JPH08297196A - Boiling water nuclear power plant - Google Patents

Boiling water nuclear power plant

Info

Publication number
JPH08297196A
JPH08297196A JP7103403A JP10340395A JPH08297196A JP H08297196 A JPH08297196 A JP H08297196A JP 7103403 A JP7103403 A JP 7103403A JP 10340395 A JP10340395 A JP 10340395A JP H08297196 A JPH08297196 A JP H08297196A
Authority
JP
Japan
Prior art keywords
primary cooling
cooling water
oxygen concentration
dissolved oxygen
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7103403A
Other languages
Japanese (ja)
Inventor
Yasuko Watanabe
康子 渡邊
Yoshitaka Nishino
由高 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7103403A priority Critical patent/JPH08297196A/en
Publication of JPH08297196A publication Critical patent/JPH08297196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To mitigate the corrosive environment of a primary cooling system by providing a device reducing the dissolved oxygen concentration in the circulation path of the primary cooling water, and suppressing the accumulation of an oxidizing constituent. CONSTITUTION: The primary cooling water separated from steam is again returned to a core through a mixing plenum 4, a downcomer 5, a jet pump, and a lower plenum 7. Part of the cooling water contributes to the drive of the jet pump from the downcomer 5 through a recirculation pump 6 and a recirculation pipe. Part of the primary cooling water flowing in the recirculation pipe is removed with impurities by a reactor purifying system 8 then is merged with the fed water. A dissolved oxygen concentration reducing device 23 installed on the recirculation pipe removes the gas constituent from the liquid together with the steam generated by heating and boiling. The extracted gas containing oxygen is processed as off-gas. The waste heat in a power plant such as the waste heat generated when steam is condensed by a heat pump can be effectively utilized for feeding heat to the dissolved oxygen concentration reducing device 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は沸騰水型原子炉一次冷却
系における腐食環境の緩和された原子力プラントに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear power plant in which a corrosive environment in a boiling water reactor primary cooling system is mitigated.

【0002】[0002]

【従来の技術】原子炉構造材料の粒界応力腐食割れ(以
下、IGSCCという)は、材料の成分組成,応力,水
質の3因子が共に好ましくない状態にある時に起こると
されている。従来から原子炉構造材、特にSUS304鋼に対
しては、炭素含有量の低減や、残留応力緩和の熱処理な
どを施し、IGSCCの観点からは十分安全側で運転さ
れてきた。このように、これまでの方策は、IGSCC
の3因子のうちで材料,応力の2因子に対するものであ
ったが、近年沸騰水型原子炉において、第3の因子のう
ちの一つである酸化性成分の濃度を低減するため、特開
昭57−3086号公報に見られるように、水素注入が試みら
れてきた。
2. Description of the Related Art Intergranular stress corrosion cracking (hereinafter referred to as IGSCC) of a structural material of a nuclear reactor is said to occur when all three factors of material composition, stress and water quality are in unfavorable states. Conventionally, reactor structural materials, especially SUS304 steel, have been subjected to heat treatment for reducing carbon content and residual stress relaxation, and have been operated on a sufficiently safe side from the viewpoint of IGSCC. Thus, the measures taken so far are IGSCC
Among the above three factors, the material and the stress are two factors. In recent years, in a boiling water reactor, the concentration of an oxidizing component, which is one of the third factors, is reduced. Hydrogen injection has been attempted as seen in Japanese Patent Publication No. 57-3086.

【0003】図2に従来の沸騰水型原子炉一次系の主要
系統を示す。同図において、1は原子炉炉心、2は上部
プレナム、3は気水分離器、4はミキシングプレナム、
5はダウンカマ、6は再循環ポンプ、7は下部プレナ
ム、8は炉浄化系、9は給水ヒータ、10は復水脱塩
器、11Aは高圧タービン、11Bは低圧タービン、1
2はこれらのタービンにより運転される発電機、13は
オフガス処理装置、14は希ガスホールドアップ、15
は復水器、16は還元剤注入装置、17は給水配管、1
8は主蒸気配管、19は再循環配管、20はジェットポ
ンプ、21は給水ポンプ、22は復水ポンプである。
FIG. 2 shows a main system of a conventional boiling water reactor primary system. In the figure, 1 is a reactor core, 2 is an upper plenum, 3 is a steam separator, 4 is a mixing plenum,
5 is a downcomer, 6 is a recirculation pump, 7 is a lower plenum, 8 is a furnace cleaning system, 9 is a water heater, 10 is a condensate demineralizer, 11A is a high pressure turbine, 11B is a low pressure turbine, 1
2 is a generator operated by these turbines, 13 is an off-gas treatment device, 14 is a rare gas hold-up, 15
Is a condenser, 16 is a reducing agent injection device, 17 is a water supply pipe, 1
Reference numeral 8 is a main steam pipe, 19 is a recirculation pipe, 20 is a jet pump, 21 is a water supply pump, and 22 is a condensate pump.

