JPH082970B2 - Highly melt resistant polyarylate resin and method for producing the same - Google Patents

Highly melt resistant polyarylate resin and method for producing the same

Info

Publication number
JPH082970B2
JPH082970B2 JP62281541A JP28154187A JPH082970B2 JP H082970 B2 JPH082970 B2 JP H082970B2 JP 62281541 A JP62281541 A JP 62281541A JP 28154187 A JP28154187 A JP 28154187A JP H082970 B2 JPH082970 B2 JP H082970B2
Authority
JP
Japan
Prior art keywords
plcpa
heat resistance
accelerator
heat
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62281541A
Other languages
Japanese (ja)
Other versions
JPH01123857A (en
Inventor
正夫 梅澤
保一 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62281541A priority Critical patent/JPH082970B2/en
Publication of JPH01123857A publication Critical patent/JPH01123857A/en
Publication of JPH082970B2 publication Critical patent/JPH082970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高耐溶融性液晶ポリアリメート樹脂(以下
PLCPAと称する),及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly melt-resistant liquid crystal polyarymate resin (hereinafter
PLCPA) and its manufacturing method.

〔従来の技術〕[Conventional technology]

PLCPAは,溶融成形性に優れ,かつ高強度化できる,
また熱による寸法変化が少ない,またさらに吸水率が少
ない等の理由から,近年,広く展開されはじめた。
PLCPA has excellent melt moldability and can be strengthened.
In addition, it has started to be widely used in recent years because of its small dimensional change due to heat and its low water absorption.

しかし,溶融成形した後で,熱により溶融してしまう
ことは大きな欠点であった。かかる問題点を改善すると
ともに繊維の強度を向上すべく長時間窒素下で熱処理す
る方法が、特開昭50−157619号公報に開示されている。
しかしながら該公報は極めて長時間の熱処理が必要であ
り、コストが非常に高くなるのが大きな欠点であった。
このような欠点を改善するため、特開昭61−289178号公
報には、アルカリ金属塩からなる加熱強化促進剤で糸被
覆した後、熱処理する方法が開示されている。該方法に
よれば熱処理時間を短縮化することはできるものの、ま
だ不十分であるとともに、耐熱性の向上については十分
な効果が得られていない。
However, it was a big drawback that it was melted by heat after melt molding. Japanese Patent Laid-Open No. 50-157619 discloses a method of heat-treating under nitrogen for a long time in order to improve the above problems and to improve the strength of the fiber.
However, this publication has a major drawback in that heat treatment is required for an extremely long time and the cost is very high.
In order to improve such a defect, Japanese Patent Application Laid-Open No. 61-289178 discloses a method in which a yarn is coated with a heat strengthening accelerator composed of an alkali metal salt and then heat treated. According to this method, the heat treatment time can be shortened, but it is still inadequate and a sufficient effect of improving heat resistance has not been obtained.

〔発明が解決しょうとする問題点〕 本発明が解決しょうとする問題点とは,以下である。[Problems to be Solved by the Invention] The problems to be solved by the present invention are as follows.

即ち,PLCPAが成形後に溶融すること。 That is, PLCPA melts after molding.

〔問題点を解決するための手段〕[Means for solving problems]

かかる現状にかんがみ,本発明者は,従来の研究概念
に因われることなく,鋭意検討を重ねた結果,本発明に
到達した。本発明は前記の問題点を解決するため,以下
の構成を有する。
In view of such a current situation, the present inventor has arrived at the present invention as a result of earnest studies, irrespective of the conventional research concept. The present invention has the following configuration in order to solve the above problems.

