2.
54 g and 1 ml of water were added to make a homogeneous solution. 5 ml of tetramethoxysilane was added to this solution under stirring to carry out hydrolysis reaction. After a few minutes transfer the resulting clear solution to a closed container,
When kept in a high temperature bath at 60 ° C, it solidified within about 2 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60 ° C. In the dried sample, uniform pores of about 0.1 μm existed in an entangled structure. Porous substances having different pore sizes were obtained by changing the concentration of the polymer in the reaction solution and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a substantially similar structure was obtained.

上述の実施例では、原料がテトラアルコキシシランで
あったため多孔質シリカガラスが得られたが、テトラア
ルコキシシランに少量の他の金属アルコキシドを添加し
た原料を用いれば同様にして各種のSiO2系多孔質セラミ
ックスが得られる。また、昇温速度や最高加熱温度を多
少変更しても同様な多孔質セラミックスが得られる。
In the above-mentioned examples, since the raw material was tetraalkoxysilane, porous silica glass was obtained, but if a raw material obtained by adding a small amount of other metal alkoxide to tetraalkoxysilane is used, various SiO 2 -based porous materials are similarly obtained. Quality ceramics can be obtained. Further, similar porous ceramics can be obtained even if the temperature rising rate and the maximum heating temperature are changed to some extent.

[比較例] テトラエトキシシラン250mlに0.01規定の塩酸200mlを
加え攪拌した。次いでこれに10〜50重量%のポリ酢酸ビ
ニルエマルジョンを加えて分散させた。次いでこれにア
ンモニアを添加し、pH値を〜3.5〜6.6に調整した後、密
閉容器に入れ、20〜30℃で放置しゲル化させた。次いで
これを焼成し多孔質ガラスを製造した。この多孔質ガラ
スについて細孔径を測定した結果を第1図に▽印でプロ
ットした。同図から明らかなように、この細孔径は広い
範囲に分布している。
[Comparative Example] To 250 ml of tetraethoxysilane, 200 ml of 0.01N hydrochloric acid was added and stirred. Then, 10 to 50% by weight of polyvinyl acetate emulsion was added and dispersed therein. Then, ammonia was added to this to adjust the pH value to ˜3.5 to 6.6, then put in a closed container and left at 20 to 30 ° C. for gelation. Then, this was fired to produce a porous glass. The results of measuring the pore size of this porous glass are plotted in FIG. As is clear from the figure, the pore diameters are distributed in a wide range.

[発明の効果] 本発明によれば、サブミクロンから数拾ミクロンの範
囲の揃った細孔径を有する多孔質セラミックスを容易に
提供できる。
[Effects of the Invention] According to the present invention, it is possible to easily provide a porous ceramic having a uniform pore size in the range of submicron to several micron.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図は、細孔径分布図を示す図であ
る。
FIG. 1, FIG. 2 and FIG. 3 are diagrams showing pore diameter distribution charts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属アルコキシド又はそのオリゴマーと有
機高分子とを含む反応溶液を準備し、該溶液中で該金属
アルコキシド又はそのオリゴマーを加水分解・重合して
ゲルを作成し、該ゲルを焼成して多孔質ガラスを製造す
る方法であって、該有機高分子は、該金属アルコキシド
又はそのオリゴマーの溶液と相溶性を有し、該加水分解
・重合の工程で、相分離を生じ、かつ実質的に沈殿を生
じないものである多孔質ガラスの製造法。
1. A reaction solution containing a metal alkoxide or an oligomer thereof and an organic polymer is prepared, and a gel is prepared by hydrolyzing and polymerizing the metal alkoxide or an oligomer thereof in the solution and baking the gel. A method for producing a porous glass by using the organic polymer, wherein the organic polymer is compatible with the solution of the metal alkoxide or its oligomer, phase separation occurs in the hydrolysis / polymerization step, and A method for producing a porous glass which does not cause precipitation in the glass.
【請求項2】前記有機高分子は、ポリスチレンスルホン
酸ナトリウム、ポリアクリル酸、ポリアリルアミン、ポ
リエチレンイミン、ポリエチレンオキシド又はポリビニ
ルピロリドンである請求項(1)記載の多孔質ガラスの
製造法。
2. The method for producing a porous glass according to claim 1, wherein the organic polymer is sodium polystyrene sulfonate, polyacrylic acid, polyallylamine, polyethyleneimine, polyethylene oxide or polyvinylpyrrolidone.
JP1245947A 1988-09-28 1989-09-21 Porous glass manufacturing method Expired - Lifetime JPH0829952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245947A JPH0829952B2 (en) 1988-09-28 1989-09-21 Porous glass manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP24553288 1988-09-28
JP63-245532 1988-09-28
JP5688689 1989-03-08
JP1-56886 1989-03-08
JP1245947A JPH0829952B2 (en) 1988-09-28 1989-09-21 Porous glass manufacturing method

