JPH08296937A - Method for detecting cold insulation remaining time of cold storage type cold insulation box - Google Patents

Method for detecting cold insulation remaining time of cold storage type cold insulation box

Info

Publication number
JPH08296937A
JPH08296937A JP10523495A JP10523495A JPH08296937A JP H08296937 A JPH08296937 A JP H08296937A JP 10523495 A JP10523495 A JP 10523495A JP 10523495 A JP10523495 A JP 10523495A JP H08296937 A JPH08296937 A JP H08296937A
Authority
JP
Japan
Prior art keywords
time
cold
cold storage
heat
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10523495A
Other languages
Japanese (ja)
Inventor
Kiyoshi Masui
潔 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA REIKI KOGYO KK
Original Assignee
DAIWA REIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA REIKI KOGYO KK filed Critical DAIWA REIKI KOGYO KK
Priority to JP10523495A priority Critical patent/JPH08296937A/en
Publication of JPH08296937A publication Critical patent/JPH08296937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To display cold insulation remaining time in cold storage type cooling. CONSTITUTION: A total heat of fusion of an eutectic liquid QS of a cold storage plate 2 in a thermally insulated cold insulation box 1 and an amount of heat QM transmitted from the inside of the cold insulation box 1 to the outside per unit time (t) at each of ambient temperatures RTM are calculated in advance, and cold insulation time (T) (QS/QM) at each temperature RT is obtained. RT0 at the time t0 of starting cold insulation is detected, cold insulation time To at the temperature is retrieved and then an amount of heat transmission Q1 at RT1 after an elapse of time (t) is subtracted from QS at t0 to obtain a remaining total heat of fusion QS1 ' at the time. A cold insulation remaining time TE1 at the time is calculated by multiplying the cold insulation time T1 by cold insulation remaining ratio P1 (QS1 '/QS). Q2 at the temperature RT2 after an elapse of time (t) is subtracted from QS1 ' to obtain a remaining total heat of fusion QS2 ' at the time and cold insulation remaining time TE2 is obtained by multiplying the cold insulation time T2 at RT2 by P2 (QS2 '/QS1 '). The same operations are repeated to detect and display cold insulation remaining time TE at every unit of time (t).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄冷式保冷箱の保冷
時間を検出する方法、及びその検出値でもって保冷残時
間(保冷可能時間)を表示する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a cold storage time of a cold storage type cold storage box and a method of displaying a cold storage remaining time (a coolable time) by the detected value.

【0002】[0002]

【技術的背景】食生活の向上に伴い、人々はより新鮮な
食物を求めるようになり、各種食品もそれに対応すべ
く、その輸送及び配送において、各種の保冷箱(コンテ
ナなど)が普及している。
[Technical background] With the improvement of eating habits, people are demanding more fresh foods, and various cold boxes (containers, etc.) are widely used in the transportation and delivery of various foods in order to cope with them. There is.

【0003】この保冷箱の冷却手段として蓄冷式のもの
があり、このものは、図3に示すように、例えば、運搬
車に断熱箱(保冷箱)1を搭載し、その断熱箱1内に蓄
冷板2を設置し、この蓄冷板2から冷気aを送り出し
て、断熱箱1内を冷却する。蓄冷板2は、薄くて平たい
容器に共晶液を詰めたものであり、この液を、休車中
(主として夜間)に凍結させ、この液の融解熱を利用し
て冷気aとする。
As a cooling means of this cold-insulating box, there is a cold-storage type, and as shown in FIG. 3, for example, a heat-insulating box (cooling box) 1 is mounted on a carrier, and the heat-insulating box 1 is provided in the heat-insulating box 1. A cool storage plate 2 is installed, and cool air a is sent out from the cool storage plate 2 to cool the inside of the heat insulating box 1. The cold storage plate 2 is a thin and flat container filled with the eutectic liquid, and this liquid is frozen while the vehicle is absent (mainly at night), and the heat of fusion of this liquid is used to produce cold air a.