【0004】原子炉炉心1において核分裂反応により発
生した熱は、一次冷却水を蒸気に変えることで除去され
る。蒸気は上部プレナム2,気水分離器3において一次
冷却水と分離され、蒸気は高圧タービン11A,低圧タ
ービン11Bへと運ばれ、その圧力で発電機12を動か
し、発電する。蒸気は復水器15で水に戻され、復水脱
塩器10,給水ポンプ21,給水ヒータ9,給水配管1
7を経て一次冷却水に供給される。一方、蒸気と分離さ
れた一次冷却水はミキシングプレナム4,ダウンカマ
5,ジェットポンプ20,下部プレナム7を経て再び炉
心へと戻る。ダウンカマ5から、一部の一次冷却水は再
循環ポンプ6,再循環配管19を経てジェットポンプの
駆動に寄与する。再循環配管19を流れる一次冷却水の
一部は、炉浄化系8により、不純物を除かれたのち、給
水に合流する。
The heat generated by the nuclear fission reaction in the nuclear reactor core 1 is removed by converting the primary cooling water into steam. The steam is separated from the primary cooling water in the upper plenum 2 and the steam separator 3, and the steam is carried to the high-pressure turbine 11A and the low-pressure turbine 11B, and the pressure thereof drives the generator 12 to generate electricity. The steam is returned to water in the condenser 15, and the condensate demineralizer 10, the water supply pump 21, the water supply heater 9, the water supply pipe 1
It is supplied to the primary cooling water via 7. On the other hand, the primary cooling water separated from the steam returns to the core again via the mixing plenum 4, the downcomer 5, the jet pump 20, and the lower plenum 7. A part of the primary cooling water from the downcomer 5 contributes to the driving of the jet pump through the recirculation pump 6 and the recirculation pipe 19. Part of the primary cooling water flowing through the recirculation pipe 19 is removed of impurities by the furnace cleaning system 8 and then joined to the feed water.

【0005】沸騰水型原子炉一次冷却系の復水器以後の
給水系において水素注入する例は、給水ポンプ21の上
流に還元剤注入装置16を配置し、注入した水素を炉心
における水の放射線分解の結果生成する酸化性成分と結
合させ、再循環系6をはじめとして一次冷却系各部の酸
化性成分の濃度を低減させることをねらいとしていた。
In an example in which hydrogen is injected into the water supply system after the condenser of the boiling water reactor primary cooling system, a reducing agent injection device 16 is arranged upstream of the water supply pump 21, and the injected hydrogen is irradiated with water in the core. The purpose was to reduce the concentration of the oxidizing component in each part of the primary cooling system including the recirculation system 6 by combining with the oxidizing component generated as a result of decomposition.

【0006】しかし、水素注入のマイナス面として、タ
ービン系線量率の上昇がある。これは、ある水素注入量
を境に、タービン系線量率が5〜10倍に上昇するもの
で、炉心で酸素−16と中性子との核反応により発生し
た窒素−16が、注入した水素との反応により揮発性の
高いアンモニアに変化することに起因する。タービン建
屋は原子炉建屋より遮蔽が薄いため、タービン系線量率
の上昇はタービン建屋周辺での線量率の上昇をもたら
す。
However, the downside of hydrogen injection is an increase in turbine system dose rate. This is because the dose rate of the turbine system increases 5 to 10 times at a certain hydrogen injection amount, and nitrogen-16 generated by the nuclear reaction between oxygen-16 and neutrons in the core is the same as the injected hydrogen. This is due to the fact that the reaction changes to highly volatile ammonia. Since the turbine building has less shielding than the reactor building, an increase in the turbine system dose rate causes an increase in the dose rate around the turbine building.

【0007】発電所敷地の広い海外プラントでは、線量
率の上昇はさほど問題にならない場合が多いが、国内の
原子力発電所においては敷地が限られているため、境界
線量率の上昇により水素注入量が制限されることもあり
うると考えられる。従来技術による炉水中の腐食環境緩
和は充分な注入が行える場合は可能であるが、以上のよ
うにタービン系線量率の上昇を伴うため、充分な注入が
行えない可能性があった。
[0007] In overseas plants with a large power plant site, the increase in dose rate is not a problem in many cases, but since the site is limited in domestic nuclear power plants, the hydrogen injection amount due to the increase in boundary dose rate. It is conceivable that there may be restrictions. Mitigation of the corrosive environment in reactor water by the conventional technique is possible when sufficient injection can be performed, but there is a possibility that sufficient injection cannot be performed because the turbine system dose rate increases as described above.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、沸騰
水型原子炉及び原子力プラントにおいて、一次冷却系に
おける腐食環境の緩和された原子力プラントを提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a boiling water reactor and a nuclear power plant in which the corrosive environment in the primary cooling system is mitigated.