(1)鉄,クロム,コバルトの少なくとも1種の金属及
び/または金属化合物を含有し、350℃以上の耐熱性を
有する高耐溶融性ポリアリレート系樹脂 (2)液晶成形性ポリアリレート成形物に、鉄,クロ
ム,コバルトの少なくとも1種の金属及び/または金属
化合物を添加している状態、及び/または付着、コート
した状態で加熱することを特徴とする高耐溶融性ポリア
リレート系樹脂の製法 以下さらに詳細に本発明を説明する。
(1) Highly melt-resistant polyarylate resin containing at least one metal and / or metal compound of iron, chromium and cobalt and having heat resistance of 350 ° C. or higher (2) Liquid crystal moldable polyarylate molded product Of at least one metal of iron, chromium, cobalt and / or a metal compound, and / or heating in a state of being adhered and coated, a method for producing a high melt-resistant polyarylate resin The present invention will be described in more detail below.

本発明によれば,容易に,しかも低コストでPLCPAを
高耐溶融化できること極めて驚くべきことである。
According to the present invention, it is extremely surprising that PLCPA can be highly melt-resistant easily and at low cost.

本発明にかかるPLCPAとは溶融成形性で,かつ,液晶
形成性のポリエステルである。即ち,メソーゲン基が主
鎖にあるPLCPAである。
The PLCPA according to the present invention is a melt-moldable and liquid crystal-forming polyester. That is, it is a PLCPA having a mesogen group in the main chain.

かかるPLCPAは種々なものがあるが、特に好ましいの
下記の構造単位からなるPLCPAである。即ち (X,Yはそれぞれ独立に,水素,ハロゲン,炭素数4以
下のアルキル基を表す。) (Xは水素,ハロゲン,炭素数4以下のアルキル基を表
す。) また,ジカルボン酸から誘導される構造単位として
は: (Xは水素,ハロゲン,炭素数4以下のアルキル基を表
す。) さらに,ヒドロキシカルボン酸から誘導される構造単
位として: (Xは水素,ハロゲン,炭素数4以下のアルキル基を表
す。) また,本発明のPLCPAは溶融粘度,融点を調節するた
めに次の構造単位を導入することも有効である。即ち また,さらに下記の一般式で示される構造単位を導入
することも有効である。即ち (ここでXはO,CH2,C(CH32,SO2を表す)などの芳香
族環の間に比較的に自由回転できる構造単位,あるいは (ここにm,nは2から10の整数)で表される脂肪族ジオ
ール,脂肪族ジカルボン酸から誘導される構造単位など
が上げられる。
There are various such PLCPAs, but the particularly preferred is PLCPA comprising the following structural units. That is (X and Y each independently represent hydrogen, halogen, or an alkyl group having 4 or less carbon atoms.) (X represents hydrogen, halogen, or an alkyl group having 4 or less carbon atoms.) The structural units derived from dicarboxylic acids are: (X represents hydrogen, halogen, or an alkyl group having 4 or less carbon atoms.) Further, as structural units derived from hydroxycarboxylic acid: (X represents hydrogen, halogen, or an alkyl group having 4 or less carbon atoms.) Further, the PLCPA of the present invention is also effective to introduce the following structural units in order to adjust the melt viscosity and melting point. That is It is also effective to introduce a structural unit represented by the following general formula. That is (Where X is O, CH 2 , C (CH 3 ) 2 , SO 2 ) or other structural units that are relatively freely rotatable between aromatic rings, or Examples thereof include aliphatic diols represented by (where m and n are integers from 2 to 10) and structural units derived from aliphatic dicarboxylic acids.

そして,特に好ましいPLCPAとしては下記の構造式の
ものが上げられる。即ち ここで,各構造式においてΣni=100である。そして,
特に好ましいのは各構造式のniが4以上の点である。ま
た、各式ともハロゲン等をはじめ,各種の置換基が付加
されていても良い。これらに示されるものは溶融成形性
が高く,かつ高強度であり,また,本発明の構成をとる
ことにより容易に高耐溶融性となる。
And, as a particularly preferable PLCPA, the following structural formula can be mentioned. That is Here, Σni = 100 in each structural formula. And
It is particularly preferable that ni in each structural formula is 4 or more. Further, in each formula, various substituents such as halogen may be added. Those shown in these have high melt moldability and high strength, and by adopting the constitution of the present invention, high melt resistance can be easily obtained.