【0004】[0004]

【発明が解決しようとする課題】上記蓄冷式保冷箱1は
取扱いが容易であるうえに、安価である点で優れている
が、冷却時間が限られていること、すなわち、冷却時間
が蓄冷板2の共晶液の融解が生じる時間に限られている
ことが最大の欠点である。このため、使用者は、常に残
保冷時間(保冷が可能な時間)に気を配りながら使用し
なければならない。
The cold storage cool box 1 is excellent in that it is easy to handle and inexpensive, but the cooling time is limited, that is, the cooling time is a cold storage plate. The biggest drawback is that the melting time of the eutectic liquid of 2 is limited. For this reason, the user must always pay attention to the remaining cold storage time (the time when cold storage is possible) before using.

【0005】しかしながら、残保冷時間は、四季による
気温の変化で大きく変動し、数日内でも変化が大きい。
この変化に対し、使用者が経験で対処することは困難で
ある。このため、往々にして、残保冷時間が経過し、保
冷箱1中の食品の鮮度が落ちる場合がある。この防止策
として、蓄冷板2にまだ保冷力がありながら(共晶液が
完全に融解していないにもかかわらず)、早めに蓄冷板
2を交換しているが、この早めの交換は非能率的である
うえに無駄が多い。
However, the remaining cold storage time greatly changes due to changes in temperature depending on the four seasons, and changes greatly within a few days.
It is difficult for the user to deal with this change by experience. Therefore, the remaining cold storage time often elapses, and the freshness of the food in the cold storage box 1 may decrease. As a measure to prevent this, although the cold storage plate 2 still has a cold insulation power (although the eutectic liquid is not completely melted), the cold storage plate 2 is replaced early, but this early replacement is not possible. It is efficient and wasteful.

【0006】この発明は、上記の実情の下、保冷残時間
を客観的に容易に知り得るようにすることを課題とす
る。
Under the above circumstances, it is an object of the present invention to objectively and easily know the remaining cold storage time.

【0007】[0007]

【課題を解決するための手段】まず、蓄冷体(蓄冷板
2)による冷却(冷蔵)は、蓄冷体2の融解潜熱Q
S (kcal)を利用するものである。また、熱貫流率
K(kcal/m2 h℃)により庫内(断熱箱1内)よ
り外へ熱の漏れによる熱移動量QM (kcal/h)が
ある。これらの関係を数式化すると以下の様になる。
[Means for Solving the Problems] First, the cooling (refrigeration) by the regenerator (cooling plate 2) is performed by the latent heat Q of melting of the regenerator 2.
It uses S (kcal). Further, there is a heat transfer amount Q M (kcal / h) due to heat leakage from the inside (inside the heat insulating box 1) to the outside due to the heat transmission coefficient K (kcal / m 2 h ° C.). The mathematical expression of these relationships is as follows.

【0008】すなわち、蓄冷体2の凍結完了かつ庫1内
温度が所定の温度TK (℃)で安定しているとし、周囲
温度をRT(℃)、コンテナ(断熱箱1)の表面積をA
(m2 )とすると、庫内より外へ熱の漏れによる熱移動
量QM (kcal/h)は、 QM =K・A・(RT−TK ), M,K=0,1,2...(以下同じ) (式2−1) また、庫内温度を一定に保てる時間、即ち保冷時間は蓄
冷体2の総融解潜熱(融解総熱量)QS が庫内より外へ
熱の漏れによる熱移動量QM により消費される時間であ
るから、保冷時間(保冷可能時間)をTM (h)とする
と、 TM =QS /QM (式2−2) ここで、周囲温度RTが一定であれば、保冷時間T
M は、式2−2で算出できる。
That is, assuming that the cold storage 2 is completely frozen and the temperature inside the refrigerator 1 is stable at a predetermined temperature T K (° C.), the ambient temperature is RT (° C.), and the surface area of the container (insulation box 1) is A.
( M 2 ), the heat transfer amount Q M (kcal / h) due to heat leakage from the inside to the outside is Q M = K · A · (RT−T K ), M, K = 0,1, 2 ... (Same below) (Equation 2-1) Further, the total latent heat of fusion (total amount of heat of fusion) Q S of the regenerator 2 heats from the inside to the outside while keeping the inside temperature constant, that is, the keeping time. Since it is the time consumed by the heat transfer amount Q M due to the leakage of, the cooling time (cooling possible time) is T M (h), then T M = Q S / Q M (Equation 2-2) where: Cooling time T if ambient temperature RT is constant
M can be calculated by Equation 2-2.