【0009】[0009]

【課題を解決するための手段】本発明は、一次冷却水の
循環経路中に溶存酸素濃度を低減する装置を持つことに
よって、酸化性成分の蓄積を抑制することにより、一次
冷却系における腐食環境の緩和された原子力プラントを
構成する。
The present invention has a corrosive environment in a primary cooling system by suppressing the accumulation of oxidizing components by having a device for reducing the dissolved oxygen concentration in the circulation path of the primary cooling water. Constitutes a relaxed nuclear power plant.

【0010】[0010]

【作用】放射線が媒質中を通過するとき、その飛跡上で
イオン化や励起が次々と行われる。放射線による一次的
なイオン化に伴って放出される2次電子は、まだ充分に
エネルギを持っているので、さらにイオン化を起こす。
2次電子のエネルギが大きければ、一次粒子の飛跡より
枝分かれした別の飛跡を作り、さらにイオン化を起こ
す。2次電子のエネルギが充分小さければ(100eV
以下)2次的なイオン化や励起は、一次的なイオン化の
位置の近く(10Å程度)で起こるため、イオン対及び
励起種の集落が作られる。この集落を放射線化学ではス
パー(spur)と呼んでいる。飛跡に沿って生成するスパ
ーの分布は、放射線の種類,エネルギによる。
When the radiation passes through the medium, ionization and excitation are successively performed on the tracks. The secondary electrons emitted along with the primary ionization by radiation still have sufficient energy, and thus cause further ionization.
If the energy of the secondary electrons is large, another track branched from the track of the primary particle is created, and further ionization occurs. If the energy of secondary electrons is small enough (100 eV
(Below) Secondary ionization and excitation occur near the position of primary ionization (about 10Å), so that a cluster of ion pairs and excited species is created. This community is called a spur in radiation chemistry. The distribution of spurs generated along the track depends on the type of radiation and energy.

【0011】放射線による水の分解反応は、化1のよう
に表せるが、最終的な生成物,濃度は、スパーの分布や
不純物などにより異なる。一般に、放射線の線エネルギ
損失(LET)が低いとき、生成物と、100eVのエ
ネルギ吸収による生成物の発生個数(G値)は以下のよ
うになる。
The decomposition reaction of water by radiation can be expressed as shown in Chemical formula 1, but the final product and concentration differ depending on the distribution of spurs and impurities. In general, when the linear energy loss (LET) of radiation is low, the number of products (G value) generated by energy absorption of 100 eV is as follows.

【0012】[0012]

【化1】 Embedded image

【0013】G(eaq)=G(OH)=2.6±0.3,
G(H)=0.60,G(H2)=0.45,
G(H22)=0.75 LETの高い放射線ではスパーが密集しているため、ラ
ジカルの再結合が起こりやすくなり、ラジカルのG値は
減少するが、分子状生成物のG値は増加する。最終的な
生成物は、酸素,水素,過酸化水素が主要な生成物であ
る。沸騰水型原子炉炉心部においては沸騰が起こってい
るため、酸素,水素等の気体成分は、一部蒸気中へ移行
する。過酸化水素は循環に伴い、熱分解,表面分解の2
様式で分解し、酸素を生成する。その他の炉水中に残っ
た成分も、循環に伴い、分解または相互に反応し、それ
ぞれの部位において異なる定常濃度を維持している。
G (e aq ) = G (OH) = 2.6 ± 0.3
G (H) = 0.60, G (H 2 ) = 0.45,
G (H 2 O 2 ) = 0.75 In the radiation with high LET, the spurs are densely packed, so that recombination of radicals easily occurs and the G value of the radical decreases, but the G value of the molecular product is To increase. The final products are oxygen, hydrogen, and hydrogen peroxide as major products. Since boiling is occurring in the core of a boiling water reactor, some gas components such as oxygen and hydrogen are transferred into steam. Hydrogen peroxide undergoes thermal decomposition and surface decomposition as it circulates.
Decomposes in a manner that produces oxygen. Other components remaining in the reactor water also decompose or react with each other as they circulate, maintaining different steady-state concentrations at each site.

