JPH08298341A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH08298341A
JPH08298341A JP12717595A JP12717595A JPH08298341A JP H08298341 A JPH08298341 A JP H08298341A JP 12717595 A JP12717595 A JP 12717595A JP 12717595 A JP12717595 A JP 12717595A JP H08298341 A JPH08298341 A JP H08298341A
Authority
JP
Japan
Prior art keywords
light emitting
resin
film
emitting diode
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12717595A
Other languages
Japanese (ja)
Other versions
JP3963330B2 (en
Inventor
Ryoichi Takeuchi
良一 竹内
Kazuhiro Mitani
和弘 三谷
Teruyuki Kobayashi
輝幸 小林
Masahiko Usuda
雅彦 臼田
Takayuki Kamemura
高行 亀村
Atsushi Yoshioka
敦 吉岡
Takuo Sugawara
拓郎 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12717595A priority Critical patent/JP3963330B2/en
Publication of JPH08298341A publication Critical patent/JPH08298341A/en
Application granted granted Critical
Publication of JP3963330B2 publication Critical patent/JP3963330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE: To improve moistureproofness of an element surface, prevent decrease of luminous output, and improve the life of an element, by forming a thin film composed of insulating inorganic material, on the light emitting surface of a light emitting diode, and forming a thin thermosetting resin film on the thin inorganic film. CONSTITUTION: A clad layer 4 is grown on a P-type GaAs substrate 1, and further an active layer 2 and an N-type GaA As clad layer 3 are grown. An AuBe electrode 5 is formed. A thin film composed of insulating inorganic material is formed on the light emitting surface of a light emitting diode, and a thin thermosetting resin film is formed on the thin inorganic film. Resin is soft as compared with inorganic material, so that, when resin of high stress is used as a molding resin, the thin resin film as mold resin relieves the stress. Hence the stress applied to the thin inorganic film is reduced. Thereby the deterioration of luminous output due to moisture and the decrease of luminous output due to stress applied to the molding resin can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光素子に係り、特に素
子表面を特定の物質で保護し、発光出力の劣化を防ぐ発
光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device, and more particularly to a light emitting device in which the surface of the device is protected by a specific substance to prevent deterioration of light emission output.

【0002】[0002]

【従来の技術】化合物半導体を用いた発光素子は、一般
的に発光ダイオード(以下LEDと略す)と呼ばれてい
る。例えばIII−V族化合物半導体を用いたLEDで
は、GaP、GaAsP、GaAs、GaAlAsが用
いられている。しかし、これらの化合物半導体は、湿度
に長時間曝された場合に、素子表面が酸化され、その酸
化膜が光を通しずらくするために発光出力が低下すると
いう欠点がある。発光素子を工業的に使用する場合に
は、一般に発光素子をエポキシ樹脂で完全に封止し、L
EDランプを形成して使用されるが、この樹脂は防湿性
に劣り、大気中の水分が侵入することを許すため、化合
物半導体の発光素子表面の酸化を防ぐことが出来ない。
特に、GaAlAs系LEDは水分により酸化され易
く、その結果、発光出力の低下が発生し、ディスプレー
や信号機など屋外でLEDを利用する場合は大きな障害
になる。また、その対策として使用するエポキシ樹脂を
難吸湿性の硬度の高いものに変えることは可能である
が、それらの樹脂は応力が大きく、外部応力に対し極め
て弱い化合物半導体結晶に使用した場合には、結晶欠陥
を誘発し、逆に発光出力を低下させることとなる。そこ
で表面酸化を防ぐために、表面保護膜を利用した様々な
検討が行われている。例えば、化学的表面処理により自
然酸化膜を形成する方法(例えば、第42回応用物理学
会予稿集、600頁、9a−D−3、1981、第44
回応用物理学会予稿集、485頁、28a−H−3、1
983、及び特開平4−216683等)や酸化珪素、
窒化珪素、シリコンオキシナイトライドの保護膜を形成
する方法(例えば、特開昭62−20383、特開平1
−226181、特開4−167569、菅野卓雄著、
半導体プラズマプロセス技術、産業図書等)が提案され
ている。また、特定の屈折率を持つポリイミドなどの樹
脂で表面を覆い、発光効率を向上する事も実施されてい
る。しかし、耐湿性が劣るため保護膜としては、利用さ
れていない。
2. Description of the Related Art A light emitting device using a compound semiconductor is generally called a light emitting diode (hereinafter abbreviated as LED). For example, GaP, GaAsP, GaAs, and GaAlAs are used in LEDs using III-V group compound semiconductors. However, these compound semiconductors have a drawback that the element surface is oxidized when exposed to humidity for a long time, and the oxide film makes it difficult for light to pass therethrough, so that the light emission output is reduced. When the light emitting element is used industrially, generally, the light emitting element is completely sealed with an epoxy resin, and L
Although it is used to form an ED lamp, this resin is inferior in moisture resistance and allows moisture in the atmosphere to enter, and therefore cannot prevent oxidation of the surface of the compound semiconductor light emitting device.
In particular, GaAlAs-based LEDs are easily oxidized by moisture, and as a result, the emission output is reduced, which is a major obstacle when the LEDs are used outdoors such as in displays and traffic lights. In addition, it is possible to change the epoxy resin used as a countermeasure to a highly hygroscopic and hard one, but when these resins are used for compound semiconductor crystals that have a large stress and are extremely weak against external stress. , Induces crystal defects and, conversely, reduces the light emission output. Therefore, in order to prevent surface oxidation, various studies using a surface protective film have been conducted. For example, a method of forming a natural oxide film by chemical surface treatment (for example, Proceedings of the 42nd Japan Society of Applied Physics, page 600, 9a-D-3, 1981, 44th).
Proceedings of the Japan Society of Applied Physics, 485 pages, 28a-H-3, 1
983, and JP-A-4-216683), silicon oxide,
A method of forming a protective film of silicon nitride or silicon oxynitride (see, for example, JP-A-62-20383 and JP-A-1).
-226181, Japanese Patent Laid-Open No. 4-167569, Takuo Kanno,
Semiconductor plasma process technology, industrial books, etc.) have been proposed. It is also practiced to cover the surface with a resin such as polyimide having a specific refractive index to improve the luminous efficiency. However, it is not used as a protective film due to its poor moisture resistance.