【0009】しかしながら、周囲温度RTは、刻々移動
するコンテナ1においては常に変動するので、周囲温度
RTが高くなれば、保冷時間TM の値は小さくなり、ま
た、周囲温度RTが低くなれば、保冷時間TM の値は大
きくなる等の変化が生じるため、周囲温度RTを変数と
する新たな関数で検討する。
However, since the ambient temperature RT constantly fluctuates in the moving container 1, the higher the ambient temperature RT, the smaller the value of the cold insulation time T M , and the lower the ambient temperature RT, the lower the ambient temperature RT becomes. Since a change such as an increase in the value of the cold insulation time T M occurs, a new function with the ambient temperature RT as a variable will be examined.

【0010】このため、周囲温度RTM が単位時間tに
より変化する関数とすると、 RTM =f1 (t) (式2−3) よって、熱移動量QM (kcal/h)は、 QM =K・A・(f1 (t)−TK ) (式2−4) となる。これをグラフ化すると、図1に示す曲線にな
る。
Therefore, assuming that the ambient temperature RT M is a function that changes with the unit time t, RT M = f 1 (t) (Equation 2-3) Therefore, the heat transfer amount Q M (kcal / h) is Q to become M = K · a · (f 1 (t) -T K) ( equation 2-4). If this is graphed, the curve shown in FIG. 1 is obtained.

【0011】この図1において、熱移動QM が上昇しつ
つある時は、周囲温度RTM が上昇しつつある時で、下
降しつつある時は、周囲温度RTM が下降しつつある時
である。また、保冷時間(保冷可能時間)TM は、時間
tとともに変化する周囲温度RTM における熱移動量Q
M を時間tで積分し、その値が蓄冷体2の総融解潜熱Q
S と等しくなる時点までの経過時間と言える。
In FIG. 1, when the heat transfer Q M is increasing, the ambient temperature RT M is increasing, and when it is decreasing, the ambient temperature RT M is decreasing. is there. In addition, the cold insulation time (possible cold insulation time) T M is the heat transfer amount Q at the ambient temperature RT M that changes with time t.
M is integrated at time t, and the value is the total latent heat of fusion Q of regenerator 2.
It can be said that it is the elapsed time until it becomes equal to S.

【0012】しかしながら、周囲温度RTM の変化は、
ユーザの使用状態で如何ようにでもなり、これを時間の
関数で表現することは不可能である。したがって、実際
の制御においては、このユーザの使用状態に見合う方法
が必要となる。
However, the change in ambient temperature RT M is
Whatever the user's usage, it is impossible to express this as a function of time. Therefore, in actual control, a method corresponding to the usage state of this user is required.

【0013】その制御方法としては、保冷しようとする
保冷箱1において、まず、予め、蓄冷板2の総融解潜熱
S を一定とした場合の各周囲温度RTM に対応する熱
移動量QM を算出して基礎データとし、このデータに基
づき、各周囲温度RTM における保冷残時間TE (h)
を算出する。
As the control method, in the cool box 1 to be kept cold, first, the heat transfer amount Q M corresponding to each ambient temperature RT M when the total latent heat of fusion Q S of the cold storage plate 2 is made constant in advance. and basic data is calculated, and based on this data, the ambient temperature RT M in cold remaining time T E (h)
To calculate.

