JPH08297103A - Method and device for tomograph - Google Patents

Method and device for tomograph

Info

Publication number
JPH08297103A
JPH08297103A JP8139927A JP13992796A JPH08297103A JP H08297103 A JPH08297103 A JP H08297103A JP 8139927 A JP8139927 A JP 8139927A JP 13992796 A JP13992796 A JP 13992796A JP H08297103 A JPH08297103 A JP H08297103A
Authority
JP
Japan
Prior art keywords
sample
ray
image
cross
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8139927A
Other languages
Japanese (ja)
Other versions
JP2713287B2 (en
Inventor
Mitsuzo Nakahata
光蔵 仲畑
Toshimitsu Hamada
利満 浜田
Yasuo Nakagawa
泰夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8139927A priority Critical patent/JP2713287B2/en
Publication of JPH08297103A publication Critical patent/JPH08297103A/en
Application granted granted Critical
Publication of JP2713287B2 publication Critical patent/JP2713287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE: To detect a cross sectional image with high resolution by providing an X-ray generating means, a sample mounting means, a transmission X-ray image forming means, a two-dimensional image display means, and a cross section observation position setting means. CONSTITUTION: X-ray radiation is applied to an inspected sample 2 from a fine focal point X-ray source 1, and a transmission X-ray image is converted into a visible image by an image intensifier 4. The visible image is guided to an image pickup tube 5 or a linear image sensor 6 via an optical path switching mirror 7 and a lens. The X-ray image detected by the image pickup tube 5 is observed by a monitor television 9, the X-ray image detected by the linear image sensor 6 is quantized in sequence, then it is stored in an image memory 12 and can be read out from a computer 13. The initial positioning adjustment of a sample holder 10 in the X, Y directions and the switching of the optical path switching mirror 7 are conducted via the computer 13 and a drive control circuit 16 based on the instruction from an operation panel 15.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、X線による断層撮
影技術に関し、特に工業用部品の微細な欠陥検査、より
具体的には電子回路基板のはんだ付け部分の欠陥検査に
最適なX線断層撮影装置に関するものである。 【0002】 【従来の技術】従来の工業用CT装置には、「産業用X
線CTスキャナとその適用」計装、P48〜51,Vol
27,No.2、中村著に記載されているものがある。
これは、検査対象に比べて比較的大きなX線源と、キセ
ノン(Xe)ガスを封入してなるX線検出器であって単
位チャンネル当たりの幅が1〜2mmで、多数個(30
0〜500チャンネル)の集合体からなるものを用いて