【0014】総合的に見ると、水の放射線分解で生成し
た成分のうち、還元性成分(水素等)は酸化性成分(酸
素,過酸化水素等)より蒸気中に移行しやすい。従っ
て、炉水は概して酸化性の環境にある。水素注入は放射
線照射下において酸化性成分を還元する水素を炉水に添
加することにより、炉水の酸化性雰囲気を緩和しようと
するものである。
As a comprehensive view, among the components produced by radiolysis of water, reducing components (hydrogen, etc.) are more likely to migrate into vapor than oxidizing components (oxygen, hydrogen peroxide, etc.). Therefore, reactor water is generally in an oxidizing environment. Hydrogen injection is intended to relax the oxidizing atmosphere of the reactor water by adding hydrogen that reduces an oxidizing component to the reactor water under irradiation of radiation.

【0015】本発明は、一次冷却水の循環経路中に溶存
酸素濃度を低減する装置を設けることにより、一次冷却
水の酸化性雰囲気を緩和するものである。一次冷却水中
には酸素以外にも酸化性成分が多種存在するが、強度の
放射線照射下ではそれらの濃度はすみやかに平衡状態へ
移行する。従って、主要酸化性成分の一つである酸素濃
度を低減することにより、一次冷却水中の全ての酸化性
成分の蓄積を抑制し、一次冷却水の酸化性雰囲気全体を
緩和できる。
According to the present invention, an oxidizing atmosphere of the primary cooling water is relaxed by providing a device for reducing the dissolved oxygen concentration in the circulation path of the primary cooling water. In primary cooling water, there are various oxidizing components in addition to oxygen, but their concentration rapidly shifts to an equilibrium state under intense radiation. Therefore, by reducing the oxygen concentration, which is one of the main oxidizing components, the accumulation of all the oxidizing components in the primary cooling water can be suppressed, and the entire oxidizing atmosphere of the primary cooling water can be relaxed.

【0016】水素等の還元剤注入によって、一次冷却水
中の酸化性成分濃度の低減を図っているときにも、本発
明は効果的に作用する。本発明では、酸化性成分を還元
剤が作用する炉心以前に低減するものであるので、還元
剤により残存している酸化性成分が低減され、より腐食
環境の緩和された一次冷却水を提供できる。特に水素注
入量が少ない時には、還元剤による酸化性成分の低減効
果が十分でないため、本発明を用いることにより酸化性
成分の低減を効果的に行うことができる。
The present invention works effectively even when the concentration of the oxidizing component in the primary cooling water is reduced by injecting a reducing agent such as hydrogen. In the present invention, since the oxidizing component is reduced before the core in which the reducing agent acts, the oxidizing component remaining by the reducing agent is reduced, and primary cooling water in which the corrosive environment is mitigated can be provided. . In particular, when the hydrogen injection amount is small, the reducing effect of the oxidizing component by the reducing agent is not sufficient. Therefore, the use of the present invention makes it possible to effectively reduce the oxidizing component.

【0017】以上より、沸騰水型原子炉一次冷却系に溶
存酸素濃度を低減する装置を設置することにより、一次
冷却系における腐食環境の緩和された原子力プラントを
構成できることが明らかとなった。
From the above, it has been clarified that a nuclear plant in which the corrosive environment in the primary cooling system is mitigated can be constructed by installing an apparatus for reducing the dissolved oxygen concentration in the boiling water reactor primary cooling system.

【0018】[0018]

【実施例】以下、本発明を実施例により説明する。図1
は本発明を応用した沸騰水型原子力プラントの一例であ
る。原子炉炉心1において核分裂反応により発生した熱
は、一次冷却水を蒸気に変えることで除去される。蒸気
は上部プレナム2,気水分離器3において一次冷却水と
分離され、蒸気は高圧タービン11A,低圧タービン1
1Bへと運ばれ、その圧力で発電機12を動かし、発電
する。蒸気は復水器15で水に戻され、復水脱塩器1
0,給水ポンプ21,給水ヒータ9,給水配管17を経
て一次冷却水に供給される。一方、蒸気と分離された一
次冷却水はミキシングプレナム4,ダウンカマ5,ジェ
ットポンプ20,下部プレナム7を経て再び炉心へと戻
る。ダウンカマ5から、一部の一次冷却水は再循環ポン
プ6,再循環配管19を経てジェットポンプの駆動に寄
与する。再循環配管19を流れる一次冷却水の一部は、
炉浄化系8により、不純物を除かれたのち、給水に合流
する。再循環配管19中に設置された溶存酸素濃度低減
装置23は、加熱沸騰により沸騰に伴う蒸気と共に、気
体成分を液中より除去するものである。酸素を含む、抽
気された気体は、オフガスとして処理する。溶存酸素濃
度低減装置23への熱供給はヒートポンプを用いて蒸気
復水時の廃熱などプラント内の廃熱を有効利用できる。
The present invention will be described below with reference to examples. FIG.
Is an example of a boiling water nuclear power plant to which the present invention is applied. The heat generated by the nuclear fission reaction in the reactor core 1 is removed by converting the primary cooling water into steam. The steam is separated from the primary cooling water in the upper plenum 2 and the steam separator 3, and the steam is high pressure turbine 11A and low pressure turbine 1
It is carried to 1B, and the pressure drives the generator 12 to generate electricity. The steam is returned to the water in the condenser 15, and the condensate demineralizer 1
0, the water supply pump 21, the water supply heater 9, and the water supply pipe 17 to supply the primary cooling water. On the other hand, the primary cooling water separated from the steam returns to the core again via the mixing plenum 4, the downcomer 5, the jet pump 20, and the lower plenum 7. A part of the primary cooling water from the downcomer 5 contributes to the driving of the jet pump through the recirculation pump 6 and the recirculation pipe 19. Part of the primary cooling water flowing through the recirculation pipe 19 is
After the impurities are removed by the furnace cleaning system 8, they join the water supply. The dissolved oxygen concentration reduction device 23 installed in the recirculation pipe 19 removes the gas component from the liquid together with the vapor accompanying the boiling due to the heating boiling. The extracted gas containing oxygen is treated as off-gas. For supplying heat to the dissolved oxygen concentration reducing device 23, waste heat in the plant such as waste heat at the time of steam condensate can be effectively used by using a heat pump.