【0014】すなわち、図2に示すように、周期的に周
囲温度RTM を検出し、その周期(単位時間t)の範囲
では、周囲温度RTM は一定と仮定し、保冷開始時T0
から、上記単位時間t毎に上記周囲温度RTM を検出し
て、その周囲温度RTM における熱移動量QM を基礎デ
ータから取出し、上記総融解潜熱(融解総熱量)QS
らその熱移動量QM を順々に減算し、その残融解総熱量
S ′を、前記検出した周囲温度RTM の熱移動量QM
で除して、その除した値を、その検出時の保冷残時間T
EMとする。
That is, as shown in FIG. 2, the ambient temperature RT M is detected periodically, and it is assumed that the ambient temperature RT M is constant in the range of the period (unit time t), and the cold start T 0
Therefore, the ambient temperature RT M is detected at each unit time t, the heat transfer amount Q M at the ambient temperature R T M is extracted from the basic data, and the heat transfer from the total latent heat of fusion (total heat of fusion) Q S is performed. the amount Q M subtracts one after the other, the residue melting the total amount of heat Q S ', heat transfer amount Q M of ambient temperature RT M where the detected
Then, the divided value is divided by the remaining heat retention time T at the time of detection.
EM .

【0015】このようにして、保冷残時間TEMを検出
(算出)し、その値をそのまま時間表示、又は、緑→黄
色→赤の表示というように変色ダイオードで示すなどの
適宜な手段によって使用者に示す。このとき、急激な温
度変化などに基づく適宜な補正を加味することができ
る。なお、単位時間tは、例えば1時間から数時間、又
は10分、20分などの数十分単位とする。
In this way, the remaining cooling time T EM is detected (calculated), and the value is displayed as it is, or it is displayed by a color-changing diode such as green → yellow → red. Shown to the person. At this time, appropriate correction based on a sudden temperature change or the like can be added. The unit time t is, for example, one hour to several hours, or tens of minutes such as 10 minutes or 20 minutes.

【0016】上記発明の構成が請求項1のものである
が、この発明は、図2から理解できるように、単位時間
t当たりの保冷時間TM を棒グラフ的に把握したもので
あり、曲線的に変化する周囲温度RTM と保冷時間TM
の間には誤差がある(図中のハッチングの部分)。この
ため、このままの状態では精度の点で問題がある。そこ
で、マイコンソフト化できる範囲において、以下の構成
とする(請求項2〜4)。
The structure of the above invention is the one according to claim 1, but as can be understood from FIG. 2, the present invention is a bar graph for grasping the cold insulation time T M per unit time t, and is a curved line. Ambient temperature RT M and cooling time T M
There is an error between them (hatched part in the figure). For this reason, there is a problem in accuracy in this state. Therefore, the following configuration is adopted within a range that can be implemented as microcomputer software (claims 2 to 4).

【0017】まず、表1にマイコンテーブルデータ(上
記基礎データ)の検討を行い、熱移動量QM はあくまで
も媒介変数ととらえ、表1の周囲温度RTM と保冷時間
Mの関係をマイコンに記憶させる。また、保冷残量比
の考えを導入する。保冷残量比Pとは、総保冷量に対す
る残保冷量の割合を言い、この割合は、(TM-1 −t)
/TM-1 で表わし(請求項3)、図2における関係曲線
の傾きに相当する。
First, in Table 1, the microcomputer table data (the above basic data) is examined. The heat transfer amount Q M is regarded as a parameter only, and the relationship between the ambient temperature RT M and the cold storage time T M in Table 1 is calculated by the microcomputer. Remember. In addition, the concept of cold storage remaining ratio will be introduced. The coolness remaining amount ratio P is the ratio of the remaining cold storage amount to the total cold storage amount, and this ratio is (T M-1 −t)
/ T M-1 (claim 3) and corresponds to the slope of the relational curve in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】そして、保冷残時間TEMの検出は、まず、
蓄冷完了した時点で周囲温度RT0を検出し、上記表1
の基礎データからそれに伴う保冷時間(保冷可能時間)
0を取出し、そのときの保冷残量比はP0 =1とす
る。そして、次の測定周期tまでは、周囲温度RT0
一定とし、最初の測定周期tが経過した時点で保冷残量
比P1 を算出すると、 P1 =(T0 −t)/T0 (式2−5) また、この時点での周囲温度RT1 から保冷時間T1
表1の基礎データから取出し、保冷残時間TE1を算出す
と、 TE1=T1 ・P1 (式2−6) となる。
Then, the remaining cooling time T EM is first detected by
When the cold storage is completed, the ambient temperature RT 0 is detected and
Based on the basic data of the cold storage time (the available cold storage time)
T 0 is taken out, and the cold storage residual amount ratio at that time is P 0 = 1. Then, the ambient temperature RT 0 is kept constant until the next measurement cycle t, and when the coolness residual amount ratio P 1 is calculated when the first measurement cycle t has elapsed, P 1 = (T 0 −t) / T 0 (Equation 2-5) Further, when the cold insulation time T 1 is extracted from the basic data of Table 1 from the ambient temperature RT 1 at this point and the cold insulation remaining time T E1 is calculated, T E1 = T 1 · P 1 (Equation 2 2-6).