いる。そしてX線源から扇状に放射されるX線を検査対
象に照射しながら、検査対象を自転させて、検査対象の
全周方向から透過するX線強度を検出し、この検出デー
タを用いて検査対象の断面像を再構成している。 【0003】 【発明が解決しようとする課題】上記した従来技術で
は、検査対象に対する分解能は300平方μm程度であ
り、より微細な部分の検査が不可能であった。 【0004】本発明の目的は、微細部分の検査、より詳
しくは断面像を高分解能で検出可能なX線断層撮影装置
を提供することにある。 【0005】 【課題を解決するための手段】上記目的を達成するため
に、本発明では、X線断層撮影装置を、X線を発生する
X線発生手段と、X線を照射する試料をこの試料へのX
線の照射方向と直角な方向の軸の回りに回転可能かつこ
の軸の方向及び軸方向と直角方向に移動可能に載置する
試料載置手段と、この試料載置手段に載置された試料に
照射されてこの試料を透過したX線による透過X線像を
形成する透過X線像形成手段と、形成された透過X線像
に基づいてX線を照射する方向に対して直角な方向の試
料の2次元の画像を画面上に表示する2次元画像表示手
段と、この2次元画像表示手段に表示された2次元の画
像上で試料の断面を観察すべき位置を設定する断面観察
位置設定手段と、X線を試料に照射しながら試料載置手
段で試料を回転の軸の回りに回転させたときに透過X線
像形成手段により形成される所定の回転角度ごとの試料
の透過X線像に基づいて断面観察位置設定手段で設定さ
れた観察すべき位置の断面形状を再構成するX線画像処
理手段と、このX線画像処理手段により再構成された試
料の断面形状を表示するX線断面画像表示手段とを備え
て構成した。また、X線断層撮影方法を、X線を試料に
照射し、この照射により試料を透過したX線を検出して
透過X線像を作成し、この作成した透過X線像による試
料のX線を照射する方向に直角な方向の2次元像を画面
上に表示し、この表示した2次元像の画面上で試料の断
面を観察すべき位置を設定し、試料を回転させながらX
線を照射して所定の回転角度ごとの試料の透過X線像を
得、この所定の回転角度ごとの試料の透過X線像に基づ
いて断面を観察すべき位置の断面形状を再構成し、この
再構成した断面形状を画面上に表示する方法により行う
ようにした。 【0006】ここで、以下に述べる実施例では、イメー
ジインテンシファイアを用いてX線像を可視化している
が、特に可視化せずとも、即ち、X線像の波長スペクト
ル分布が紫外又は赤外にずれても、当該変換像が増幅さ
れる機能を有する手段であれば、本発明の構成要素たり
得る。 【0007】微小なスポットサイズのX線源に近接した
位置に検査対象を保持し、イメージインテンシファイア
の位置を適宜、選ぶことにより検査部分を拡大投影した
X線透過像を得ることができる。 【0008】イメージインテンシファイアと電荷蓄積型
のリニアイメージセンサの組合せを有する検出光学系に
より、高感度かつ広いダイナミックレンジが得られるの
みならず、高解像度の検出が可能となる。 【0009】また撮像管により2次元画像のモニターが
行えるので、微小な検査対象の検査部分に対して精密な
X線の照射を可能とする初期位置合わせが実現できる。 【0010】 【発明の実施の形態】本発明の一実施例を以下に図面を
用いて説明する。 【0011】図2(a)は、検査対象であるLSIチッ
プキャリアの一例を示すもので、具体的にはセラミック
基板21上にLSIチップ22をCCB(Collapsed
Connecting Bamp)はんだ接続23により搭載したも
のである。図2(b)は、この断面構造の一例を示すも
のでセラミック基板21は配線層24a〜24dが積層
された多層構造であり、各層間には金属が充填されたス
ルーホール26があり、また各配線層には金属による回
路配線が設けられている。これらのチップキャリアは、
下面のはんだ30により接続することで、同図(c)に
示すように、マザー基板31上に多数実装できるよう構
成されている。 【0012】本実施例では、図2(b)で示すような、
LSIチップキャリアのCCBはんだ接続部分に発生す
る気泡27や形状不良28等の欠陥を検査することを目
的としている。尚、本発明はこれらに限らず、50μm
φ程度の分解能で電子部品等のX線断層撮影検査に適用
できる。 【0013】図1は、本発明の全体構成を示すもので、
試料ホルダー10で保持した検査試料2に対して、微小
焦点X線源1を設けてX線照射を行ないこの透過X線像
をイメージインテンシファイア4により可視像に変換す
る。この後、光路切替ミラー7及びレンズ17〜19を
介して前記の可視像を撮像管5又はリニアイメージセン
サ6へ導く構成としている。更に、撮像管5で検出した
X線像はモニタテレビ9で観察されると共に、リニアイ
メージセンサ6で検出したX線像はA/D変換器11で
逐次、量子化された後、画像メモリ12に格納され、計
算機13から読み出しできるように構成されている。 【0014】また、操作盤15からの操作指示に従い、
計算機13、駆動制御回路16を介して、試料ホルダー
10のX,Y方向の初期の位置決め調整及び光路切替ミ
ラー7の切替えができるように構成されている。また画
像検出周期回路8により、試料ホルダー10のθ方向に
対する所定回転角度Δθごとに、リニアイメージセンサ