そして,本発明の樹脂とは所謂,樹脂はもとより,そ
の成形物も含まれる。即ち,繊維,繊維状物,織編物,
フェルト,フィルム,フィルム状物,また紙,紙状物,
これらの積層物及び/または組合せ物,さらに3次元物
等,いずれの形状であっても包含される。
The resin of the present invention includes not only so-called resins but also molded products thereof. That is, fibers, fibrous materials, woven and knitted materials,
Felt, film, film-like material, paper, paper-like material,
Any shape such as a laminate and / or a combination of these and a three-dimensional object is included.

本発明においては,これらPLCPAと下記の化合物が少
なくとも1種が含有されたものである。即ち 鉄及び/またその化合物,クロム及び/またはその
化合物,コバルト及び/またはその化合物。
In the present invention, these PLCPA and at least one of the following compounds are contained. Iron and / or its compounds, chromium and / or its compounds, cobalt and / or its compounds.

これらを以下,総称して耐熱促進剤と称する。 Hereinafter, these are collectively referred to as a heat resistance accelerator.

次にPLCPAと耐熱促進剤の比率であるが,PLCPAの種
類,また耐熱促進剤の種類により大幅にかわり,いちが
いには言えない。しかし,一般的にはPLCPA100部に対し
て,耐熱促進剤は3部以上であることが好ましい。特に
好ましいのは5部以上であり,更に好ましくは8部以上
である。3部未満であるとPLCPAの耐熱性が上がらない
ことが多い。PLCPAと耐熱促進剤を含有形態は特に限定
されず,PLCPAの表面に耐熱促進剤が付着していても良
い。PLCPAの表面にコートされた構造も特に好ましいも
のである。またPLCPAの中に耐熱促進剤が添加された構
造をとっていてもよい。
Next, regarding the ratio of PLCPA and heat resistance accelerator, it cannot be said in any way, because it greatly changes depending on the type of PLCPA and the type of heat resistance accelerator. However, it is generally preferable that the heat resistance accelerator is 3 parts or more with respect to 100 parts of PLCPA. Particularly preferred is 5 parts or more, more preferably 8 parts or more. If it is less than 3 parts, the heat resistance of PLCPA often does not increase. The form of containing PLCPA and the heat resistance accelerator is not particularly limited, and the heat resistance accelerator may be attached to the surface of PLCPA. Structures coated on the surface of PLCPA are also particularly preferred. Further, it may have a structure in which a heat resistance accelerator is added to PLCPA.

耐熱促進剤の形状は特に限定されるものではない。し
かし、特にPLCPAの内部に耐熱促進剤が存在する場合に
は微粒子であることが好ましい。微粒子であると耐熱性
の向上したPLCPAの構造欠陥等にはなりにくい。また該
耐熱促進剤を核にして耐熱構造が発達するので、多数の
微粒子が均一に分散することが特に好ましい。なお,耐
熱促進剤がPLCPAの表面等に付着している場合であって
も耐熱促進剤は微粒子であることが好ましい。特に好ま
しい耐熱促進剤の形状としては直径が1mm以下,さらに
好ましくは0.5mm以下,特に好ましいのは0.1mm以下であ
る。かかる耐熱促進剤であるとPLCPAが高強度で,かつ
耐熱性,対薬品性が高くなる。
The shape of the heat resistance accelerator is not particularly limited. However, especially when the heat resistance accelerator is present inside PLCPA, fine particles are preferable. Fine particles are less likely to cause structural defects in PLCPA with improved heat resistance. Further, it is particularly preferable that a large number of fine particles are uniformly dispersed because a heat resistant structure develops with the heat resistance accelerator as a core. Even when the heat resistance accelerator is attached to the surface of PLCPA or the like, the heat resistance accelerator is preferably fine particles. The shape of the heat-resistant accelerator is particularly preferably 1 mm or less, more preferably 0.5 mm or less, and particularly preferably 0.1 mm or less. With such a heat-resistant accelerator, PLCPA has high strength, heat resistance, and chemical resistance.