【0019】推奨される気体成分の除去速度はプラント
や、その運転条件,水質条件により異なる。これは酸化
性成分の蓄積状況がプラントパラメータにより異なるた
めである。
The recommended gas component removal rate varies depending on the plant, its operating conditions, and water quality conditions. This is because the accumulation status of oxidizing components varies depending on plant parameters.

【0020】以下、800MWe級沸騰水型原子炉にお
ける本実施例の予測結果を説明する。再循環配管19中
に溶存酸素濃度低減装置23を設置し、再循環配管19
を流れる炉水全量の溶存酸素濃度を30%まで低減した
場合、シュラウド内面25での溶存酸素濃度は76.1p
pbから48.9ppbへと設置前の約65%に、過酸化水素
濃度は288ppbから230ppbへと設置前の約80%に
低減される。さらに、(給水への水素注入量)/(炉心
流量)が3.5ppbとなる程度の水素注入時には、溶存酸
素濃度は41.4ppbから13.7ppbへと設置前の約30
%に、過酸化水素濃度は213ppbから140ppbへと設
置前の約65%に低減される。
The prediction results of this embodiment in an 800 MWe class boiling water reactor will be described below. A dissolved oxygen concentration reduction device 23 is installed in the recirculation pipe 19 to
When the dissolved oxygen concentration in the total reactor water flowing through the shroud is reduced to 30%, the dissolved oxygen concentration at the shroud inner surface 25 is 76.1 p.
The concentration of hydrogen peroxide is reduced from pb to 48.9 ppb to about 65% before installation, and the hydrogen peroxide concentration is reduced from 288 ppb to 230 ppb to about 80% before installation. Furthermore, when hydrogen is injected to the extent that (amount of hydrogen injected into feed water) / (core flow rate) reaches 3.5 ppb, the dissolved oxygen concentration is reduced from 41.4 ppb to 13.7 ppb, approximately 30 before installation.
%, The hydrogen peroxide concentration is reduced from 213 ppb to 140 ppb to about 65% before installation.

【0021】図3は、図1に示した実施例に加え、過酸
化水素分解促進部24をミキシングプレナム4に設置し
た場合の実施例である。溶存酸素濃度低減装置23では
除去できない過酸化水素を表面反応により酸素に分解す
ることで、酸化性成分の除去がより効果的に行われる。
過酸化水素分解促進部24は、構造材と同質の材料を用
いた多層網状のフィルタ構造により、原子炉構造材に影
響を与えることなく構成できる。また、白金触媒など、
触媒によっても構成可能である。
FIG. 3 shows an embodiment in which the hydrogen peroxide decomposition promoting unit 24 is installed in the mixing plenum 4 in addition to the embodiment shown in FIG. By decomposing hydrogen peroxide, which cannot be removed by the dissolved oxygen concentration reducing device 23, into oxygen by a surface reaction, the oxidizing component can be removed more effectively.
The hydrogen peroxide decomposition accelerating unit 24 can be configured without affecting the nuclear reactor structural material by the multilayer mesh filter structure using the same material as the structural material. Also, platinum catalysts, etc.
It can also be constituted by a catalyst.