【0003】[0003]

【発明が解決すべき課題】自然酸化膜を形成する方法だ
けでは化合物半導体表面と酸化膜界面の密着性が弱く、
緻密な膜を成長させることが困難な為、完全に水分を防
ぐことは出来ない。酸化珪素や窒化珪素を表面保護膜と
して利用する場合、モールド樹脂による外部応力やGa
As等のIII−V族化合物半導体と熱膨張係数に差が
有るため、応力が生じ、半導体表面に結晶欠陥を誘発し
たり、窒化珪素膜等にクラックが入り長期間の使用に耐
えられる信頼性を得られないという問題が有った。その
ため、III−V族化合物半導体表面に酸化珪素膜を形
成し、さらに窒化珪素膜を形成するという複合膜が使用
されたり、シリコンオキシナイトライド膜が採用された
りしているが、それでも、これら膜の欠点を完全に補
い、完全なパッシベーション膜を得ることは難しい。ま
た、有機樹脂膜は、無機膜に比べ耐湿性に劣り長期間の
信頼性が得られない。従来の方法では、発光素子を水分
から保護することは難しく、高温・高湿下の厳しい環境
の基で長時間使用されても、光出力の劣化を防ぎ、且
つ、生産性を損なわない新たな保護膜の形成方法が望ま
れている。一方、LEDチップをモールド樹脂で封止す
る際に、吸水性の低い樹脂を選択することで或る程度耐
湿性の向上は計られるが、吸湿性の低い樹脂は応力が大
きくIII−V族化合物半導体は応力に対し弱いため、
逆に応力劣化を引き起こす原因となる。また、甚だしい
場合は、酸化珪素や窒化珪素等の膜にクラックを発生さ
せ、耐湿性までを損なうという悪影響が生じる場合があ
る。これら、樹脂の応力対策も発光ダイオードチップの
信頼性をより高める為には解決しなければならない問題
である。本発明は、上記問題点を解決するためのもの
で、素子表面の防湿性を向上させ、発光出力の低下を防
ぎ素子寿命の向上を図るとともに、生産性の上でも支障
が無い発光素子を提供することを目的とする。
The adhesion between the compound semiconductor surface and the oxide film interface is weak only by the method of forming a natural oxide film.
Since it is difficult to grow a dense film, it is impossible to completely prevent moisture. When silicon oxide or silicon nitride is used as the surface protection film, external stress or Ga caused by the mold resin
Since there is a difference in the thermal expansion coefficient from III-V group compound semiconductors such as As, stress is generated, crystal defects are induced on the semiconductor surface, and cracks occur in the silicon nitride film etc., and reliability that can withstand long-term use. There was a problem that I could not get. Therefore, a composite film in which a silicon oxide film is formed on a surface of a III-V group compound semiconductor and then a silicon nitride film is formed is used, or a silicon oxynitride film is adopted. It is difficult to completely compensate for the drawbacks of No. 1 and obtain a complete passivation film. In addition, the organic resin film is inferior in moisture resistance to the inorganic film, and cannot obtain long-term reliability. With the conventional method, it is difficult to protect the light-emitting element from moisture, and even if it is used for a long time in a severe environment of high temperature and high humidity, the light output is prevented from being deteriorated and the productivity is not impaired. A method for forming a protective film is desired. On the other hand, although moisture resistance can be improved to some extent by selecting a resin having low water absorption when the LED chip is sealed with a mold resin, a resin having low moisture absorption has a large stress and is a III-V group compound. Since semiconductors are weak against stress,
On the contrary, it causes stress deterioration. In addition, in extreme cases, a film of silicon oxide, silicon nitride, or the like may be cracked, which may adversely affect the moisture resistance. These measures against resin stress are also problems that must be solved in order to further improve the reliability of the light emitting diode chip. The present invention is to solve the above-mentioned problems and provides a light-emitting device that improves the moisture resistance of the device surface, prevents a decrease in light-emission output, and prolongs the life of the device and does not hinder productivity. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】そこで本発明者は前記課
題を解決すべく鋭意研究した結果、電極領域以外の化合
物半導体表面上に酸化珪素、窒化珪素、シリコンオキシ
ナイトライド等の無機からなる薄膜を形成し、その上に
ポリイミド、環状オレフィン系樹脂等からなる熱硬化性
樹脂の薄膜を形成させることにより前記課題が解決され
ることを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, as a result, a thin film made of an inorganic material such as silicon oxide, silicon nitride or silicon oxynitride is formed on the surface of the compound semiconductor other than the electrode region. The inventors have found that the above problems can be solved by forming a thin film of thermosetting resin on the surface of which a polyimide, a cyclic olefin resin, or the like is formed, and completed the present invention.