次に耐熱促進剤の種類であるが上述の通り,各種のも
のが上げられる。そして,特に好ましいものとして鉄,
および鉄系化合物が上げられる。即ち 純鉄,いわゆる鉄錆である酸化鉄の水加物,二三酸化
鉄,四三酸化鉄,水酸化第一鉄,水酸化第二鉄,塩化
鉄,亜酸化鉄,硫酸鉄,硫化鉄,硝酸鉄,リン酸鉄,各
種の鉄カルボニル等の鉄系化合物。またさらに金属クロ
ム,各種の酸化クロム,水酸化クロム,またフェロ・ク
ロムをはじめとする各種の鉄及び/または鉄化合物との
化合物等も有効な耐熱促進剤である。また金属コバル
ト,各種の酸化コバルト,各種のコバルト・カルボニル
化合物等も有効な耐熱促進剤である。
Next, regarding the type of heat resistance accelerator, various types can be mentioned as described above. And iron is particularly preferred,
And iron-based compounds. That is, pure iron, so-called iron rust, iron oxide hydrate, ferric oxide, ferric oxide, ferrous hydroxide, ferric hydroxide, iron chloride, ferrous oxide, iron sulfate, iron sulfide , Iron nitrate, iron phosphate, various iron-based compounds such as iron carbonyl. Further, metallic chromium, various chromium oxides, chromium hydroxides, and various iron and / or compounds with iron compounds such as ferro-chrome are also effective heat resistance accelerators. In addition, metallic cobalt, various cobalt oxides, various cobalt carbonyl compounds, etc. are also effective heat resistance accelerators.

そして耐熱促進剤が特に酸化鉄の場合にはPLCPAの耐
光性を改善する予想外の効果も発揮する。
And when the heat resistance accelerator is iron oxide in particular, it also exhibits an unexpected effect of improving the light resistance of PLCPA.

なお本発明の耐熱性PLCPAはPLCPAとこれらの耐熱促進
剤のみからなっていてもよいがさらに酸化チタン等の顔
料,各種の耐候剤等が含有されていてもなんら差支えな
い。また,その他,可塑剤,耐光剤,帯電防止剤,末端
停止剤,蛍光増白剤,難燃材等が含有されていてもよ
い。なお,他のポリマが含まれていてもよい。
The heat-resistant PLCPA of the present invention may be composed only of PLCPA and these heat-resistant accelerators, but may further contain pigments such as titanium oxide and various weather-resistant agents. In addition, a plasticizer, a light resistance agent, an antistatic agent, a terminal terminator, an optical brightening agent, a flame retardant material and the like may be contained. Note that other polymers may be included.

次に本発明の耐熱性PLCPAの製法について述べる。 Next, a method for producing the heat resistant PLCPA of the present invention will be described.

まずPLCPAと耐熱促進剤を共存させて,その後に加熱
する。PLCPAと耐熱促進剤の共存形態はPLCPA成形物の表
面に耐熱促進剤を付着させてもよいし,またコートして
もよい。また耐熱促進剤をPLCPAの中に添加してもよ
い。
First, PLCPA and the heat resistance accelerator are allowed to coexist and then heated. Regarding the coexistence form of PLCPA and the heat resistance accelerator, the heat resistance accelerator may be attached or coated on the surface of the PLCPA molded product. A heat resistance accelerator may be added to PLCPA.