6でX線像の検出ができるように構成されている。 【0015】以下、本実施例に従って、はんだ接続部分
の断面形状検出動作を説明する。 【0016】先ず、検査試料2(図1)のはんだ検査箇
所の初期位置合わせを行う。このため光路切替ミラー7
を撮像管5によるモニター検出側に切替え、検査試料2
のX線透過像をモニタテレビ9に表示する(図3)。こ
こでリニアイメージセンサ6の検出位置に対応したモニ
タテレビ9上の画面位置に、予めカーソル24を設定し
ておき、カーソル24に対して検査個所が一致するよう
に、検査試料2のX,Y位置を移動し調整する。これに
より精度のよい初期位置合わせが容易に行える。 【0017】次に光路切替ミラー7をリニアイメージセ
ンサ6の検出側に切り替え、駆動機構3(図1)により
検査試料2をθ方向に回転させながら正面図の図4
(a)及び側面図の図4(b)で示すように、はんだ接
続部分の検査個所を透過するX線強度を検出する。 【0018】リニアイメージセンサ6(図1)では、θ
方向の所定回転角度Δθ毎にX線透過像の検出を行な
い、その検出信号をA/D変換器11で量子化しなが
ら、逐次、画像メモリ12に格納し、θ=0〜360°
の全周方向の検出データを得る。 【0019】図5は、このようにして得られる検査試料
2の各角度方向θに対応して得られる検出データ関数I
(L,θ)の例を示す。ここで、Lはリニアイメージセ
ンサ上の検出位置を示すものとする。 【0020】以下、これらの多数方向の検出データI
(L,θ)を用い、計算機13の演算処理によりはんだ
接続部分の断面形状の再構成を行ない、ディスプレイ1
4上に表示を行なう。 【0021】リニアイメージセンサで検出される透過X
線強度のデータ関数I(L,θ)は、検査対象のX線吸
収係数の分布関数をμ(x,y)とすれば、数1で与え
られる。 【0022】 【数1】 【0023】ここで∫μ(x,y)dlはX線ビームの
通過位置におけるX線吸収係数の関数μ(x,y)の線
積分を表わす。またI0(L)は、照射X線の強度分布
関数を示すものとする。 【0024】数1を書き直せば数2が得られる。 【0025】 【数2】 【0026】数2で示すP(L,θ)は検査対象なしで
予めリニアイメージセンサでX線を検出し求めた照射X
線の強度分布関数I0(L)より求められる投影データ
である。 【0027】断面再構成の問題は、各検出方向の投影デ
ータ関数P(L,θ)を算出した後、X線吸収係数の関
数μ(x,y)の分布を求めることである。 【0028】このμ(x,y)の算出方法には各種方法
が知られているが、コンボリューション法を適用する一
例について概要を説明する。 【0029】この再構成原理は、図6の平行X線ビーム
を用いた例で示すように平行ビームによる投影データ関
数をP0(L0,θ0)とすれば、これに対して所定の補
正関数を作用してコンボリューション関数を得ながら、
各方向の投影データに対するコンボリューション関数を
合成して断面像を得るものである。この演算式を下記に
示す。 【0030】 【数3】 【0031】ここで、*はコンボリューションを表わ
す。またg(L0)は補正関数を表わし、SheppとLogan
が開発した下記のものを用いれば、精度の良い画像が得
られることが実証されている。 【0032】 【数4】 【0033】ただしL0=na(n=0,±1,±2,
…)とし、aは投影データの得られるサンプリング間隔
を示す。 【0034】本発明の場合、投影データ関数P(L,
θ)はファンビーム(扇状ビーム)によって検出される
ため、P(L,θ)から平行ビーム座標系における投影
データ関数P0(L0,θ0)を求める必要がある。これ
は、図7の幾何学的関数で示すように、下記の関数式よ
り変換できる。 【0035】 【数5】 【0036】 【数6】 【0037】ここで、SはX線源から検出器までの距
離、またDは、X線源から検査試料の回転中心までの距
離を表わすものとする。 【0038】以上で示すように、数5、6を用い、平行
ビームとして考えた場合の投影データ関数P0(L0,θ
0)を算出して断面形状の算出を行なうことができる。 【0039】 【発明の効果】本発明によれば、微小な検査対象、具体
的には50μmφの分解能を必要とする対象物の所定位
置における断面検出撮影が可能となる。更には電子回路
のはんだ付け部分における微細な内部欠陥の検査が行え
る効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray tomography technique, and more particularly to inspection of fine defects in industrial parts, more specifically, soldering of electronic circuit boards. The present invention relates to an X-ray tomography apparatus most suitable for defect inspection of a part. 2. Description of the Related Art A conventional industrial CT apparatus includes an "industrial X-ray system".