【0020】同様に2回目の測定周期tが経過した時点
での保冷残量比P2 は P2 =(T1 −t)/T1 (式2−7) となり、また、この時点での周囲温度RT2 から保冷時
間T2 を取出し、保冷残時間TE2を算出すると、 TE2=T2 ・P2 (式2−8) となる。
Similarly, the residual cold storage ratio P 2 at the time when the second measurement cycle t has elapsed is P 2 = (T 1 −t) / T 1 (Equation 2-7), and at this time When the cold insulation time T 2 is taken out from the ambient temperature RT 2 and the cold insulation remaining time T E2 is calculated, T E2 = T 2 · P 2 (Equation 2-8).

【0021】以下、測定周期tおきに同様に処理を行な
い、保冷残時間TEMを算出する。その制御の流れを表2
に示し、これを適宜に表示する。
Thereafter, the same processing is performed every measurement cycle t to calculate the remaining cold storage time T EM . The control flow is shown in Table 2.
, And display this as appropriate.

【0022】[0022]

【表2】 [Table 2]

【0023】以上の保冷残時間検出方法は、保冷残量比
M を、保冷時間TM から単位時間tを引き、その値を
保冷時間TM で除した値としているが、熱移動量QS
の変化量を加味する場合には、保冷残量比PM は、Q
SM-1′/QSM′とし、その値は、上述の2−5〜8式と
同様にして算出し、その制御の流れは表3のごとくな
る。この制御は請求項2に係る発明となり、さらにPM
=(QSM-1′/QM-1 )/(QSM′/QM )=TM-1
M ともし得る(請求項4)。
The above cold remaining time detection method, the cold residual ratio P M, pull the unit time t from the cold time T M, although the value obtained by dividing the value in the cold time T M, the heat transfer amount Q S
When considering the amount of change in the cold residual ratio P M, Q
And SM-1 '/ Q SM' , its value is calculated in the same manner as 2-5~8 formula described above, the flow of the control is as shown in Table 3. This control is the invention according to claim 2, and P M
= (Q SM-1 ′ / Q M-1 ) / (Q SM ′ / Q M ) = T M-1 /
It may be T M (claim 4).

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】この発明は以上のように構成したので、
蓄冷板による保冷残時間を検出表示でき、蓄冷式保冷の
取扱い及び効率をすこぶる向上し得る。
Since the present invention is constructed as described above,
The remaining cool time by the cold storage plate can be detected and displayed, and the handling and efficiency of the cold storage cold storage can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】保冷時間TM と熱移動量QM の関係図1] Relationship between cold storage time T M and heat transfer amount Q M

【図2】周囲温度RTM と保冷時間TM の関係図[Fig. 2] Relationship between ambient temperature RT M and cooling time T M