耐熱促進剤の添加量は前記したようにPLCPAの種類,
耐熱促進剤の種類により,大幅に変わるので,いちがい
にはいえないが,PLCPA100部に対して耐熱促進剤は3部
以上であることが好ましい。そして特に好ましいのは5
倍以上,さらに好ましくは8部以上である。しかる後に
PLCPAをそのガラス転移温度(以下Tg点と称する)以上
に加熱する。加熱温度はTg点以上であればよいが、特に
好ましいのは(Tg点+20)℃以上,更にこのましくは
(Tg点+50)℃以上に加熱することである。最高処理温
度は(融点+100)℃で十分である。かかる温度で処理
すればそれ以上の高温にさらしても高物性が維持でき
る。加熱雰囲気は空気中で十分であり,特に真空等は必
要としない。
As described above, the amount of the heat resistance accelerator added depends on the type of PLCPA,
Although it cannot be said that there is a large difference depending on the type of heat resistance accelerator, it is preferable that the heat resistance accelerator is 3 parts or more per 100 parts of PLCPA. And especially preferred is 5
It is twice or more, more preferably 8 parts or more. After a while
PLCPA is heated above its glass transition temperature (hereinafter referred to as the Tg point). The heating temperature may be at or above the Tg point, but it is particularly preferable to heat to (Tg point + 20) ° C. or above, and more preferably (Tg point + 50) ° C. or above. A maximum processing temperature of (melting point +100) ° C is sufficient. By treating at such a temperature, high physical properties can be maintained even when exposed to higher temperatures. The heating atmosphere is sufficient in air, and no vacuum is required.

次に処理時間はPLCPAの種類,耐熱促進剤の種類,そ
の添加量により大幅に変わる。また,本発明と耐熱促進
剤の共存状態,PLCPA成形物の表面積,処理温度等によっ
ても大幅に変わる。しかし,Tg点以上で少なくとも1秒
以上処理することが好ましい。なお,低温での加熱であ
ればやや処理時間はかかるが,高温での処理であれば,
速やかに処理できる。なお,成形されたPLCPAに耐熱促
進剤を付与して,その後に加熱してPLCPAの耐熱性を上
げる場合には,あまり急激に処理するとPLCPAが変形す
ることもあるので温度を何段階かに分け,実施すること
が好ましい。また,特にPLCPAの成形物に耐熱促進剤を
付与して,短時間の処理で耐熱性を上げようとする場合
にはPLCPA樹脂の表面を広くすることが特に好ましい。
例えば繊維,また変形断面繊維,多孔繊維,中空繊維,
極細繊維とすることや,フィルム,極薄フィルム等にし
て,該成形物に耐熱促進剤を付与して加熱処理すること
が好ましい。また,当然のことではあるが耐熱促進剤も
微粒子であることが好ましい。
Next, the treatment time varies greatly depending on the type of PLCPA, the type of heat resistance accelerator, and the amount added. Further, the coexistence state of the present invention and the heat-resistant accelerator, the surface area of the PLCPA molded product, the processing temperature, and the like will greatly change. However, it is preferable to perform the treatment for at least 1 second at the Tg point or higher. It should be noted that if heating at low temperature takes some processing time, if processing at high temperature,
It can be processed promptly. In addition, when adding a heat resistance accelerator to the molded PLCPA and then heating it to increase the heat resistance of the PLCPA, the PLCPA may be deformed if treated too rapidly, so the temperature may be divided into several stages. , It is preferable to carry out. In addition, it is particularly preferable to widen the surface of the PLCPA resin when a heat resistance accelerating agent is added to the molded product of PLCPA to increase the heat resistance in a short time treatment.
For example, fibers, modified cross-section fibers, porous fibers, hollow fibers,
It is preferable to use ultrafine fibers, or to form a film, an ultrathin film, etc., to which a heat-resistant accelerator is added to the molded product, and to perform heat treatment. Further, as a matter of course, it is preferable that the heat resistance accelerator is also fine particles.

なお耐熱促進剤は一種であってもよいし,数種の耐熱
促進剤を併用してもよいことは当然である。また特に耐
熱促進剤をPLCPAの内部に添加する場合には内部への分
散を良くするために,分散促進剤等を添加することもよ
いことである。
It should be noted that the heat resistance accelerator may be one kind, or several kinds of heat resistance accelerators may be used in combination. Further, particularly when a heat resistance accelerator is added to the inside of PLCPA, it is also advisable to add a dispersion accelerator or the like in order to improve the dispersion inside.