Line CT scanner and its application ”Instrumentation, P48-51, Vol
27, No. 2 and Nakamura.
This is an X-ray detector in which a relatively large X-ray source and a xenon (Xe) gas are enclosed in comparison with an object to be inspected, and the width per unit channel is 1 to 2 mm.
0 to 500 channels) is used. Then, while irradiating the inspection target with X-rays radiated in a fan shape from the X-ray source, the inspection target is rotated and the intensity of X-rays transmitted from the entire circumferential direction of the inspection target is detected and the inspection data is used A cross-sectional image of the subject is reconstructed. In the above-mentioned conventional technique, the resolution of the inspection object is about 300 square μm, and it is impossible to inspect a finer portion. It is an object of the present invention to provide an X-ray tomography apparatus capable of inspecting a fine portion, more specifically, capable of detecting a sectional image with high resolution. In order to achieve the above object, in the present invention, an X-ray tomography apparatus comprises an X-ray generating means for generating X-rays and a sample for irradiating with X-rays. X to sample
Sample placing means for rotatably around an axis in a direction perpendicular to the line irradiation direction and movably in the direction of the axis and in a direction perpendicular to the axial direction, and a sample placed on the sample placing means A transmission X-ray image forming means for forming a transmission X-ray image by X-rays that have been irradiated onto the sample and transmitted through this sample; and a direction perpendicular to the direction of irradiating the X-rays based on the formed transmission X-ray image. Two-dimensional image display means for displaying a two-dimensional image of the sample on the screen, and cross-section observation position setting for setting the position at which the cross-section of the sample should be observed on the two-dimensional image displayed on the two-dimensional image display means. Means, and the transmitted X-rays of the sample for each predetermined rotation angle formed by the transmitted X-ray image forming means when the sample is rotated around the axis of rotation by the sample mounting means while irradiating the sample with X-rays. The position to be observed set by the section observation position setting means based on the image And X-ray image processing means for reconstructing a cross-sectional shape, and configuration and an X-ray cross section image display means for displaying the cross-sectional shape of the sample reconstructed by the X-ray image processing means. Further, according to the X-ray tomography method, a sample is irradiated with X-rays, the X-rays transmitted through the sample are detected by this irradiation, a transmission X-ray image is created, and the X-ray of the sample based on the created transmission X-ray image. A two-dimensional image in a direction perpendicular to the irradiation direction is displayed on the screen, the position at which the cross section of the sample is to be observed is set on the screen of the displayed two-dimensional image, and the sample is rotated while X
A transmission X-ray image of the sample for each predetermined rotation angle is obtained by irradiating a ray, and the cross-sectional shape of the position where the cross-section should be observed is reconstructed based on the transmission X-ray image of the sample for each predetermined rotation angle, The reconstructed cross-sectional shape is displayed on the screen. Here, in the embodiments described below, an X-ray image is visualized by using an image intensifier. However, even if the X-ray image is not visualized, that is, the wavelength spectrum distribution of the X-ray image is ultraviolet or infrared. Even if it shifts to, any means that has a function of amplifying the converted image may be a constituent element of the present invention. An X-ray transmission image in which the inspection portion is enlarged and projected can be obtained by holding the inspection object in a position close to the X-ray source having a minute spot size and appropriately selecting the position of the image intensifier. A detection optical system having a combination of an image intensifier and a charge-accumulation type linear image sensor enables not only high sensitivity and a wide dynamic range to be obtained, but also high-resolution detection. Further, since the two-dimensional image can be monitored by the image pickup tube, it is possible to realize the initial alignment capable of irradiating the minute inspection portion of the inspection object with precise X-rays. An embodiment of the present invention will be described below with reference to the drawings. FIG. 2A shows an example of an LSI chip carrier to be inspected. Specifically, an LSI chip 22 is mounted on a ceramic substrate 21 by CCB (Collapsed).