Publications (2)

Publication Number Publication Date
JPH038729A JPH038729A (en) 1991-01-16
JPH0829952B2 true JPH0829952B2 (en) 1996-03-27

Family

ID=27296071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245947A Expired - Lifetime JPH0829952B2 (en) 1988-09-28 1989-09-21 Porous glass manufacturing method

Country Status (1)

Country Link
JP (1) JPH0829952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217359B2 (en) 2003-07-30 2007-05-15 Ngk Insulators, Ltd. Columns for chromatograph
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction
WO2013187398A1 (en) 2012-06-14 2013-12-19 ダイソー株式会社 Support for antibody purification, manufacturing method for same, and application for same
WO2018207932A1 (en) 2017-05-12 2018-11-15 国立大学法人広島大学 Cancer diagnosis device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559813B2 (en) * 2004-10-05 2010-10-13 株式会社トクヤマ Method for producing dual pore silica beads
JP4745706B2 (en) * 2005-04-13 2011-08-10 Dic株式会社 Water-based coating composition and method for producing coating film
JP4684813B2 (en) * 2005-09-05 2011-05-18 国立大学法人 千葉大学 Method for producing dual pore silica
JP4985112B2 (en) * 2007-06-04 2012-07-25 Dic株式会社 Organic-inorganic hybrid resin aqueous dispersion, curable resin composition, paint and paint
JP4985460B2 (en) * 2007-07-27 2012-07-25 Dic株式会社 Organic-inorganic hybrid resin aqueous dispersions, paints and painted products
JP4226050B1 (en) * 2007-09-12 2009-02-18 株式会社Reiメディカル Absorption column for body fluid purification treatment
CN102834355B (en) * 2010-03-04 2015-06-24 地方独立行政法人东京都立产业技术研究中心 Process for producing porous silica, and porous silica

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217359B2 (en) 2003-07-30 2007-05-15 Ngk Insulators, Ltd. Columns for chromatograph
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction
WO2013187398A1 (en) 2012-06-14 2013-12-19 ダイソー株式会社 Support for antibody purification, manufacturing method for same, and application for same
WO2018207932A1 (en) 2017-05-12 2018-11-15 国立大学法人広島大学 Cancer diagnosis device

Also Published As

Publication number Publication date
JPH038729A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
US5009688A (en) Process for producing porous glass
EP0537336B1 (en) Process of making porous ceramic materials with controlled porosity
US6207098B1 (en) Method for producing porous inorganic materials
EP0293064B1 (en) Sol-gel method for making ultra-low expansion glass
US5096745A (en) Preparation of titanium oxide ceramic membranes
JP2893104B2 (en) Method for producing inorganic porous body having organic functional groups bonded thereto
JPH0829952B2 (en) Porous glass manufacturing method
US20040149654A1 (en) Method for producing inorganic porous material
JP3020241B2 (en) Manufacturing method of titanium ceramic film
JP2635313B2 (en) Method for producing silica glass
JP4784719B2 (en) Method for producing inorganic porous composite containing dispersed particles
JPH03285833A (en) Manufacture of porous glass
JP2621153B2 (en) Manufacturing method of spherical porous body
US20050095416A1 (en) Inorganic porous materials containing dispersed particles
CN1210825A (en) Method for fabricating silica glass
KR100337703B1 (en) Composition for making silica glass with sol-gel process
GB2126205A (en) Preparation of dispersions and gels
JPH02145442A (en) Production of glass
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPH0549610B2 (en)
JPH0388711A (en) Production of spherical porous body
JPH0547487B2 (en)
JPH0222121A (en) Production of spherical silica porous form
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPS60180923A (en) Manufacture of spherical glass body

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14