【図3】蓄冷式保冷箱の各例図[Fig. 3] Examples of cold storage cool boxes

【符号の説明】[Explanation of symbols]

1 断熱箱(保冷箱) 2.蓄冷板(蓄冷体) a 冷気 T 保冷時間(保冷可能時間) TE 保冷残時間 t0 保冷開始時 t 単位時間 P 保冷残量比 Q 熱移動量 QS 融解総熱量 QS ′ 残融解総熱量 RT 周囲温度1 Insulation box (cold box) 2. Cold storage plate (cool storage body) a Cold air T Cooling time (Coolable time) T E Cooling remaining time t 0 Cooling starting time t Unit time P Cooling residual amount ratio Q Heat transfer quantity Q S Total melting heat quantity Q S ′ Total remaining heat quantity RT ambient temperature

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 共晶液を詰めた蓄冷板2を断熱保冷箱1
に内装し、前記共晶液の融解熱を利用して前記断熱保冷
箱1内を保冷する蓄冷式保冷箱において、その保冷残時
間TE (h)を検出するに際し、 上記蓄冷板2内の共晶液の融解総熱量QS (kcal)
を算出するとともに、上記断熱保冷箱1の各周囲温度R
T(℃)における単位時間t当りの前記断熱保冷箱1内
から外部への熱移動量Q(kcal/h)を予め算出し
て、その各熱移動量Qを基礎データとし、 保冷開始時t0 から、上記単位時間t毎に上記周囲温度
RTM (M=0、1、2……)を検出して、その各周囲
温度RTM における上記熱移動量QM を上記基礎データ
から取出し、上記融解総熱量QS からその各熱移動量Q
M を順々に減算し、その残融解総熱量QSM′を、前記検
出した周囲温度RTM の熱移動量QM で除して、その除
した値(QSM′/QM )を、その検出時の保冷残時間T
EMとすることを特徴とする蓄冷式保冷箱の保冷残時間検
出方法。
1. An adiabatic cold insulation box 1 comprising a cold storage plate 2 filled with a eutectic liquid.
In the regenerator type cold storage box which is internally installed in the cold storage type cold storage box, wherein the heat of fusion of the eutectic liquid is used to cool the inside of the adiabatic cold storage box 1, in detecting the remaining cold storage time T E (h), Total heat of fusion of eutectic liquid Q S (kcal)
And the ambient temperature R of the heat insulation cool box 1
The heat transfer amount Q (kcal / h) from the inside of the adiabatic cool box 1 per unit time t at T (° C.) is calculated in advance, and each heat transfer amount Q is used as basic data. From 0 , the ambient temperature RT M (M = 0, 1, 2, ...) Is detected for each unit time t, and the heat transfer amount Q M at each ambient temperature RT M is extracted from the basic data. From the above total heat quantity of fusion Q S to its heat transfer quantity Q
M is subtracted in sequence, and the total residual heat quantity Q SM ′ is divided by the heat transfer quantity Q M of the detected ambient temperature RT M , and the divided value (Q SM ′ / Q M ), Remaining cold storage time T at the time of detection
A method for detecting the remaining cold storage time of a cold storage cold storage box characterized by using EM .
【請求項2】 請求項1記載の蓄冷式保冷箱の保冷残時
間検出方法において、保冷開始時t0 の上記周囲温度R
0 を検出し、その周囲温度RT0 における上記熱移動
量Q0 で上記融解総熱量QS を除して保冷時間T0
し、つぎに単位時間tの経過後、その時の周囲温度RT
1 の上記熱移動量Q1 を前記融解総熱量QS から減算し
てその時点の残融解総熱量QS1′とし、その残融解総熱
量QS1′を、前記熱移動量Q1 で除して保冷時間T1
求めるとともに前記融解総熱量QS で除して保冷残量比
1 を求め、前記保冷時間T1 にその保冷残量比P1
乗じて、その時点における保冷残時間TE1とし、 さらに単位時間tの経過後、その時の周囲温度RT2
上記熱移動量Q2 を上記残融解総熱量QS1′から減算し
てその時点の残融解総熱量QS2′とし、その残融解総熱
量QS2′を、前記熱移動量Q2 で除して保冷時間T2
求めるとともに前記融解総熱量QS1′で除して保冷残量
比P2 を求め、前記保冷時間T2 にその保冷残量比P2
を乗じて、その時点における保冷残時間TE2とし、 以後、同様な作用を繰り返して、単位時間t毎の保冷残
時間TEMを検出することを特徴とする蓄冷式保冷箱の保
冷残時間検出方法。
2. The method according to claim 1, wherein the cold storage remaining time of the cold storage cold storage box is detected, the ambient temperature R at the cold storage start time t 0.