Connecting Bamp) Solder connection 23 is mounted. FIG. 2B shows an example of this cross-sectional structure. The ceramic substrate 21 has a multilayer structure in which wiring layers 24a to 24d are laminated, and there is a through hole 26 filled with metal between the layers, and Circuit wiring made of metal is provided in each wiring layer. These chip carriers are
By connecting with the solder 30 on the lower surface, as shown in FIG. 7C, a large number can be mounted on the mother board 31. In this embodiment, as shown in FIG.
The purpose is to inspect defects such as bubbles 27 and defective shapes 28 generated in the CCB solder connection portion of the LSI chip carrier. The present invention is not limited to these, but is 50 μm.
It can be applied to X-ray tomography inspection of electronic parts with a resolution of about φ. FIG. 1 shows the overall structure of the present invention.
The inspection sample 2 held by the sample holder 10 is provided with a microfocus X-ray source 1 to perform X-ray irradiation, and the transmitted X-ray image is converted into a visible image by the image intensifier 4. After that, the visible image is guided to the image pickup tube 5 or the linear image sensor 6 via the optical path switching mirror 7 and the lenses 17 to 19. Further, the X-ray image detected by the image pickup tube 5 is observed on the monitor television 9, and the X-ray image detected by the linear image sensor 6 is sequentially quantized by the A / D converter 11 and then the image memory 12 And is configured to be read from the computer 13. In addition, according to the operation instruction from the operation panel 15,
Via the computer 13 and the drive control circuit 16, the initial positioning adjustment of the sample holder 10 in the X and Y directions and the switching of the optical path switching mirror 7 can be performed. Further, the image detection cycle circuit 8 is configured so that the linear image sensor 6 can detect an X-ray image for each predetermined rotation angle Δθ with respect to the θ direction of the sample holder 10. The operation of detecting the cross-sectional shape of the solder connection portion will be described below according to this embodiment. First, initial alignment of solder inspection points of the inspection sample 2 (FIG. 1) is performed. Therefore, the optical path switching mirror 7
Is switched to the monitor detection side by the image pickup tube 5, and the inspection sample 2
The X-ray transmission image of is displayed on the monitor television 9 (FIG. 3). Here, the cursor 24 is set in advance at a screen position on the monitor television 9 corresponding to the detection position of the linear image sensor 6, and the X and Y of the inspection sample 2 are aligned so that the inspection point coincides with the cursor 24. Move and adjust the position. This facilitates accurate initial alignment. Next, the optical path switching mirror 7 is switched to the detection side of the linear image sensor 6, and the drive mechanism 3 (FIG. 1) rotates the inspection sample 2 in the θ direction while the front view of FIG.
As shown in (a) and FIG. 4 (b) of the side view, the X-ray intensity transmitted through the inspection portion of the solder connection portion is detected. In the linear image sensor 6 (FIG. 1), θ
The X-ray transmission image is detected for each predetermined rotation angle Δθ of the direction, and the detection signal is sequentially stored in the image memory 12 while being quantized by the A / D converter 11, and θ = 0 to 360 °
To obtain detection data in the omnidirectional direction. FIG. 5 shows the detection data function I obtained corresponding to each angle direction θ of the inspection sample 2 obtained in this way.
An example of (L, θ) is shown. Here, L indicates the detection position on the linear image sensor. The detected data I in these multiple directions will be described below.
Using (L, θ), the cross-sectional shape of the solder connection portion is reconstructed by the arithmetic processing of the computer 13, and the display 1 is displayed.
4 Display on top. Transmission X detected by linear image sensor
The data function I (L, θ) of the line intensity is given by Equation 1 when the distribution function of the X-ray absorption coefficient of the inspection object is μ (x, y). [Equation 1] Here, ∫μ (x, y) d l represents the line integral of the function μ (x, y) of the X-ray absorption coefficient at the passage position of the X-ray beam. I 0 (L) represents the intensity distribution function of the irradiation X-ray. By rewriting the equation 1, the equation 2 can be obtained. [Equation 2] P (L, θ) shown in Equation 2 is an irradiation X obtained by previously detecting X-rays with a linear image sensor without an inspection target.