また,PLCPA成形物の表面に耐熱促進剤を付与するにお
いて耐熱促進剤の付与を良好にするために塗料,活性剤
等を用いるのも有効なことである。
Further, in applying the heat resistance accelerator to the surface of the PLCPA molded product, it is also effective to use a paint, an activator or the like in order to improve the application of the heat resistance accelerator.

かかる処方により良好な耐熱性のPLCPA樹脂が得られ
る。
With such a formulation, a good heat resistant PLCPA resin can be obtained.

以下実施例によりさらに詳しく説明する。なお当然の
ことではあるが本発明にこれになんら拘束されるもので
はない。
The present invention will be described in more detail below with reference to examples. Of course, the present invention is not limited to this.

〔実施例〕〔Example〕

実施例,比較例における物性測定は次の方法によっ
た。
The physical properties of the examples and comparative examples were measured by the following methods.

(イ)強度,伸度=テンシロン歪速度が1mm/分の速度で
歪を与え,測定した。
(A) Strength and elongation = Tensilon strain was applied at a strain rate of 1 mm / min for measurement.

(ロ)耐熱性=セラミック製のヒートプレート上に試料
を乗せ,昇温速度5℃/分の速度で昇温して融点を測定
した。
(B) Heat resistance = The sample was placed on a ceramic heat plate, and the temperature was raised at a rate of 5 ° C./min to measure the melting point.

実施例 1 下記の通りPLCPA繊維を得た。即ち PLCPA=米国,セラニーズ社のベクトラ,タイプ A90
0 紡糸温度=310℃ 巻き取り速度=100m/分 得られた繊維の特性=15デニール(以下dと称する) 次に本繊維に二三酸化鉄の微粒子を水分散したスラリ
ー状物を該PLCPA繊維に20部付与した。次に該繊維を80
℃で乾燥し,次に200℃で5分,270℃で5分,320℃で1
分空気中で熱処理した。得られた繊維は酸化鉄や約14部
表面に付着したものであった。本繊維の耐熱性は400℃
以上であり,また強度は7g/d,伸度は2.1%と耐熱性の高
強度の繊維であった。また,難燃性はV−0級到達はも
とより,事実上不燃なものであった。
Example 1 PLCPA fiber was obtained as follows. That is, PLCPA = Vectra, Type A90 from Celanese, USA
0 Spinning temperature = 310 ° C. Winding speed = 100 m / min Characteristic of the obtained fiber = 15 denier (hereinafter referred to as d) Next, a slurry-like material obtained by water-dispersing fine particles of iron (III) oxide into the PLCPA fiber is used. To 20 copies. Then 80
Dry at ℃, then 5 minutes at 200 ℃, 5 minutes at 270 ℃, 1 at 320 ℃
Heat treatment was performed in air for minutes. The fibers obtained were iron oxide and those adhering to the surface of about 14 parts. The heat resistance of this fiber is 400 ℃
The strength was 7 g / d and the elongation was 2.1%, which was a heat-resistant and high-strength fiber. Further, the flame retardancy was virtually incombustible as well as reaching V-0 class.

比較例1 実施例1の紡糸後の繊維の耐熱性を測定したところ,3
00℃未満であった。
Comparative Example 1 The heat resistance of the fiber after spinning in Example 1 was measured and found to be 3
It was less than 00 ° C.

比較例2 実施例1の紡糸後の繊維を酸化チタンの微粒子を水に
分散したスラリー状物を該繊維に20部付与した。次に該
繊維を80℃で乾燥し,次に200℃で5分,270℃で5分,32
0℃で1分空気中で熱処理した。しかし,320℃処理時に
該繊維は融断してしまった。
Comparative Example 2 The fiber after spinning of Example 1 was provided with 20 parts of a slurry in which fine particles of titanium oxide were dispersed in water. The fiber is then dried at 80 ° C, then 200 ° C for 5 minutes, 270 ° C for 5 minutes, 32
Heat treatment was performed in air at 0 ° C. for 1 minute. However, the fibers were fused during the 320 ℃ treatment.