【0005】本発明で使用する半導体基板は、GaA
s、GaP、InPなど通常使用されている発光ダイオ
ード用半導体基板が使用できる。LEDの構造として
は、活性層やクラッド層に、GaAlAs,AlInG
aP,AlGaN等Al成分を含んだ層を有する場合の
ものが最も効果的であるが、通常のLEDで利用される
GaAsやGaPのホモ接合やGaAlAs/GaAs
の様なヘテロ接合でも適用上問題ない。活性層の厚み
は、0.5〜30μmが望ましいが、クラッド層では、
2μm以上が望ましい。成長法は液相エピタキシャル成
長法がコスト的に最適であるが、ハライド系の気相エピ
タキシャル成長法、有機金属を利用したMOCVD法や
MBE法も利用できる。電極は、オーミック特性が得ら
れボンディングを損なわない材質のものであればどのよ
うな材質のものでも利用できる。
The semiconductor substrate used in the present invention is GaA.
A commonly used semiconductor substrate for a light emitting diode such as s, GaP or InP can be used. As the structure of the LED, GaAlAs, AlInG are used for the active layer and the clad layer.
The one having a layer containing an Al component such as aP or AlGaN is most effective, but GaAs or GaP homojunction or GaAlAs / GaAs used in a normal LED is used.
There is no problem in application even with a heterojunction such as. The thickness of the active layer is preferably 0.5 to 30 μm, but in the clad layer,
2 μm or more is desirable. As the growth method, the liquid phase epitaxial growth method is optimal in terms of cost, but a halide vapor phase epitaxial growth method, a MOCVD method using an organic metal, or an MBE method can also be used. The electrode can be made of any material as long as it has ohmic characteristics and does not impair the bonding.

【0006】酸化珪素や窒化珪素等の保護膜は一般にC
VDと呼ばれる気相法で形成される。様々なCVDの中
で、反応温度が低いプラズマCVD法が密着性の点で優
れているが、熱分解CVD法でもよく、最適な厚みは
0.02μm〜0.5μmの範囲である。薄ければ、パ
ッシベーション膜としての働きに欠け、厚い場合は応力
歪みによるクラックの発生が懸念される。また、グラス
レジンなど無機質の珪素樹脂を溶剤に分散させた薬液
を、スピンナーなどによりウェーハ表面に均一に塗布
し、高温で燒結して保護膜として使用してもよい。その
上に形成する熱硬化性樹脂膜は、LEDチップをボンデ
ィング工程、リフロー工程等に投入されることを想定
し、ガラス転移点が160℃以上の耐熱性の高い樹脂が
必要である。その意味において、耐熱温度が通常の樹脂
の中では高いポリイミド系樹脂は最適である。ポリイミ
ド樹脂として、感光基を有する感光性ポリイミド樹脂を
用いる場合は、ウェーハ全面塗布後、通常のフォトリソ
グラフィー法でパターンが形成でき工程を簡略化するこ
とができる。しかし、一般的なポリイミド樹脂をシート
状にチップ表面に形成後、ヒドラジン等でエッチングし
て利用してもよい。尚、感光基を有するものは、イミド
結合反応を促進するためにキュアリングが必要であり、
イミド化率60%以上になるような温度と時間で処理す
る事が必要である。熱硬化性樹脂の厚みは、0.2〜2
0μmが望ましい。0.2μmより薄いと保護膜として
の効果が充分でなく、20μmより厚い場合は、熱膨張
率との差などにより剥離が生じやすい。保護膜はチップ
側面からチップ上面に到るチップ全面を完全に覆うこと
が効果的であるが、チップ上面のみに保護膜を形成して
もその効果は損なわれ無い。
A protective film such as silicon oxide or silicon nitride is generally C
It is formed by a vapor phase method called VD. Among various CVDs, the plasma CVD method, which has a low reaction temperature, is excellent in terms of adhesion, but the thermal decomposition CVD method may be used, and the optimum thickness is in the range of 0.02 μm to 0.5 μm. If it is thin, it may not function as a passivation film, and if it is thick, there is a concern that cracks may occur due to stress strain. Alternatively, a chemical solution in which an inorganic silicon resin such as glass resin is dispersed in a solvent may be uniformly applied to the wafer surface by a spinner or the like and sintered at high temperature to be used as a protective film. The thermosetting resin film formed thereon is required to have a high heat resistance resin having a glass transition point of 160 ° C. or higher, assuming that the LED chip is put into a bonding process, a reflow process and the like. In that sense, a polyimide-based resin having a high heat-resistant temperature is most preferable among ordinary resins. When a photosensitive polyimide resin having a photosensitive group is used as the polyimide resin, a pattern can be formed by an ordinary photolithography method after coating the entire surface of the wafer, and the process can be simplified. However, a general polyimide resin may be formed into a sheet on the surface of the chip and then etched with hydrazine or the like for use. Incidentally, those having a photosensitive group require curing in order to accelerate the imide bond reaction,
It is necessary to perform the treatment at a temperature and for a time such that the imidization ratio becomes 60% or more. The thickness of the thermosetting resin is 0.2 to 2
0 μm is desirable. If it is thinner than 0.2 μm, the effect as a protective film is not sufficient, and if it is thicker than 20 μm, peeling easily occurs due to a difference from the coefficient of thermal expansion. It is effective that the protective film completely covers the entire surface of the chip from the side surface of the chip to the upper surface of the chip, but even if the protective film is formed only on the upper surface of the chip, the effect is not impaired.