This is projection data obtained from the line intensity distribution function I 0 (L). The problem of cross-section reconstruction is to obtain the distribution of the function μ (x, y) of the X-ray absorption coefficient after calculating the projection data function P (L, θ) in each detection direction. Although various methods are known for calculating μ (x, y), an outline of an example of applying the convolution method will be described. As shown in the example using the parallel X-ray beam in FIG. 6, the reconstruction principle is defined as follows: if the projection data function by the parallel beam is P 0 (L 0 , θ 0 ). While applying the correction function to obtain the convolution function,
The cross-sectional image is obtained by combining the convolution functions for the projection data in each direction. This calculation formula is shown below. [Equation 3] Here, * represents convolution. Further, g (L 0 ) represents a correction function, and Shepp and Logan
It has been proved that an accurate image can be obtained by using the following developed by. [Equation 4] However, L 0 = na (n = 0, ± 1, ± 2,
...), and a indicates a sampling interval at which projection data is obtained. In the case of the present invention, the projection data function P (L,
Since θ) is detected by the fan beam (fan beam), it is necessary to obtain the projection data function P 0 (L 0 , θ 0 ) in the parallel beam coordinate system from P (L, θ). This can be converted by the following functional expression as shown by the geometrical function in FIG. 7. [Equation 5] [Equation 6] Here, S represents the distance from the X-ray source to the detector, and D represents the distance from the X-ray source to the center of rotation of the test sample. As shown above, the projection data function P 0 (L 0 , θ) when using the equations 5 and 6 and considering it as a parallel beam.
0 ) can be calculated to calculate the cross-sectional shape. According to the present invention, it is possible to perform cross-section detection and imaging at a predetermined position of a minute inspection object, specifically, an object requiring a resolution of 50 μmφ. Furthermore, there is an effect that a fine internal defect can be inspected in a soldered portion of an electronic circuit.

【図面の簡単な説明】 【図1】本発明の一実施例を示す全体構成図である。 【図2】検査対象の説明図である。 【図3】X線検出位置のモニタTV表示例の説明図であ
る。 【図4】検査試料に対するX線像検出動作の説明図であ
る。 【図5】リニアイメージセンサにより検出される検出デ
ータの説明図である。 【図6】断面形状を再構成するアルゴリズムの原理説明
図である。 【図7】ファンビームX線による検出データと平行ビー
ムによる検出データとの座標関係の説明図である。 【符号の説明】 1…微小焦点X線源、 2…検査試料、 3…駆動機構、 4…イメージ・インテンシファイア、 5…撮像管、 6…リニア・イメージセンサ、 7…光路切替ミラー、 8…画像検出同期回路、 9…モニタテレビ、 10…試料ホルダー、 11…A/D変換器、 12…画像メモリ、 13…計算機、 14…断面像ディスプレイ、 15…操作盤、 16…駆動制御回路。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. FIG. 2 is an explanatory diagram of an inspection target. FIG. 3 is an explanatory diagram of a monitor TV display example of an X-ray detection position. FIG. 4 is an explanatory diagram of an X-ray image detection operation for an inspection sample. FIG. 5 is an explanatory diagram of detection data detected by a linear image sensor. FIG. 6 is a diagram illustrating the principle of an algorithm for reconstructing a cross-sectional shape. FIG. 7 is an explanatory diagram of a coordinate relationship between fan beam X-ray detection data and parallel beam detection data. [Explanation of Codes] 1 ... Micro focus X-ray source, 2 ... Inspection sample, 3 ... Driving mechanism, 4 ... Image intensifier, 5 ... Image pickup tube, 6 ... Linear image sensor, 7 ... Optical path switching mirror, 8 ... image detection synchronization circuit, 9 ... monitor TV, 10 ... sample holder, 11 ... A / D converter, 12 ... image memory, 13 ... calculator, 14 ... cross-sectional image display, 15 ... operation panel, 16 ... drive control circuit.

Claims (1)

【特許請求の範囲】 1.X線を発生するX線発生手段と、 前記X線を照射する試料を該試料への前記X線の照射方
向と直角な方向の軸の回りに回転可能かつ該軸の方向及
び該軸方向と直角方向に移動可能に載置する試料載置手
段と、 該試料載置手段に載置された前記試料に照射されて該試
料を透過した前記X線による透過X線像を形成する透過
X線像形成手段と、 前記形成された透過X線像に基づいて前記X線を照射す
る方向に対して直角な方向の前記試料の2次元の画像を
画面上に表示する2次元画像表示手段と、 該2次元画像表示手段に表示された前記2次元の画像上
で前記試料の断面を観察すべき位置を設定する断面観察
位置設定手段と、 前記X線を前記試料に照射しながら前記試料載置手段で
前記試料を前記回転の軸の回りに回転させたときに前記
透過X線像形成手段により形成される所定の回転角度ご
との前記試料の透過X線像に基づいて前記断面観察位置
設定手段で設定された前記観察すべき位置の断面形状を
再構成するX線画像処理手段と、 該X線画像処理手段により再構成された前記試料の断面
形状を表示するX線断面画像表示手段とを備えたことを
特徴とするX線断層撮影装置。 2.前記X線画像処理手段は、前記試料の透過X線像を
結像する光学系部と該結像させた前記試料の透過X線像
を1次元で検出する1次元画像検出部を備え、前記光学
系部により結蔵されて前記1次元画像検出部により検出
された前記試料の透過X線像に基づいて前記観察すべき
位置の断面形状を再構成することを特徴とする特許請求
の範囲第1項記載のX線断層撮影装置。 3.X線を試料に照射し、 該照射により前記試料を透過した前記X線を検出して透
過X線像を作成し、 該作成した透過X線像による前記試料の前記X線を照射
する方向に直角な方向の2次元像を画面上に表示し、 該表示した2次元像の画面に基づいて前記試料の断面を
観察すべき位置を設定し、 前記試料を回転させながら前記X線を照射して所定の回
転角度ごとの前記試料の透過X線像を得、 該所定の回転角度ごとの前記試料の透過X線像に基づい
て前記断面を観察すべき位置の断面形状を再構成し、 該再構成した断面形状を画面上に表示することを特徴と
するX線断層撮影方法。
[Claims] 1. X-ray generating means for generating X-rays, a sample for irradiating the X-rays, rotatable about an axis in a direction perpendicular to the irradiation direction of the X-rays on the sample, and the direction of the axis and the axial direction. Sample mounting means movably mounted in a right angle direction, and transmitted X-rays that form a transmitted X-ray image of the X-rays that have been transmitted through the sample by irradiating the sample mounted on the sample mounting means. Image forming means, and two-dimensional image display means for displaying on the screen a two-dimensional image of the sample in a direction perpendicular to the direction of irradiating the X-rays based on the formed transmitted X-ray image, Cross-section observation position setting means for setting a position at which a cross-section of the sample should be observed on the two-dimensional image displayed on the two-dimensional image display means, and the sample mounting while irradiating the sample with the X-ray. When the sample is rotated around the axis of rotation by means of X-ray image processing for reconstructing the cross-sectional shape of the position to be observed set by the cross-section observation position setting device based on the transmission X-ray image of the sample for each predetermined rotation angle formed by the line image forming device. An X-ray tomography apparatus comprising: a means and an X-ray sectional image display means for displaying a sectional shape of the sample reconstructed by the X-ray image processing means. 2. The X-ray image processing means includes an optical system unit that forms a transmission X-ray image of the sample and a one-dimensional image detection unit that detects the formed transmission X-ray image of the sample in one dimension. The cross-sectional shape of the position to be observed is reconstructed based on a transmission X-ray image of the sample stored by an optical system unit and detected by the one-dimensional image detection unit. The X-ray tomography apparatus according to item 1. 3. The sample is irradiated with X-rays, the X-rays transmitted through the sample are detected by the irradiation, and a transmitted X-ray image is created. In the direction in which the created transmitted X-ray image is irradiated with the X-rays of the sample. A two-dimensional image in a perpendicular direction is displayed on the screen, a position for observing the cross section of the sample is set based on the screen of the displayed two-dimensional image, and the X-ray is irradiated while rotating the sample. A transmission X-ray image of the sample for each predetermined rotation angle is obtained, and a cross-sectional shape at a position where the cross-section is to be observed is reconstructed based on the transmission X-ray image of the sample for each predetermined rotation angle, An X-ray tomography method, wherein the reconstructed cross-sectional shape is displayed on a screen.
JP8139927A 1996-06-03 1996-06-03 X-ray tomography method and apparatus Expired - Lifetime JP2713287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8139927A JP2713287B2 (en) 1996-06-03 1996-06-03 X-ray tomography method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8139927A JP2713287B2 (en) 1996-06-03 1996-06-03 X-ray tomography method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62042535A Division JPH0752162B2 (en) 1987-02-27 1987-02-27 X-ray tomography system

Publications (2)

Publication Number Publication Date
JPH08297103A true JPH08297103A (en) 1996-11-12
JP2713287B2 JP2713287B2 (en) 1998-02-16

Family

ID=15256912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8139927A Expired - Lifetime JP2713287B2 (en) 1996-06-03 1996-06-03 X-ray tomography method and apparatus

Country Status (1)

Country Link
JP (1) JP2713287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289120A (en) * 2016-08-11 2017-01-04 中国航空工业集团公司沈阳发动机设计研究所 A kind of aero-engine sigmatron is tested with adjustable measuring basis device
JP2019090802A (en) * 2017-11-10 2019-06-13 東芝Itコントロールシステム株式会社 Non-destructive analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435784B (en) * 2008-10-14 2012-01-18 重庆大学 Turbine blade CT detection device and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568359A (en) * 1978-11-20 1980-05-23 Tokyo Shibaura Electric Co Computer tomogram device
JPS59177026A (en) * 1983-03-29 1984-10-06 浜松ホトニクス株式会社 X-ray tomographic image enlarging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568359A (en) * 1978-11-20 1980-05-23 Tokyo Shibaura Electric Co Computer tomogram device
JPS59177026A (en) * 1983-03-29 1984-10-06 浜松ホトニクス株式会社 X-ray tomographic image enlarging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289120A (en) * 2016-08-11 2017-01-04 中国航空工业集团公司沈阳发动机设计研究所 A kind of aero-engine sigmatron is tested with adjustable measuring basis device
JP2019090802A (en) * 2017-11-10 2019-06-13 東芝Itコントロールシステム株式会社 Non-destructive analyzer

Also Published As

Publication number Publication date
JP2713287B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US7099432B2 (en) X-ray inspection apparatus and X-ray inspection method
JPH06100451B2 (en) Automatic laminograph system for electronics inspection.
US4872187A (en) X-ray tomographic imaging system and method
JP4959223B2 (en) Tomography equipment
JP2007127668A (en) Off-center tomosynthesis
WO2021201211A1 (en) Inspection device
JP4580266B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JPH0260329B2 (en)
JPH0746080B2 (en) Internal defect inspection method
US20080247505A1 (en) Xray device for planar tomosynthesis
JP2713287B2 (en) X-ray tomography method and apparatus
JP2000275191A (en) X-ray inspecting method and apparatus
JP2007170926A (en) X-ray inspection device, abnormality display device for tomographic image, x-ray inspection method, abnormality display method for tomographic image, program and recording medium
JP2009162596A (en) Method of supporting image confirmation work and substrate inspection apparatus utilizing x ray using the same
JP4155866B2 (en) X-ray tomography system
JP5125297B2 (en) X-ray inspection apparatus and X-ray inspection method
JP2006266754A (en) Method and system for x-ray tomographic imaging
JPH0752162B2 (en) X-ray tomography system
JPH0692944B2 (en) X-ray tomography system
CN115427796A (en) Inspection apparatus
JP2007101247A (en) X-ray tomographic imaging apparatus and x-ray tomographic imaging method
JP2007322384A (en) X-ray tomographic imaging unit and method
JP4340373B2 (en) Bonding inspection apparatus, method, and recording medium recording program for executing bonding inspection method
WO2024117099A1 (en) Inspection device
JP2004132931A (en) X-ray ct device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term