【0022】図1に示した実施例と同様、800MWe
級沸騰水型原子炉において、本実施例の予測結果を説明
する。ミキシングプレナム4に設置した過酸化水素分解
促進部24において、ミキシングプレナム4を流れる冷
却水中の過酸化水素の70%が分解され、該当量の酸素
が生成し、再循環配管19中に設置した脱ガス装置23
において、再循環配管19を流れる炉水全量の溶存酸素
濃度を30%まで低減した場合、シュラウド内面25で
の溶存酸素濃度は76ppbから3ppbへと設置前の約3%
に、過酸化水素濃度は288ppbから93ppbへと設置前
の約35%に激減する。さらに、(給水への水素注入
量)/(炉心流量)が3.5ppbとなる程度の水素注入時に
は、溶存酸素濃度は41ppbから0.6ppb へと設置前の
約2%に、過酸化水素濃度は213ppbから65ppbへと
設置前の約30%に低減される。過酸化水素分解促進部
24のみの設置でも酸化性成分の低減効果はあるが、そ
の場合におけるシュラウド内面25での溶存酸素濃度は
9.5ppbと両設備設置の場合の3ppb の約3倍、過酸化
水素濃度は127ppbと両設備設置の場合の94ppbの約
1.3倍 である。
Similar to the embodiment shown in FIG. 1, 800 MWe
The prediction result of this example in a class boiling water reactor will be described. In the hydrogen peroxide decomposition promoting unit 24 installed in the mixing plenum 4, 70% of the hydrogen peroxide in the cooling water flowing through the mixing plenum 4 was decomposed, a corresponding amount of oxygen was generated, and the degassing installed in the recirculation pipe 19 was performed. Gas equipment 23
When the dissolved oxygen concentration of the entire reactor water flowing through the recirculation pipe 19 is reduced to 30%, the dissolved oxygen concentration at the inner surface 25 of the shroud is changed from 76 ppb to 3 ppb, which is about 3% before installation.
In addition, the hydrogen peroxide concentration is drastically reduced from 288 ppb to 93 ppb, about 35% before installation. Furthermore, when hydrogen was injected to the extent that (amount of hydrogen injected into feed water) / (core flow rate) was 3.5 ppb, the dissolved oxygen concentration was reduced from 41 ppb to 0.6 ppb, approximately 2% before installation, and the hydrogen peroxide concentration was reduced. Is reduced from 213 ppb to 65 ppb, about 30% before installation. Even if only the hydrogen peroxide decomposition accelerating part 24 is installed, there is an effect of reducing oxidative components, but in that case the dissolved oxygen concentration on the inner surface 25 of the shroud is 9.5 ppb, which is about 3 times that of 3 ppb when both equipments are installed. The hydrogen oxide concentration is 127 ppb, which is about 1.3 times the 94 ppb when both facilities are installed.

【0023】図4は、図1に示した実施例において、溶
存酸素濃度低減装置23を加熱沸騰式から減圧沸騰式に
変更した場合の実施例である。一次冷却水を減圧するこ
とにより沸騰させているため、脱ガス装置23に熱を供
給する必要がなく、装置を簡素化できる。効果について
は、図1に示した実施例と同様である。
FIG. 4 shows an embodiment in which the dissolved oxygen concentration reducing device 23 in the embodiment shown in FIG. 1 is changed from the heating boiling type to the reduced pressure boiling type. Since the primary cooling water is boiled by reducing the pressure, it is not necessary to supply heat to the degassing device 23, and the device can be simplified. The effect is similar to that of the embodiment shown in FIG.

【0024】図5は、図1に示した実施例において、溶
存酸素濃度低減装置23を炉浄化系8の下流に設置し、
酸素を選択的に透過する物質でできた膜を用いて構成し
た場合の実施例である。酸素透過膜など、高温での使用
が難しい物質を使用する場合は、炉浄化系で、一次冷却
水温度が低い部分に設置する。しかし、炉浄化系8は流
量が少なく、効果としては図1に示した実施例に劣る。
FIG. 5 shows that in the embodiment shown in FIG. 1, a dissolved oxygen concentration reducing device 23 is installed downstream of the furnace cleaning system 8,
This is an example in the case of using a film made of a substance that selectively permeates oxygen. When using a substance that is difficult to use at high temperatures, such as an oxygen permeable membrane, install it in the part where the primary cooling water temperature is low in the furnace purification system. However, the furnace cleaning system 8 has a small flow rate, and is inferior in effect to the embodiment shown in FIG.

【0025】図6は、溶存酸素濃度低減装置23を、酸
素と化合して固体の酸化物を生成する物質を用いて構成
した場合の実施例である。溶存酸素濃度低減装置23
は、再循環配管19に設置する場合を示す。溶存酸素濃
度低減装置23の内部には、鉄の微粉末が格納されてお
り、一次冷却水と接している。再循環配管を流れる一次
冷却水中の酸素は鉄と反応し、溶存酸素濃度低減装置2
3の内部に留まる。鉄の微粉末は使用に伴い酸化鉄に変
化するので、適切な時期に交換あるいは再生する必要が
ある。効果は、酸素除去効率がやや低いと予想されるた
め、図1に示した実施例に劣る。
FIG. 6 shows an embodiment in which the dissolved oxygen concentration reducing device 23 is constructed by using a substance which combines with oxygen to produce a solid oxide. Dissolved oxygen concentration reduction device 23
Indicates a case where the recirculation pipe 19 is installed. Fine iron powder is stored inside the dissolved oxygen concentration reduction device 23 and is in contact with the primary cooling water. Oxygen in the primary cooling water flowing through the recirculation pipe reacts with iron, and the dissolved oxygen concentration reduction device 2
Stay inside 3. Fine iron powder changes into iron oxide with use, so it must be replaced or regenerated at an appropriate time. The effect is inferior to the embodiment shown in FIG. 1 because the oxygen removal efficiency is expected to be slightly low.

【0026】[0026]

【発明の効果】本発明によれば一次冷却水の循環経路中
に溶存酸素濃度を低減する装置を設置する事により、一
次冷却系において腐食環境の緩和された原子力プラント
を構成することができる。
According to the present invention, by installing a device for reducing the dissolved oxygen concentration in the circulation path of the primary cooling water, it is possible to construct a nuclear power plant in which the corrosive environment is mitigated in the primary cooling system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】沸騰水型原子炉一次冷却系のブロック図。FIG. 2 is a block diagram of a boiling water reactor primary cooling system.

【図3】図1に示した実施例に加えて過酸化水素分解促
進部24をミキシングプレナム4に設置した場合の実施
例のブロック図。
FIG. 3 is a block diagram of an embodiment in which a hydrogen peroxide decomposition promoting unit 24 is installed in the mixing plenum 4 in addition to the embodiment shown in FIG.

【図4】図1に示した実施例において溶存酸素濃度低減
装置23を図1の加熱沸騰式から減圧沸騰式に変更した
場合の実施例のブロック図。
FIG. 4 is a block diagram of an embodiment when the dissolved oxygen concentration reducing device 23 in the embodiment shown in FIG. 1 is changed from the heating boiling type of FIG. 1 to a reduced pressure boiling type.

【図5】溶存酸素濃度低減装置23を酸素選択透過膜で
構成し、炉浄化系8の低温部に設置した場合の実施例の
ブロック図。
FIG. 5 is a block diagram of an embodiment in which the dissolved oxygen concentration reducing device 23 is configured by an oxygen selective permeable membrane and is installed in a low temperature part of the furnace cleaning system 8.

【図6】溶存酸素濃度低減装置23を酸素と化合して固
体の酸化物を生成する物質を用いて構成し再循環配管1
9に設置した場合の実施例のブロック図。
FIG. 6 is a recirculation pipe 1 in which the dissolved oxygen concentration reduction device 23 is configured by using a substance that combines with oxygen to generate a solid oxide.
9 is a block diagram of an embodiment when installed in FIG.

【符号の説明】[Explanation of symbols]

1…原子炉炉心、2…上部プレナム、3…気水分離器、
4…ミキシングプレナム、5…ダウンカマ、6…再循環
ポンプ、7…下部プレナム、8…炉浄化系、10…復水
脱塩器、11A…高圧タービン、11B…低圧タービ
ン、15…復水器、16…還元剤注入装置、18…主蒸
気配管、21…給水ポンプ、23…溶存酸素濃度低減装
置、25…シュラウド内面。
1 ... Reactor core, 2 ... Upper plenum, 3 ... Steam separator,
4 ... mixing plenum, 5 ... downcomer, 6 ... recirculation pump, 7 ... lower plenum, 8 ... furnace cleaning system, 10 ... condensate demineralizer, 11A ... high pressure turbine, 11B ... low pressure turbine, 15 ... condenser, 16 ... Reducing agent injection device, 18 ... Main steam piping, 21 ... Water supply pump, 23 ... Dissolved oxygen concentration reducing device, 25 ... Shroud inner surface.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子炉において、一次冷却水の溶
存酸素濃度を低減する装置を持つことを特徴とする沸騰
水型原子力プラント。
1. A boiling water nuclear power plant comprising a device for reducing the dissolved oxygen concentration of primary cooling water in a boiling water nuclear reactor.
【請求項2】前記一次冷却水の流路に過酸化水素分解促
進部を持ち、その下流に溶存酸素濃度を低減する装置を
持つ請求項1に記載の沸騰水型原子力プラント。
2. The boiling water nuclear power plant according to claim 1, further comprising a hydrogen peroxide decomposition accelerating portion in the flow path of the primary cooling water, and a device for reducing a dissolved oxygen concentration downstream thereof.
【請求項3】前記一次冷却水に水素注入を行う請求項1
または請求項2に記載の腐食環境緩和方法。
3. The hydrogen injection into the primary cooling water.
Alternatively, the method for mitigating a corrosive environment according to claim 2.
【請求項4】請求項1または請求項2に記載の溶存酸素
濃度を低減する装置が、一次冷却水をその装置内で沸騰
させる沸騰水型原子力プラント。
4. A boiling water nuclear power plant in which the device for reducing the dissolved oxygen concentration according to claim 1 or 2 boils primary cooling water in the device.
【請求項5】前記一次冷却水の沸騰方法として、加熱あ
るいは減圧またはその組合せである請求項4に記載の沸
騰水型原子力プラント。
5. The boiling water nuclear power plant according to claim 4, wherein the boiling method of the primary cooling water is heating, decompression, or a combination thereof.
【請求項6】請求項1または請求項2に記載の前記溶存
酸素濃度を低減する装置に、酸素を選択的に透過する物
質を用いる沸騰水型原子力プラント。
6. A boiling water nuclear power plant using a substance that selectively permeates oxygen in the apparatus for reducing the dissolved oxygen concentration according to claim 1 or 2.
【請求項7】請求項1または請求項2に記載の溶存酸素
濃度を低減する装置に、酸素と化合して固体の酸化物を
生成する物質を用いる沸騰水型原子力プラント。
7. A boiling water nuclear power plant that uses a substance that combines with oxygen to form a solid oxide in the apparatus for reducing the dissolved oxygen concentration according to claim 1 or 2.
JP7103403A 1995-04-27 1995-04-27 Boiling water nuclear power plant Pending JPH08297196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103403A JPH08297196A (en) 1995-04-27 1995-04-27 Boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7103403A JPH08297196A (en) 1995-04-27 1995-04-27 Boiling water nuclear power plant

Publications (1)

Publication Number Publication Date
JPH08297196A true JPH08297196A (en) 1996-11-12

Family

ID=14353093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103403A Pending JPH08297196A (en) 1995-04-27 1995-04-27 Boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JPH08297196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216708A (en) * 2008-03-12 2009-09-24 Areva Np Gmbh Method and device for separating and removing neutron absorber from coolant in cooling circuit
JP2017015731A (en) * 2010-09-08 2017-01-19 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Removal of dissolved gas in makeup water of nuclear reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216708A (en) * 2008-03-12 2009-09-24 Areva Np Gmbh Method and device for separating and removing neutron absorber from coolant in cooling circuit
EP2109114A3 (en) * 2008-03-12 2010-04-21 Areva NP GmbH Method and system for separating a neutron absorber from a coolant used in a coolant system
JP2017015731A (en) * 2010-09-08 2017-01-19 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Removal of dissolved gas in makeup water of nuclear reactor

Similar Documents

Publication Publication Date Title
US7889828B2 (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
JP4020512B2 (en) Chemical decontamination method and apparatus
EP2704153A2 (en) Gas treatment equipment of nuclear power plant
JP2007192672A (en) Method and device for forming ferrite coating film on surface of carbon steel member in nuclear power plant
JP2007147453A (en) Method and device for processing ammonia-containing regenerated waste solution from condensate demineralizer
JP5500958B2 (en) Method for forming ferrite film on nuclear member, method for suppressing progress of stress corrosion cracking, and ferrite film forming apparatus
JPH08297196A (en) Boiling water nuclear power plant
JP2010064074A (en) Method and apparatus for treating ammonia-containing regeneration waste liquid from condensate demineralizer
KR20090033321A (en) Treatment process and equipment of steam generator chemical cleaning wastewater contained chelate chemicals and radioactive materials
JP2005134407A (en) Chemical decontamination method and its system
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JP2002071883A (en) Surface treatment method of structural material for nuclear power plant, and operating method of nuclear power plant
JP2000329895A (en) Operation method of nuclear reactor plant and waste liquid processing method of nuclear reactor plant
JP2005257626A (en) Nuclear power plant
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP3834715B2 (en) Organic acid decomposition catalyst and chemical decontamination method
JP3045911B2 (en) Water treatment method for nuclear power plant
JP2009109318A (en) Method for decreasing radiation dose in turbine system and nuclear power plant
TW202137241A (en) Chemical decontamination method and chemical decontamination apparatus
JP2815424B2 (en) Radioactive gas waste treatment equipment
JP2001147291A (en) Boiling water reactor power plant
JPH10115696A (en) Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
JP2006162277A (en) Processing method for chemical decontamination liquid and its system
JP2023137261A (en) Hydrogen processing device of nuclear reactor storage container, and hydrogen processing method thereof
JPH04259899A (en) Boiling water nuclear reactor