【0007】[0007]

【作用】無機質の薄膜の上に樹脂薄膜を形成することに
より、モールド樹脂として高応力のものを使用しても樹
脂は無機質に較べ柔らかいので樹脂薄膜がモールド樹脂
の応力を緩和してくれるため、無機質の薄膜にかかる応
力が小さくなる。従って無機質の薄膜のクラックの発生
は少なくなり、またわずかなクラックが発生したとして
もその上に樹脂薄膜が形成されているのでそれにより保
護される。樹脂薄膜によるモールド樹脂の応力緩和は無
機質の薄膜がなくても同様であるが、樹脂薄膜だけでは
耐湿性が十分でない。無機薄膜の上に樹脂薄膜を形成す
ることにより始めて湿度による発光出力の劣化とモール
ド樹脂の応力による発光出力の低下を有効に防止でき
る。
[Function] By forming a resin thin film on an inorganic thin film, even if a high stress resin is used as the molding resin, the resin is softer than the inorganic resin, so the resin thin film relieves the stress of the molding resin. The stress applied to the inorganic thin film is reduced. Therefore, the occurrence of cracks in the inorganic thin film is reduced, and even if a few cracks occur, the resin thin film is formed on the cracks, so that the thin film is protected. Although the stress relaxation of the mold resin by the resin thin film is the same without the inorganic thin film, the moisture resistance is not sufficient only with the resin thin film. It is possible to effectively prevent deterioration of the light emission output due to humidity and reduction of the light emission output due to the stress of the molding resin only after forming the resin thin film on the inorganic thin film.

【0008】[0008]

【実施例】【Example】

[実施例1]実施例としてGaAlAs発光ダイオード
用エピタキシャル基板に複数個のLED素子を作った例
を示す。その断面構造を図1に示す。エピタキシャル基
板は面方位(100)のp型GaAs基板1に、液相エ
ピタキシャル法にてZnドープのp型GaAlAsクラ
ッド層(20μm)4を成長させ、その上に活性層とし
てZnドープp型GaAlAs層(1μm)2を成長さ
せ、さらにその上にTeドープのn型GaAlAsクラ
ッド層(40μm)3を成長させて作成した。その活性
層のAl混晶比は発光波長が660nmとなるようAl
0.35Ga0.65Asに調整した。
Example 1 As an example, an example in which a plurality of LED elements are formed on a GaAlAs light emitting diode epitaxial substrate will be described. Its sectional structure is shown in FIG. As the epitaxial substrate, a Zn-doped p-type GaAlAs clad layer (20 μm) 4 was grown on a p-type GaAs substrate 1 having a plane orientation (100) by a liquid phase epitaxial method, and a Zn-doped p-type GaAlAs layer as an active layer was formed thereon. (1 μm) 2 was grown, and a Te-doped n-type GaAlAs clad layer (40 μm) 3 was further grown thereon to create the layer. The Al mixed crystal ratio of the active layer is set so that the emission wavelength is 660 nm.
It was adjusted to 0.35 Ga 0.65 As.