実施例2 次の条件でPLCPAの極細繊維を作った。即ち, 高分子配列体繊維を作り,海成分を除去した。特に製
糸でのトラブルは無かった。
Example 2 PLCPA ultrafine fibers were produced under the following conditions. That is, we made polymer array fibers and removed sea components. Especially, there were no troubles in yarn making.

A.製糸条件 海成分=ポリスチレン 島成分(PLCPA)=実施例1と同一 島/海=50/50(Wt%) 島の数=36 紡糸温度=300℃ 紡糸速度=200m/分 延伸倍率=無し。A. Spinning conditions Sea component = polystyrene Island component (PLCPA) = Same as in Example 1 Island / Sea = 50/50 (Wt%) Number of islands = 36 Spinning temperature = 300 ° C Spinning speed = 200m / min Draw ratio = None .

得られた繊維のd=30d 次に,該繊維をトリクレンに浸漬して海成分の除去を
行った。次に実施例1と同様にしてPLCPAの耐熱化処理
を行った。実施例1と同様の耐熱性で,かつ強度は8.8g
/dと極めて高いものであった。
D = 30d of the obtained fiber Next, this fiber was immersed in trichlene to remove sea components. Next, in the same manner as in Example 1, PLCPA was heat-treated. It has the same heat resistance as in Example 1 and a strength of 8.8g.
It was extremely high at / d.

実施例3 実施例2の海成分を除去した極細繊維を250℃の窒素
気流中で5時間処理した。次に実施例1と同様にして耐
熱性向上を行った。本繊維は実施例1と同等の耐熱性
で,強度は18g/dと極めて高いものであった。
Example 3 The ultrafine fibers obtained by removing the sea component of Example 2 were treated in a nitrogen stream at 250 ° C. for 5 hours. Next, heat resistance was improved in the same manner as in Example 1. This fiber had heat resistance equivalent to that of Example 1 and had a very high strength of 18 g / d.

なお,窒素気流中で処理した化合物の耐熱性は約350
℃であった。
The heat resistance of the compound treated in nitrogen stream is about 350.
° C.

実施例4 押し出し機を用い,次の条件でPLCPAのフィルム状物
を得た。
Example 4 A film of PLCPA was obtained under the following conditions using an extruder.

ポリマ=実施例1に二三酸化鉄を5部ペレタイズで添
加した物を使用した。
Polymer = the one used in Example 1 with the addition of ferric sesquioxide at 5 parts pelletizing.

成形温度=300℃ 引き取り速度=50m/分 フィルム状物の厚さ=約0.1mm 次に該フィルム状物の片面に実施例1の酸化鉄を10重
量%塗布し,次に乾燥し,更に実施例1と同様に処理し
て,PLCPAの耐熱性物を作った。本品は400℃以上の耐熱
性と,35kg/mm2の強度を持つものであった。
Molding temperature = 300 ° C. Take-up speed = 50 m / min Thickness of film-like material = about 0.1 mm Next, 10% by weight of the iron oxide of Example 1 is applied to one surface of the film-like material, followed by drying and further execution The same treatment as in Example 1 was carried out to prepare a PLCPA heat resistant material. This product had a heat resistance of 400 ° C or higher and a strength of 35 kg / mm 2 .

〔本発明の効果〕[Effect of the present invention]

本発明の構成をとることにより,下記の大きな効果を
もたらす。
By adopting the configuration of the present invention, the following great effects are brought about.

高耐熱性でかつ,高強度,高弾性率で,かつ難燃性の
樹脂が容易に得られる。
A resin with high heat resistance, high strength, high elastic modulus, and flame retardance can be easily obtained.

特に繊維にした時には,特に高強度・高弾性率で耐熱
性と難燃性の繊維となる。
In particular, when made into fibers, it becomes a heat-resistant and flame-retardant fiber with a particularly high strength and high elastic modulus.

低コストで上記の物が得られる。The above products can be obtained at low cost.