The temperature T 0 is detected, the total amount of heat Q S of melting is divided by the amount of heat transfer Q 0 at the ambient temperature RT 0 to obtain the cold keeping time T 0, and then, after the elapse of a unit time t, the ambient temperature RT at that time
1 of the heat transfer amount Q 1 is subtracted from the melting total heat Q S 'and, the residue melts the total amount of heat Q S1' residual melting total heat Q S1 at that time by the, divided by the heat transfer amount Q 1 Te seek cold residual ratio P 1 by dividing the melting total heat Q S with obtaining the cold time T 1, is multiplied by the cold residual ratio P 1 in the cold time T 1, the cold remaining time at that time T E1 and after the unit time t has elapsed, the heat transfer amount Q 2 at the ambient temperature RT 2 at that time is subtracted from the total residual melting heat amount Q S1 ′ to obtain the total residual melting heat amount Q S2 ′ at that time, ', said melting total heat Q S1 with obtaining the cold time T 2 is divided by the heat transfer amount Q 2' the residue melting the total amount of heat Q S2 obtains the cold residual ratio P 2 is divided by the cold time T 2 in the cold remaining ratio P 2
The remaining cool time T E2 at that time is multiplied by, and the same operation is repeated thereafter to detect the remaining cool time T EM for each unit time t. Method.
【請求項3】 請求項2記載の蓄冷式保冷箱の保冷時間
検出方法において、上記保冷残量比PM を、保冷時間T
M から単位時間tを引いた値(TM −t)をその保冷時
間TM で除したものとしたことを特徴とする蓄冷式保冷
箱の保冷残時間検出方法。
3. The cold storage time detecting method for a cold storage cold storage box according to claim 2, wherein the cold storage residual amount ratio P M is set to a cold storage time T.
The value obtained by subtracting the unit time t from the M (T M -t) the cold remaining time detection method of the cold storage type cold box, characterized in that a divided by the cold time T M.
【請求項4】 請求項2記載の蓄冷式保冷箱の保冷時間
検出方法において、上記保冷残量比PM を、その周囲温
度RTM の保冷温度TM でその前の周囲温度RTM-1
おける保冷温度TM-1 を除した値(TM-1 /TM )とし
たことを特徴とする蓄冷式保冷箱の保冷残時間検出方
法。
4. A cold time detection method of the cold storage type cold box according to claim 2, wherein the cold residual ratio P M, the previous ambient temperature RT at cold temperature T M of the ambient temperature RT M M-1 A method for detecting the remaining cold storage time of a cold storage cold storage box, which is a value (T M-1 / T M ) obtained by dividing the cold storage temperature T M-1 in the above.
【請求項5】 請求項1乃至4に記載の蓄冷式保冷箱の
保冷残時間検出方法によって検出した保冷残時間TEM
表示することを特徴とする蓄冷式保冷箱の保冷残時間表
示方法。
5. A method according to claim 1 to 4 cold remaining time display method of cold accumulation cool boxes and displaying the cold remaining time T EM detected by cold remaining time detection method of the cold storage type cold box according to.
JP10523495A 1995-04-28 1995-04-28 Method for detecting cold insulation remaining time of cold storage type cold insulation box Pending JPH08296937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10523495A JPH08296937A (en) 1995-04-28 1995-04-28 Method for detecting cold insulation remaining time of cold storage type cold insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10523495A JPH08296937A (en) 1995-04-28 1995-04-28 Method for detecting cold insulation remaining time of cold storage type cold insulation box

Publications (1)

Publication Number Publication Date
JPH08296937A true JPH08296937A (en) 1996-11-12

Family

ID=14401970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10523495A Pending JPH08296937A (en) 1995-04-28 1995-04-28 Method for detecting cold insulation remaining time of cold storage type cold insulation box

Country Status (1)

Country Link
JP (1) JPH08296937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252296A1 (en) * 2013-10-10 2016-09-01 Rep Ip Ag Insulation-Time Determining Device for a Thermally Insulated Container
CN108152065A (en) * 2017-12-29 2018-06-12 广州拜尔冷链聚氨酯科技有限公司 A kind of refrigerator car energy efficiency test method
CN109542141A (en) * 2018-12-25 2019-03-29 广州好高冷科技有限公司 A kind of incubator transport online management platform
JP2020060311A (en) * 2018-10-09 2020-04-16 パナソニックIpマネジメント株式会社 Cold storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252296A1 (en) * 2013-10-10 2016-09-01 Rep Ip Ag Insulation-Time Determining Device for a Thermally Insulated Container
US10823497B2 (en) * 2013-10-10 2020-11-03 Rep Ip Ag Insulation-time determining device for a thermally insulated container
CN108152065A (en) * 2017-12-29 2018-06-12 广州拜尔冷链聚氨酯科技有限公司 A kind of refrigerator car energy efficiency test method
JP2020060311A (en) * 2018-10-09 2020-04-16 パナソニックIpマネジメント株式会社 Cold storage device
CN109542141A (en) * 2018-12-25 2019-03-29 广州好高冷科技有限公司 A kind of incubator transport online management platform
CN109542141B (en) * 2018-12-25 2023-04-18 广州好高冷科技有限公司 Online management platform for transportation of heat preservation boxes

Similar Documents

Publication Publication Date Title
US9182155B2 (en) Environmentally adaptable transport device
CN105705890A (en) A portable temperature controlled container
CN107631548A (en) Temperature control, which is realized, does not freeze long fresh method, refrigeration plant and readable storage medium storing program for executing
US10345015B2 (en) Portable instant cooling system with controlled temperature obtained through time-release liquid or gaseous CO2 coolant for general refrigeration use in mobile and stationary containers
CN107208958A (en) The method of the state of cold-storage device and display cold storage body
CN108870856A (en) Meat does not freeze fresh-keeping control method, controller and refrigerator
US2859945A (en) Assembly for heating and cooling trucks
JPH08296937A (en) Method for detecting cold insulation remaining time of cold storage type cold insulation box
US1921147A (en) Method of and means for controlling low temperature refrigerants
JPH067033B2 (en) Cold storage type cold storage and method for calculating and displaying remaining cold storage time of the cold storage material used therefor
US4188794A (en) Freezer with rapid defrosting
CN107709907A (en) Include the refrigerating plant of controlled temperature containment system
CN110030792A (en) A kind of intelligent temperature control system
US11179185B2 (en) Cryogenic surgical systems
JP2023089435A (en) Information processing device, program, abnormality detection method, abnormality detection system, and cooling storage shed
JPH07318215A (en) Cold heat accumulating device
Ivanov et al. Design, building and study of a small-size portable thermoelectric refrigerator for vaccines
Pham Moisture transfer due to temperature changes or fluctuations
US20060021357A1 (en) Method and device for monitoring the temperature in a refrigerator
JPH01189473A (en) Chill accumulating type cold storehouse
JP7108857B2 (en) power supply
JP4457486B2 (en) Product temperature controlled freezer
JP7247151B2 (en) Selection device, selection method and program
JP2001147065A (en) Refrigeration/defrosting chamber for detection of food temperature
US20230009192A1 (en) Control scheme for beverage coolers optimized for beverage quality and fast pulldown time