【0009】そのn型GaAlAsクラッド層の3表面
にAuGe/Au(厚さはそれぞれ、1000A/60
00A)電極材料を真空蒸着法で形成し、p型GaAs
基板表面にはAuBe(厚さは、6000A)電極5を
真空蒸着法で形成した。n側の電極5は直径130μm
φの領域をフォトリソグラフィーによるレジスト材など
で保護し、上記領域以外の領域をエッチング法で除去す
ることで形成した。裏面となるp側の電極はベタ電極と
した。レジスト材を除去後、N2 雰囲気下420℃で5
分間アロイングをして表面、裏面にオーミック電極を形
成した。シラン及び亜酸化窒素を原料としたプラズマC
VD法で酸化珪素を0.25μmとなるように堆積させ
た。その上に感光性ポリイミド(旭化成工業 製PIM
ELシリ−ズ、ガラス転移点355℃)をスピンコータ
ーで均一に塗布した。フォトリソグラフィー法により電
極領域とダイシングストリート部9以外の領域を保護す
るようにパターンを形成し、HF−フッ化アンモニウム
水溶液にて電極領域とダイシングストリート部の部分の
酸化珪素を除去した。樹脂を硬化させるために、窒素雰
囲気で350℃、60分熱処理を行った。ポリイミドの
膜厚は3μmである。
On the three surfaces of the n-type GaAlAs cladding layer, AuGe / Au (thickness: 1000 A / 60, respectively).
00A) electrode material is formed by vacuum evaporation method, and p-type GaAs
An AuBe (thickness: 6000A) electrode 5 was formed on the surface of the substrate by a vacuum deposition method. The electrode 5 on the n side has a diameter of 130 μm
The region of φ was protected by a resist material or the like by photolithography, and the region other than the above region was removed by etching. The p-side electrode on the back surface was a solid electrode. After removing the resist material, 5 at 420 ° C. under N 2 atmosphere
After alloying for minutes, ohmic electrodes were formed on the front and back surfaces. Plasma C made from silane and nitrous oxide
Silicon oxide was deposited to a thickness of 0.25 μm by the VD method. In addition, a photosensitive polyimide (PIM manufactured by Asahi Kasei
An EL series and a glass transition point of 355 ° C.) were uniformly applied with a spin coater. A pattern was formed by a photolithography method so as to protect the electrode region and the region other than the dicing street portion 9, and the silicon oxide in the electrode region and the dicing street portion was removed with an HF-ammonium fluoride aqueous solution. To cure the resin, heat treatment was performed at 350 ° C. for 60 minutes in a nitrogen atmosphere. The film thickness of polyimide is 3 μm.

【0010】ダイシングソーにて素子を切断し、LED
チップを形成した。その平面図を図2に示す。リードフ
レームにチップをダイマウント後、25μmの金線でワ
イヤーボンディングを行い、さらにエポキシ樹脂にてモ
ールドしランプを作製した。この試料100個について
高温・高湿通電試験(温度;60℃、湿度;95%R
H、電流;13mA連続通電)を実施した。本方法で得
られたLEDランプでは1000時間経過後の輝度残存
率85%以上の規格を満たすものは、100%であっ
た。特性は高い残存率を維持している。本実施例では、
AlGaAs/GaAs系LEDを用いたが、GaAs
赤外LED、GaP可視LEDについても同様な効果が
得られた。
The element is cut with a dicing saw and the LED
A chip was formed. The plan view is shown in FIG. After the chip was die-mounted on the lead frame, wire bonding was performed with a gold wire of 25 μm, and further molding was performed with an epoxy resin to produce a lamp. High temperature / high humidity energization test (temperature: 60 ° C, humidity: 95% R) for 100 samples
H, current; 13 mA continuous energization) was performed. In the LED lamps obtained by this method, 100% of the LED lamps satisfy the standard of the residual brightness rate of 85% or more after 1000 hours. The property maintains a high survival rate. In this embodiment,
AlGaAs / GaAs LED was used, but GaAs
Similar effects were obtained with infrared LEDs and GaP visible LEDs.

【0011】[実施例2]実施例としてGaAlAs発
光ダイオード用エピタキシャル基板に複数個のLED素
子を作った例を示す。オーミック電極を形成までは、実
施例1と同じである。シラン及びアンモニアを原料とし
たプラズマCVD法で窒化珪素を0.1μmとなるよう
に堆積させた。その上に感光性環状オレフィン系樹脂
(日本ゼオン製Zコ−トシリ−ズ、ガラス転移点168
℃)をスピンコーターで均一に塗布した。フォトリソグ
ラフィー法により電極領域とダイシングストリート部以
外の領域を保護するようにパターンを形成し、HF−フ
ッ化アンモニウム水溶液にて電極領域とダイシングスト
リート部の部分の窒化珪素を除去した。樹脂を硬化させ
るために、窒素雰囲気で300℃、60分熱処理を行っ
た。環状オレフィン系樹脂の膜厚は2μmであった。
[Embodiment 2] As an embodiment, an example in which a plurality of LED elements are formed on a GaAlAs light emitting diode epitaxial substrate will be described. The process up to the formation of the ohmic electrode is the same as in Example 1. Silicon nitride was deposited to a thickness of 0.1 μm by the plasma CVD method using silane and ammonia as raw materials. Furthermore, a photosensitive cyclic olefin resin (Z-Coat series manufactured by Nippon Zeon, glass transition point 168)
(° C.) was evenly applied with a spin coater. A pattern was formed by a photolithography method so as to protect regions other than the electrode region and the dicing street part, and silicon nitride in the electrode region and the dicing street part was removed with an HF-ammonium fluoride aqueous solution. In order to cure the resin, heat treatment was performed at 300 ° C. for 60 minutes in a nitrogen atmosphere. The film thickness of the cyclic olefin resin was 2 μm.

【0012】ダイシングソーにて素子を切断し、LED
チップを形成した。切断前の断面構造は図1において酸
化珪素7が窒化珪素8に代わるのみで他は図1と同様で
ある。切断後のチップの平面を図1に示す。リードフレ
ームにチップをダイマウント後、25μmの金線でワイ
ヤーボンディングを行い、さらにエポキシ樹脂にてモー
ルドしランプを作製した。この試料100個について高
温・高湿通電試験(温度;60℃、湿度;95%RH、
電流;13mA連続通電)を実施した。本方法で得られ
たLEDランプでは1000時間経過後の輝度残存率8
5%以上の規格を満たすものは、100%であった。特
性は高い残存率を維持している。本実施例では、AlG
aAs/GaAs系LEDを用いたが、GaAs赤外L
ED、GaP可視LEDについても同様な効果が得られ
た。
The element is cut with a dicing saw and the LED
A chip was formed. The sectional structure before cutting is the same as that of FIG. 1 except that silicon oxide 7 is replaced by silicon nitride 8 in FIG. The plane of the chip after cutting is shown in FIG. After the chip was die-mounted on the lead frame, wire bonding was performed with a gold wire of 25 μm, and further molding was performed with an epoxy resin to produce a lamp. High temperature / high humidity current test (temperature: 60 ° C, humidity: 95% RH,
Current: 13 mA continuous energization) was performed. With the LED lamp obtained by this method, the residual brightness rate after 1000 hours was 8
Those satisfying the standard of 5% or more were 100%. The property maintains a high survival rate. In this embodiment, AlG
We used aAs / GaAs LED, but GaAs infrared L
Similar effects were obtained for ED and GaP visible LEDs.

【0013】[比較例1]実施例としてGaAlAs発
光ダイオード用エピタキシャル基板に複数個のLED素
子を作った例を示す。オーミック電極を形成までは、実
施例1と同じである。シラン及び亜酸化窒素を原料とし
たプラズマCVD法で酸化珪素を0.25μmとなるよ
うに堆積させた。フォトリソグラフィー法により電極領
域とダイシングストリート部以外の領域を保護するよう
にレジストパターンを形成し、HF−フッ化アンモニウ
ム水溶液にて電極領域とダイシングストリート部の部分
の酸化珪素を除去した。
COMPARATIVE EXAMPLE 1 As an example, an example in which a plurality of LED elements are formed on an epitaxial substrate for a GaAlAs light emitting diode will be shown. The process up to the formation of the ohmic electrode is the same as in Example 1. Silicon oxide was deposited to a thickness of 0.25 μm by the plasma CVD method using silane and nitrous oxide as raw materials. A resist pattern was formed by a photolithography method so as to protect regions other than the electrode region and the dicing street part, and silicon oxide in the electrode region and the dicing street part was removed with an HF-ammonium fluoride aqueous solution.

【0014】ダイシングソーにて素子を切断し、LED
チップを形成した。その断面構造を図3に示す。リード
フレームにチップをダイマウント後、25μmの金線で
ワイヤーボンディングを行い、さらにエポキシ樹脂にて
モールドしランプを作製した。この試料100個につい
て高温・高湿通電試験(温度;60℃、湿度;95%R
H、電流;13mA連続通電)を実施した。本方法で得
られたLEDランプでは1000時間経過後の輝度残存
率85%以上の規格を満たすものは、92%であった。
本方法で得られた従来法のLEDランプでは1000時
間経過後の輝度残存率の規格を満たさないランプがあっ
た。本発明の実施例に比べ信頼性が劣る。
The element is cut with a dicing saw and the LED
A chip was formed. Its sectional structure is shown in FIG. After the chip was die-mounted on the lead frame, wire bonding was performed with a gold wire of 25 μm, and further molding was performed with an epoxy resin to produce a lamp. High temperature / high humidity energization test (temperature: 60 ° C, humidity: 95% R) for 100 samples
H, current; 13 mA continuous energization) was performed. Among the LED lamps obtained by this method, 92% of the LED lamps satisfy the specification of the residual brightness rate of 85% or more after 1000 hours.
Among the LED lamps of the conventional method obtained by this method, there were some lamps that did not satisfy the standard of the residual brightness ratio after 1000 hours. The reliability is inferior to that of the embodiment of the present invention.

【0015】[比較例2]実施例としてGaAlAs発
光ダイオード用エピタキシャル基板に複数個のLED素
子を作った例を示す。オーミック電極を形成までは、実
施例1と同じである。感光性ポリイミド(旭化成工業
製PIMELシリ−ズ、ガラス転移点355℃)をスピ
ンコーターで均一に塗布した。フォトリソグラフィー法
により電極領域とダイシングストリート部以外の領域を
保護するようにパターンを形成した。樹脂を硬化させる
ために、窒素雰囲気で350℃、60分熱処理を行っ
た。ポリイミドの膜厚は3μmである。
[Comparative Example 2] An example in which a plurality of LED elements are formed on an epitaxial substrate for a GaAlAs light emitting diode will be shown as an example. The process up to the formation of the ohmic electrode is the same as in Example 1. Photosensitive polyimide (Asahi Kasei
PIMEL series (manufactured by PIMEL, glass transition point 355 ° C.) was uniformly applied with a spin coater. A pattern was formed by photolithography so as to protect regions other than the electrode region and the dicing street portion. To cure the resin, heat treatment was performed at 350 ° C. for 60 minutes in a nitrogen atmosphere. The film thickness of polyimide is 3 μm.

【0016】ダイシングソーにて素子を切断し、LED
チップを形成した。その断面構造を図4に示す。リード
フレームにチップをダイマウント後、25μmの金線で
ワイヤーボンディングを行い、さらにエポキシ樹脂にて
モールドしランプを作製した。この試料100個につい
て高温・高湿通電試験(温度;60℃、湿度;95%R
H、電流;13mA連続通電)を実施した。本方法で得
られたLEDランプでは1000時間経過後の輝度残存
率85%以上の規格を満たすものは、90%であった。
The element is cut with a dicing saw and the LED
A chip was formed. Its sectional structure is shown in FIG. After the chip was die-mounted on the lead frame, wire bonding was performed with a gold wire of 25 μm, and further molding was performed with an epoxy resin to produce a lamp. High temperature / high humidity energization test (temperature: 60 ° C, humidity: 95% R) for 100 samples
H, current; 13 mA continuous energization) was performed. 90% of the LED lamps obtained by this method satisfy the standard of the residual brightness rate of 85% or more after 1000 hours.

【0017】本方法で得られた従来法のLEDランプで
は1000時間経過後の輝度残存率の規格を満たさない
ランプがあった。本発明の実施例に比べ信頼性が劣る。
Among the conventional LED lamps obtained by this method, there were some lamps which did not meet the standard of the residual brightness rate after 1000 hours. The reliability is inferior to that of the embodiment of the present invention.

【0018】[0018]

【発明の効果】本発明によれば、半導体表面を酸化珪素
などの無機質の薄膜とポリイミドなどの熱硬化性樹脂の
薄膜からなる複合膜を形成させることにより、酸化珪素
単層やポリイミド単層で得られなかった信頼性の高い防
湿性が得られる。高温・高湿通電試験において、高い信
頼特性が得られる。
According to the present invention, by forming a composite film composed of an inorganic thin film such as silicon oxide and a thermosetting resin thin film such as polyimide on the semiconductor surface, a silicon oxide single layer or a polyimide single layer is formed. The highly reliable moistureproof property that cannot be obtained is obtained. High reliability characteristics are obtained in high temperature and high humidity current test.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1,2のLED素子平面図。FIG. 1 is a plan view of LED elements of Examples 1 and 2.

【図2】実施例1,2のLED素子の断面図。FIG. 2 is a cross-sectional view of LED elements of Examples 1 and 2.

【図3】比較例1のLED素子の断面図。FIG. 3 is a sectional view of an LED element of Comparative Example 1.

【図4】比較例2のLED素子の断面図。FIG. 4 is a sectional view of an LED element of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 活性層 3 nクラッド層 4 pクラッド層 5 オーミック電極 6 熱硬化性樹脂 7 酸化珪素 8 窒化珪素 9 ダイシングストリ−ト 1 GaAs substrate 2 active layer 3 n clad layer 4 p clad layer 5 ohmic electrode 6 thermosetting resin 7 silicon oxide 8 silicon nitride 9 dicing street

───────────────────────────────────────────────────── フロントページの続き (72)発明者 臼田 雅彦 埼玉県秩父市大字下影森1505昭和電工株式 会社秩父工場内 (72)発明者 亀村 高行 埼玉県秩父市大字下影森1505昭和電工株式 会社秩父工場内 (72)発明者 吉岡 敦 埼玉県秩父市大字下影森1505昭和電工株式 会社秩父工場内 (72)発明者 菅原 拓郎 埼玉県秩父市大字下影森1505昭和電工株式 会社秩父工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Usuda 1505 Shimokagemori, Chichibu, Saitama Prefecture Showa Denko Co., Ltd. Chichibu Factory (72) Takayuki Kamemura 1505 Shimokagemori, Chichibu, Saitama Showa Denko Co., Ltd. Chichibu Inside the factory (72) Inventor Atsushi Yoshioka 1505 Shimokagemori, Chichibu, Saitama Prefecture Showa Denko Co., Ltd.Inside Chichibu factory (72) Inventor Takuro Sugawara 1505 Shimokagemori, Chichibu, Saitama Inside Showa Denko Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 発光ダイオードの発光面に絶縁性の無機
質からなる薄膜を形成し、その上に熱硬化性樹脂薄膜を
形成したことを特徴とする発光ダイオード。
1. A light emitting diode comprising a thin film made of an insulating inorganic material formed on a light emitting surface of the light emitting diode, and a thermosetting resin thin film formed on the thin film.
【請求項2】 熱硬化性樹脂がイミド結合を有する樹脂
である請求項1に記載の発光ダイオード。
2. The light emitting diode according to claim 1, wherein the thermosetting resin is a resin having an imide bond.
【請求項3】 熱硬化性樹脂が感光基を有する樹脂であ
る請求項1または2に記載の発光ダイオード。
3. The light emitting diode according to claim 1, wherein the thermosetting resin is a resin having a photosensitive group.
【請求項4】 熱硬化性樹脂のガラス転移点が160℃
以上である請求項1〜3のいずれかに記載の発光ダイオ
ード。
4. The glass transition point of the thermosetting resin is 160 ° C.
It is above, The light emitting diode in any one of Claims 1-3.
【請求項5】 無機質からなる薄膜が、酸化珪素、窒化
珪素、シリコンオキシナイトライドの少なくとも一つで
ある請求項1に記載の発光ダイオード。
5. The light emitting diode according to claim 1, wherein the inorganic thin film is at least one of silicon oxide, silicon nitride, and silicon oxynitride.
【請求項6】 無機質の薄膜の厚さが、0.05〜0.
5μm、熱硬化性樹脂の薄膜の厚さが0.2〜20μm
である請求項1〜5のいずれかに記載の発光ダイオー
ド。
6. The thickness of the inorganic thin film is from 0.05 to 0.1.
5 μm, the thickness of the thermosetting resin thin film is 0.2 to 20 μm
The light emitting diode according to any one of claims 1 to 5.
【請求項7】 発光層または発光面がアルミニウムを含
む化合物半導体結晶により形成されていることを特徴と
する請求項1〜6のいずれかに記載の発光ダイオード。
7. The light emitting diode according to claim 1, wherein the light emitting layer or the light emitting surface is formed of a compound semiconductor crystal containing aluminum.
JP12717595A 1995-04-26 1995-04-26 Light emitting diode Expired - Lifetime JP3963330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12717595A JP3963330B2 (en) 1995-04-26 1995-04-26 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12717595A JP3963330B2 (en) 1995-04-26 1995-04-26 Light emitting diode

Publications (2)

Publication Number Publication Date
JPH08298341A true JPH08298341A (en) 1996-11-12
JP3963330B2 JP3963330B2 (en) 2007-08-22

Family

ID=14953533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12717595A Expired - Lifetime JP3963330B2 (en) 1995-04-26 1995-04-26 Light emitting diode

Country Status (1)

Country Link
JP (1) JP3963330B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043422A1 (en) * 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
JP2009004815A (en) * 1996-12-04 2009-01-08 Seiko Epson Corp Semiconductor device, method for manufacturing the same, electronic component, and method for manufacturing the same
US8115284B2 (en) 1996-12-04 2012-02-14 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument
US8643023B2 (en) 2009-05-22 2014-02-04 Showa Denko K.K. Light emitting diode, light emitting diode lamp, and lighting apparatus
JP2014187323A (en) * 2013-03-25 2014-10-02 Toshiba Corp Semiconductor light-emitting device
US8987764B2 (en) 2012-05-25 2015-03-24 Kabushiki Kaisha Toshiba Semiconductor light emitting device and light source unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004815A (en) * 1996-12-04 2009-01-08 Seiko Epson Corp Semiconductor device, method for manufacturing the same, electronic component, and method for manufacturing the same
US8115284B2 (en) 1996-12-04 2012-02-14 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument
US8384213B2 (en) 1996-12-04 2013-02-26 Seiko Epson Corporation Semiconductor device, circuit board, and electronic instrument
WO2006043422A1 (en) * 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
US7436066B2 (en) 2004-10-19 2008-10-14 Nichia Corporation Semiconductor element
TWI384638B (en) * 2004-10-19 2013-02-01 Nichia Corp Semiconductor element
US8643023B2 (en) 2009-05-22 2014-02-04 Showa Denko K.K. Light emitting diode, light emitting diode lamp, and lighting apparatus
US8987764B2 (en) 2012-05-25 2015-03-24 Kabushiki Kaisha Toshiba Semiconductor light emitting device and light source unit
JP2014187323A (en) * 2013-03-25 2014-10-02 Toshiba Corp Semiconductor light-emitting device

Also Published As

Publication number Publication date
JP3963330B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US8791467B2 (en) Light emitting diode and method of making the same
US6583448B2 (en) Light emitting diode and method for manufacturing the same
US9281454B2 (en) Thin film light emitting diode
US6900068B2 (en) Light emitting diode and method of making the same
KR101652153B1 (en) Solid state lighting devices with selected thermal expansion and/or surface characteristics, and associated methods
US20090140279A1 (en) Substrate-free light emitting diode chip
US20020105003A1 (en) Light emitting diode and method of making the same
US6610589B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH1140847A (en) Gallium nitride semiconductor device and manufacture thereof
KR0153552B1 (en) Semiconductor light emitting element
JPH08255926A (en) Semiconductor light emitting element and fabrication thereof
JPH11126947A (en) Semiconductor element and semiconductor light emitting device
JP3963330B2 (en) Light emitting diode
EP2093810B1 (en) ZnO based semiconductor device and its manufacture method
JP4313478B2 (en) AlGaInP light emitting diode
KR100684537B1 (en) Light emitting diode and method of fabricating the same
CN1142599C (en) LED and its preparing process
JP4065686B2 (en) Optical semiconductor device manufacturing method and optical semiconductor device
JP2002190620A (en) Nitride semiconductor light-emitting diode
CN1206748C (en) LED and its preparing process
KR100586959B1 (en) Method of producing nitride singl crystal, nitride semiconductor light emitting diode and method of producing the same
CN1167139C (en) Light emitting diode and its preparation method
JPH1168237A (en) Semiconductor light-emitting device and semiconductor device
JP2958182B2 (en) Semiconductor light emitting device
JPH05304315A (en) Light emitting element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040921

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041126

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 8

EXPY Cancellation because of completion of term