特に耐熱促進剤が酸化鉄である場合にはPLCPAの耐光
性が大幅に向上する。
Especially when the heat resistance accelerator is iron oxide, the light resistance of PLCPA is significantly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄、クロム、コバルトの少なくとも1種の
金属及び/または金属化合物を含有し、350℃以上の耐
熱性を有する高耐溶融性ポリアリレート系樹脂。
1. A highly melt-resistant polyarylate resin containing at least one metal and / or metal compound of iron, chromium and cobalt and having a heat resistance of 350 ° C. or higher.
【請求項2】液晶形成性ポリアリレート成形物に、鉄、
クロム、コバルトの少なくとも1種の金属及び/または
金属化合物を添加している状態、及び/または付着、コ
ートした状態で加熱することを特徴とする高耐溶融性ポ
リアリレート系樹脂の製法。
2. A liquid crystal-forming polyarylate molded article comprising iron,
A method for producing a highly melt-resistant polyarylate-based resin, which comprises heating while adding at least one metal and / or metal compound of chromium and cobalt, and / or in a state of being adhered and coated.
JP62281541A 1987-11-06 1987-11-06 Highly melt resistant polyarylate resin and method for producing the same Expired - Fee Related JPH082970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281541A JPH082970B2 (en) 1987-11-06 1987-11-06 Highly melt resistant polyarylate resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281541A JPH082970B2 (en) 1987-11-06 1987-11-06 Highly melt resistant polyarylate resin and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01123857A JPH01123857A (en) 1989-05-16
JPH082970B2 true JPH082970B2 (en) 1996-01-17

Family

ID=17640614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281541A Expired - Fee Related JPH082970B2 (en) 1987-11-06 1987-11-06 Highly melt resistant polyarylate resin and method for producing the same

Country Status (1)

Country Link
JP (1) JPH082970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232210A (en) * 2004-02-17 2005-09-02 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition
US10179543B2 (en) 2013-02-27 2019-01-15 Magna Electronics Inc. Multi-camera dynamic top view vision system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819251B2 (en) * 1987-10-02 1996-02-28 ポリプラスチックス株式会社 Surface treatment method for liquid crystalline polyester resin moldings

Also Published As

Publication number Publication date
JPH01123857A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
CA1111165A (en) Flame-retardant fibers and filaments of linear thermoplastic polyesters
JPH02276819A (en) Aromatic polyester, aromatic polyester amide and fiber and resin composition thereof
JPS6248704B2 (en)
EP0123529A2 (en) Ferrimagnetic spinel fibres
US4273899A (en) Fire-retardant thermoplastic polyester composition
JPH082970B2 (en) Highly melt resistant polyarylate resin and method for producing the same
US4115562A (en) Treated fabrics and process
JPS59204920A (en) Conjugated fiber having improved heat and chemical resistance
US3725117A (en) Chromium oxide coating for siliceous articles
JP2674062B2 (en) Manufacturing method of high strength liquid crystal polyarylate resin molding
EP0123530A2 (en) Production of ferrimagnetic spinel fibres
JPH02120258A (en) Sizing agent for glass fiber
JPS6043858B2 (en) polyester molding
JPH01156365A (en) Production of highly heat-resistant resin molding
KR910009698B1 (en) Manufacturing rpocess of polyester fiber
DE2751653C3 (en) Melt-spinnable polyester and its use for the production of moldings and fibers
JPH01240557A (en) Heat-resistant composite form and production thereof
JP4010699B2 (en) Copolyethylene naphthalate fiber
JPS58115122A (en) Acrylic flameproofed yarn
JPH10102320A (en) Polyester filament and its production
JPS62233295A (en) Manufacture of screen gauze made of polyester
KR970010724B1 (en) Preparation of polyester yarn having rayon-like bright
JPH01207358A (en) High-strength resin composite material and production thereof
JPH0339352A (en) Copolyester composition
JPH02175920A (en) Production of high-strength polysulfone blend body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees