JPH08296431A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH08296431A
JPH08296431A JP7120648A JP12064895A JPH08296431A JP H08296431 A JPH08296431 A JP H08296431A JP 7120648 A JP7120648 A JP 7120648A JP 12064895 A JP12064895 A JP 12064895A JP H08296431 A JPH08296431 A JP H08296431A
Authority
JP
Japan
Prior art keywords
engine
alternator
voltage
internal combustion
vehc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7120648A
Other languages
Japanese (ja)
Other versions
JP3550215B2 (en
Inventor
Yuichi Shimazaki
勇一 島崎
Akihisa Saito
彰久 斎藤
Takayoshi Nakayama
隆義 中山
Satoru Teshirogi
哲 手代木
Takuya Aoki
琢也 青木
Hiroaki Kato
裕明 加藤
Taku Komatsuda
卓 小松田
Hideo Furumoto
秀夫 古元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12064895A priority Critical patent/JP3550215B2/en
Priority to US08/634,507 priority patent/US5791140A/en
Publication of JPH08296431A publication Critical patent/JPH08296431A/en
Application granted granted Critical
Publication of JP3550215B2 publication Critical patent/JP3550215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE: To restrain wastefuel energy consumption by controlling the generating voltage of an alternator in response to the detected operating condition of an engine by supplying electric power from the alternator to an electric-heating type catalyst. CONSTITUTION: Whether or not an ignition switch is turned on is judged, and when it is turned on, the detection values of an engine water temperature(TW) and an intake air temperature(TA) are read, and a TON, VEHC map determined in accordance with the TW, TA values is retrieved, and the energizing time of a heater resistance 24 and the supply voltage VEHC to an electric-heating type catalyst(EHC) are set for carrying out control. Then, it is discriminated whether or not an engine speed NE exceeds a prescribed speed NEK for judging perfect explosion, and when NE>=NEK, a changeover switch 23 is changed over to the side of a terminal 23c, and the output voltage of an alternator 21 is controlled so as to attain the previously set VEHC value for supplying electric power to the EHC. After the lapse of energizing time, the output voltage of the alternator 21 is reduced to the normal output voltage, and the changeover switch 23 is changed over to the side of the terminal 23b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃エンジンの排気ガ
ス浄化装置に関し、特に電気加熱式の触媒を有するもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying device for an internal combustion engine, and more particularly to a device having an electrically heated catalyst.

【0002】[0002]

【従来の技術】内燃エンジンの排気ガスの浄化を行う触
媒は、エンジンの冷間始動時においては活性化するまで
に時間を要するため、電気的に加熱してその活性化を早
めるようにした電気加熱式触媒が従来より知られてい
る。
2. Description of the Related Art A catalyst for purifying exhaust gas of an internal combustion engine needs time to be activated during cold start of the engine, and therefore it is electrically heated to accelerate its activation. Heated catalysts have been known for some time.

【0003】この電気加熱式触媒の通電制御手法とし
て、検出したエンジン温度等に応じて通電時間を設定
し、該設定した通電時間に亘ってバッテリから電力を供
給することにより、所望の触媒温度が得られるようにし
たものが従来より知られている(特開平4−27971
8号公報)。
As an energization control method for the electrically heated catalyst, a desired energization time is set by setting an energization time according to the detected engine temperature and the like and supplying electric power from a battery for the set energization time. The one that can be obtained is conventionally known (Japanese Patent Laid-Open No. 4-27971).
No. 8).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の制御手法は、バッテリを電源とした通電時間のみの制
御であり、例えばエンジンのホットリスタート時のよう
に触媒(ヒータ)に冷間始動時ほど大きな電力を供給す
る必要が無い場合に、触媒への供給エネルギ(積算電力
量)を精度よく制御することが困難であり、必要以上に
エネルギを消費する傾向があった。また、供給エネルギ
が大きすぎると触媒の温度が過度に上昇し、触媒の耐久
性を悪化させるという問題も発生する。
However, the above-mentioned conventional control method is a control in which only the energization time with the battery as the power source is used, and for example, when the engine (hot) is cold restarted as when the engine is hot restarted. When it is not necessary to supply a large amount of electric power, it is difficult to accurately control the energy supplied to the catalyst (integrated electric energy), and there is a tendency to consume more energy than necessary. Further, if the supplied energy is too large, the temperature of the catalyst excessively rises, and the durability of the catalyst deteriorates.

【0005】さらに、バッテリを電源としているため、
触媒(ヒータ)に大電流を供給する必要があるため、電
流定格の大きな周辺回路部品(スイッチや電線)を使わ
なければならず、この点でも改善の余地があった。
Further, since the battery is used as a power source,
Since it is necessary to supply a large current to the catalyst (heater), it is necessary to use peripheral circuit parts (switches and electric wires) with a large current rating, and there is room for improvement in this respect as well.

【0006】本発明はこの点に着目してなされたもので
あり、電気加熱式触媒への供給エネルギを精度よく制御
でき、しかも供給電流を低減して周辺部品のコストダウ
ンを図ることができる排気ガス浄化装置を提供すること
を目的とする。
The present invention has been made in view of this point, and exhaust gas capable of accurately controlling the energy supplied to the electrically heated catalyst and reducing the supply current to reduce the cost of peripheral parts. An object is to provide a gas purification device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、内燃エンジンにより駆動され、電力を発電す
るオルタネータと、該オルタネータの発電電圧を制御す
るレギュレータ手段と、前記エンジンの排気系に設けら
れ、前記オルタネータにより発電された電力により電気
的に加熱される電気加熱式触媒と、前記エンジンの運転
状態を検出する運転状態検出手段と、該運転状態検出手
段の出力に応じて前記電気加熱式触媒に供給する発電電
圧を制御するレギュレータ制御手段とを備えることを特
徴とする内燃エンジンの排気ガス浄化装置を提供するも
のである。
To achieve the above object, the present invention provides an alternator driven by an internal combustion engine to generate electric power, regulator means for controlling a generated voltage of the alternator, and an exhaust system of the engine. An electrically heated catalyst that is provided and that is electrically heated by the electric power generated by the alternator, an operating state detection unit that detects the operating state of the engine, and the electric heating according to the output of the operating state detection unit. An exhaust gas purifying apparatus for an internal combustion engine, comprising: a regulator control means for controlling a power generation voltage supplied to the electrocatalyst.

【0008】また、前記レギュレータ制御手段は、さら
に前記発電電圧を前記電気加熱式触媒に供給する時間を
前記検出したエンジン運転状態に応じて制御することが
望ましい。
Further, it is preferable that the regulator control means further controls the time for supplying the generated voltage to the electrically heated catalyst in accordance with the detected engine operating condition.

【0009】また、前記運転状態検出手段は、前記エン
ジンの温度、吸入空気温度及び前記エンジンの排気系の
温度の少なくとも1つであることが望ましい。
Further, it is preferable that the operating state detecting means is at least one of a temperature of the engine, an intake air temperature and a temperature of an exhaust system of the engine.

【0010】[0010]

【作用】請求項1の排気ガス浄化装置によれば、オルタ
ネータから電気加熱式触媒に電力が供給され、検出した
エンジン運転状態に応じてオルタネータの発電電圧が制
御される。
According to the exhaust gas purifying apparatus of the first aspect, electric power is supplied from the alternator to the electrically heated catalyst, and the power generation voltage of the alternator is controlled according to the detected engine operating state.

【0011】請求項2の排気ガス浄化装置によれば、さ
らに電気加熱式触媒に電力を供給する時間がエンジン運
転状態に応じて制御される。
According to the exhaust gas purifying apparatus of the second aspect, the time for supplying electric power to the electrically heated catalyst is further controlled according to the engine operating condition.

【0012】[0012]

【実施例】以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例に係る内燃エンジ
ン及びその制御装置の全体の構成図であり、エンジン1
の吸気管2の途中にはスロットル弁3が配されている。
スロットル弁3にはスロットル弁開度(θTH)センサ
4が連結されており、当該スロットル弁3の開度に応じ
た電気信号を出力してECU5に供給する。
FIG. 1 is an overall configuration diagram of an internal combustion engine and a control system therefor according to one embodiment of the present invention.
A throttle valve 3 is arranged in the middle of the intake pipe 2.
A throttle valve opening (θTH) sensor 4 is connected to the throttle valve 3 and outputs an electric signal according to the opening of the throttle valve 3 to supply it to the ECU 5.

【0014】燃料噴射弁6はエンジン1とスロットル弁
3との間且つ吸気管2の図示しない吸気弁の少し上流側
に各気筒毎に設けられており、各噴射弁は図示しない燃
料ポンプに接続されていると共に電子コントロールユニ
ット(以下「ECU」という)5に電気的に接続されて
当該ECU5からの信号により燃料噴射弁6の開弁時間
が制御される。
The fuel injection valve 6 is provided for each cylinder between the engine 1 and the throttle valve 3 and slightly upstream of the intake valve (not shown) of the intake pipe 2, and each injection valve is connected to a fuel pump (not shown). In addition to being electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 5, a valve opening time of the fuel injection valve 6 is controlled by a signal from the ECU 5.

【0015】一方、スロットル弁3の直ぐ下流には管7
を介して吸気管内絶対圧(PBA)センサ8が設けられ
ており、この絶対圧センサ8により電気信号に変換され
た絶対圧信号は前記ECU5に供給される。また、その
下流には吸気温(TA)センサ9が取付けられており、
吸気温TAを検出して対応する電気信号を出力してEC
U5に供給する。
On the other hand, a pipe 7 is provided immediately downstream of the throttle valve 3.
The intake pipe absolute pressure (PBA) sensor 8 is provided via the, and the absolute pressure signal converted into an electric signal by the absolute pressure sensor 8 is supplied to the ECU 5. Further, an intake air temperature (TA) sensor 9 is attached downstream thereof,
EC is detected by detecting the intake air temperature TA and outputting the corresponding electric signal.
Supply to U5.

【0016】エンジン1の本体に装着されたエンジン水
温(TW)センサ10はサーミスタ等から成り、エンジ
ン水温(冷却水温)TWを検出して対応する温度信号を
出力してECU5に供給する。
The engine water temperature (TW) sensor 10 mounted on the main body of the engine 1 is composed of a thermistor or the like, detects the engine water temperature (cooling water temperature) TW, outputs a corresponding temperature signal and supplies it to the ECU 5.

【0017】エンジン1の図示しないカム軸周囲又はク
ランク軸周囲には、エンジン回転数(NE)センサ11
及び気筒判別(CYL)センサ12が取り付けられてい
る。エンジン回転数センサ11は、エンジン1の各気筒
の吸入行程開始時の上死点(TDC)に関し所定クラン
ク角度前のクランク角度位置で(4気筒エンジンではク
ランク角180゜毎に)TDC信号パルスを出力し、気
筒判別センサ12は、特定の気筒の所定クランク角度位
置で気筒判別信号パルスを出力するものであり、これら
の各信号パルスはECU5に供給される。
An engine speed (NE) sensor 11 is provided around a cam shaft or crank shaft (not shown) of the engine 1.
A cylinder discrimination (CYL) sensor 12 is attached. The engine speed sensor 11 sends a TDC signal pulse at a crank angle position that is a predetermined crank angle before the top dead center (TDC) at the start of the intake stroke of each cylinder of the engine 1 (every 180 ° of crank angle in a 4-cylinder engine). The cylinder discrimination sensor 12 outputs a cylinder discrimination signal pulse at a predetermined crank angle position of a specific cylinder, and each of these signal pulses is supplied to the ECU 5.

【0018】エンジン1の排気管13には、上流側から
順に電気加熱式触媒(以下「EHC」という)16、ス
タート触媒17及び三元触媒18が配置されており、こ
れらの触媒は排気ガス中のHC,CO,NOx等の成分
の浄化を行う。ここで、スタート触媒17は、主として
エンジン始動直後における排気ガス浄化のために設けら
れた小型の触媒である。
In the exhaust pipe 13 of the engine 1, an electrically heated catalyst (hereinafter referred to as "EHC") 16, a start catalyst 17 and a three-way catalyst 18 are arranged in this order from the upstream side, and these catalysts are contained in the exhaust gas. Purify components such as HC, CO, and NOx. Here, the start catalyst 17 is a small catalyst provided mainly for purifying exhaust gas immediately after the engine is started.

【0019】排気管13には、さらにEHC16の上流
側に2次空気を供給する通路14が接続されており、通
路14の途中には空気ポンプ15が設けられている。
A passage 14 for supplying secondary air is further connected to the exhaust pipe 13 upstream of the EHC 16, and an air pump 15 is provided in the middle of the passage 14.

【0020】EHC16及び空気ポンプ15は、ECU
5に接続されており、その作動がECU5により制御さ
れる。また、三元触媒18にはその温度TCATを検出
する触媒温度センサ19が設けられており、その検出信
号がECU5に供給される。また、エンジン1によって
駆動されるオルタネータ21は、レギュレータ22を介
してECU5に接続されており、その発電電圧がECU
5により制御される。
The EHC 16 and the air pump 15 are ECUs.
5 and its operation is controlled by the ECU 5. Further, the three-way catalyst 18 is provided with a catalyst temperature sensor 19 that detects the temperature TCAT, and the detection signal is supplied to the ECU 5. Further, the alternator 21 driven by the engine 1 is connected to the ECU 5 via the regulator 22, and the generated voltage thereof is the ECU.
Controlled by 5.

【0021】ECU5は各種センサからの入力信号波形
を整形し、電圧レベルを所定レベルに修正し、アナログ
信号値をデジタル信号値に変換する等の機能を有する入
力回路5a、中央演算処理回路(以下「CPU」とい
う)5b、CPU5bで実行される各種演算プログラム
及び演算結果等を記憶する記憶手段5c、前記燃料噴射
弁6、空気ポンプ15、EHC16、レギュレータ22
等の制御信号を出力する出力回路5d等から構成され
る。
The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, and the like, a central processing circuit (hereinafter referred to as a central processing unit). "CPU") 5b, storage means 5c for storing various calculation programs executed by the CPU 5b and calculation results, the fuel injection valve 6, the air pump 15, the EHC 16, the regulator 22.
It is composed of an output circuit 5d for outputting control signals such as.

【0022】CPU5bは上述の各種エンジンパラメー
タ信号に基づいて、後述するようにEHC16の通電時
間TON及び供給電圧VEHCの演算処理等を行い、そ
の演算結果に応じた制御信号を出力する。
The CPU 5b carries out a calculation process of the energization time TON of the EHC 16 and the supply voltage VEHC based on the above-mentioned various engine parameter signals, and outputs a control signal according to the calculation result.

【0023】図2は、ECU5、オルタネータ21、レ
ギュレータ22、EHC16のヒータ抵抗24、空気ポ
ンプ15のモータ27及びバッテリ29の接続状態を示
す回路図である。なお、本実施例のEHC16は、触媒
自体に通電してヒータとしても機能するようにしてお
り、その抵抗分をヒータ抵抗24として表している。
FIG. 2 is a circuit diagram showing a connection state of the ECU 5, the alternator 21, the regulator 22, the heater resistance 24 of the EHC 16, the motor 27 of the air pump 15, and the battery 29. The EHC 16 of the present embodiment is designed to function as a heater by energizing the catalyst itself, and its resistance is represented as a heater resistance 24.

【0024】同図において、オルタネータ21の出力側
は、切換スイッチ23の端子23aに接続されており、
切換スイッチ23の端子23cはヒータ抵抗24の一端
に接続されている。ヒータ抵抗24の他端は接地されて
おり、その接続線31の途中にヒータ電流IEHCを検
出するEHC電流センサ25が設けられている。
In the figure, the output side of the alternator 21 is connected to the terminal 23a of the changeover switch 23,
The terminal 23c of the changeover switch 23 is connected to one end of the heater resistor 24. The other end of the heater resistor 24 is grounded, and an EHC current sensor 25 for detecting the heater current IEHC is provided in the middle of the connecting line 31.

【0025】切換スイッチ23の端子23bは、バッテ
リ29の正電極及びオンオフスイッチ26の端子26a
に接続されており、端子26bはモータ27の一端に接
続されている。モータ27の他端は接地されており、そ
の接続線33の途中にポンプ電流IAPを検出するポン
プ電流センサ28が設けられている。
The terminal 23b of the changeover switch 23 is the positive electrode of the battery 29 and the terminal 26a of the on / off switch 26.
The terminal 26b is connected to one end of the motor 27. The other end of the motor 27 is grounded, and a pump current sensor 28 for detecting the pump current IAP is provided in the middle of the connecting line 33.

【0026】バッテリ29の負電極は接地されており、
また正電極はECU5に接続されている。
The negative electrode of the battery 29 is grounded,
The positive electrode is connected to the ECU 5.

【0027】スイッチ23、26は、ECU5に接続さ
れており、ECU5からの制御信号により切換可能に構
成されている。通常はスイッチ23は、図2に示すよう
に端子23a及び23bが接続された状態とされ、スイ
ッチ26はオフ状態とされ、エンジン始動直後において
必要に応じて切換制御される。また、接続線30、32
は、EUC5に接続されており、ECU5はEHC電圧
VEHC及びポンプ電圧VAPの検出を行う。また、電
流センサ25、28もECU5に接続されており、これ
らの検出信号がECU5に供給される。これらの電流セ
ンサ25、28は、断線等の異常を検出するために設け
られている。
The switches 23 and 26 are connected to the ECU 5 and can be switched by a control signal from the ECU 5. Normally, the switch 23 is in a state where the terminals 23a and 23b are connected as shown in FIG. 2, the switch 26 is in an off state, and switching control is performed as necessary immediately after the engine is started. Also, the connection lines 30, 32
Are connected to the EUC 5, and the ECU 5 detects the EHC voltage VEHC and the pump voltage VAP. Further, the current sensors 25 and 28 are also connected to the ECU 5, and their detection signals are supplied to the ECU 5. These current sensors 25 and 28 are provided to detect abnormalities such as disconnection.

【0028】図3は、ヒータ抵抗24への電力供給制御
を行う処理のフローチャートである。
FIG. 3 is a flow chart of a process for controlling power supply to the heater resistor 24.

【0029】ステップS1では、前条件が成立している
か否か(イグニッションスイッチがオンされたか否か)
を判別し、不成立のときは直ちに本処理を終了する。前
条件が成立したときは(イグニッションスイッチがオン
されたときは)、エンジン水温TW及び吸気温TAの検
出値を読み込む(ステップS2)。次いで、TW値及び
TA値に応じて設定されたTONマップ及びVEHCマ
ップを検索し、ヒータ抵抗24の通電時間(EHCオン
時間)TON及びEHC16への供給電圧VEHCを決
定する(ステップS3)。
In step S1, it is determined whether or not the precondition is satisfied (whether or not the ignition switch is turned on).
If it is not established, this process is immediately terminated. When the precondition is satisfied (when the ignition switch is turned on), the detected values of the engine water temperature TW and the intake air temperature TA are read (step S2). Next, the TON map and the VEHC map set according to the TW value and the TA value are searched, and the energization time (EHC on time) TON of the heater resistor 24 and the supply voltage VEHC to the EHC 16 are determined (step S3).

【0030】TONマップは、図4に示すように、吸気
温TAが上昇するほど、またエンジン水温TWが上昇す
るほど、TON値が減少する傾向に設定されている。な
お、所定温度TAH,TWH以上は、通電しないので、
TONは0とされる。また、VEHCマップは、図5
(a),(b)に示すように、吸気温TAが上昇するほ
どまたエンジン水温TWが上昇するほど、VEHC値が
低下する傾向に設定されている。したがって、EHC1
6への供給電力は、図5(c)に示すように制御され
る。なお、VEHC値は例えば冷間始動時には30V程
度に設定する。これにより、バッテリから電力を供給す
る場合に比べて供給電流を約1/2に低下させることが
できる。
As shown in FIG. 4, the TON map is set so that the TON value tends to decrease as the intake air temperature TA increases and the engine water temperature TW increases. In addition, since the current is not supplied above the predetermined temperatures TAH and TWH,
TON is set to 0. The VEHC map is shown in FIG.
As shown in (a) and (b), the VEHC value tends to decrease as the intake air temperature TA increases and the engine water temperature TW increases. Therefore, EHC1
The power supplied to 6 is controlled as shown in FIG. The VEHC value is set to, for example, about 30V at the cold start. As a result, it is possible to reduce the supply current to about 1/2 as compared with the case where the power is supplied from the battery.

【0031】続くステップS4では、エンジン回転数N
Eが完爆判定用の所定回転数NEK(例えば400rp
m)以上か否かを判別し、NE<NEKであるときは、
直ちに本処理を終了する一方、NE≧NEKであるとき
は、切換スイッチ23を端子23c側に切り換えるとと
もにオルタネータ出力電圧VALTがステップS3で決
定したVEHC値となるように制御して、EHC16に
電力を供給する(ステップS5)。そして、通電時間T
ON経過後にオルタネータ出力電圧VALTを通常の出
力電圧VCHG(例えば14.5V)まで低下させると
ともに、切換スイッチ23を端子23b側に切り換える
(ステップS6)。
In the following step S4, the engine speed N
E is a predetermined rotation speed NEK for complete explosion determination (for example, 400 rp
m) or more, and if NE <NEK,
Immediately after finishing this processing, when NE ≧ NEK, the changeover switch 23 is switched to the terminal 23c side, and the alternator output voltage VALT is controlled so as to be the VEHC value determined in step S3, and the EHC 16 is supplied with electric power. Supply (step S5). And energizing time T
After the passage of ON, the alternator output voltage VALT is lowered to the normal output voltage VCHG (for example, 14.5V), and the changeover switch 23 is changed over to the terminal 23b side (step S6).

【0032】以上のように本実施例では、EHC16の
通電時間のみならず供給電圧も、吸気温TA及びエンジ
ン水温TWに応じて変更可能としたので、EHC16に
供給するエネルギ(積算電力量)を精度よく制御し、無
駄なエネルギの消費を抑制することができる。また、E
HC電圧VEHCをバッテリ電圧より高く、例えば30
V程度とすることにより、供給電流を低減して周辺部品
のコストダウンを図ることができる。また、オルタネー
タ21の出力電圧を30Vと程度とすることにより、オ
ルタネータ21の発電効率を向上させることができる。
As described above, in this embodiment, not only the energization time of the EHC 16 but also the supply voltage can be changed according to the intake air temperature TA and the engine water temperature TW. Therefore, the energy (integrated electric energy) supplied to the EHC 16 can be changed. It is possible to control with high precision and suppress wasteful energy consumption. Also, E
The HC voltage VEHC is higher than the battery voltage, for example, 30
By setting the voltage to about V, the supply current can be reduced and the cost of peripheral components can be reduced. Further, by setting the output voltage of the alternator 21 to about 30V, the power generation efficiency of the alternator 21 can be improved.

【0033】なお、図3のステップS1における前条件
は、イグニッションスイッチがオンされかつエンジン水
温TW及び/又は触媒温度TCATが所定温度以下のと
き、成立するとしてもよい。
The precondition in step S1 of FIG. 3 may be satisfied when the ignition switch is turned on and the engine water temperature TW and / or the catalyst temperature TCAT are below a predetermined temperature.

【0034】図6は、本実施例における制御動作例のタ
イミングチャートであり、時刻t0にイグニッションス
イッチがオンされると(同図(a))、ECU5はレギ
ュレータ制御電圧VCを通常運転時用の所定電圧VC1
に設定し、発電モード1とする(同図(f)(h))。
時刻t0から時間TD(例えばキー回しに要する時間
(0.1秒程度))経過後の時刻t1にスタータがオン
されると、エンジンの回転が開始され(同図(b)
(c))、エンジン回転数NEの上昇に伴ってオルタネ
ータ出力電圧VALTがバッテリ充電電圧VCHGまで
上昇する(同図(g))。
FIG. 6 is a timing chart of a control operation example in this embodiment. When the ignition switch is turned on at time t0 ((a) in the same figure), the ECU 5 sets the regulator control voltage VC for normal operation. Predetermined voltage VC1
To set the power generation mode 1 ((f) and (h) in the same figure).
When the starter is turned on at time t1 after the time TD (for example, the time required to turn the key (about 0.1 seconds)) has elapsed from time t0, the engine starts to rotate ((b) in the figure).
(C)), the alternator output voltage VALT increases to the battery charging voltage VCHG as the engine speed NE increases ((g) in the same figure).

【0035】エンジン回転数NEが完爆判定用所定回転
数NEKに達すると(時刻t2)、ECU5は完爆と判
定し(同図(c)(d))、スイッチ23を端子23b
側から23c側に切り換える切換制御信号をが出力する
(同図(e))。このときスイッチ23の切り換えに要
する時間(制御信号の出力から実際に切換が完了するま
での時間、例えば0.25秒程度)ΔTを考慮して、時
刻t2からΔT経過後の時刻t3にレギュレータ制御電
圧VCを、オルタネータ出力電圧VALTが図3のステ
ップS3で決定したVEHC値となるようなEHC制御
電圧VC2に設定し、発電モード2に移行する(同図
(f)(h))。これにより、オルタネータ出力電圧V
ALTはVEHC値まで上昇し(同図(g))、EHC
16の温度が上昇を開始する(同図(i))。ここで、
EHC制御電圧VC2は、検出した供給電圧(図2の接
続線30の電圧)が、前記決定したVEHC値に一致す
るようにフィードバック制御される。
When the engine speed NE reaches the complete explosion determination predetermined rotation speed NEK (time t2), the ECU 5 determines that the complete explosion has occurred ((c) and (d) in the same figure), and the switch 23 is set to the terminal 23b.
A switching control signal for switching from the side to the side 23c is output ((e) in the figure). At this time, considering the time required for switching the switch 23 (the time from the output of the control signal until the switching is actually completed, for example, about 0.25 seconds) ΔT, the regulator control is performed from time t2 to time t3 after ΔT. The voltage VC is set to the EHC control voltage VC2 such that the alternator output voltage VALT becomes the VEHC value determined in step S3 of FIG. 3, and the power generation mode 2 is entered ((f) and (h) in the figure). As a result, the alternator output voltage V
ALT increased to VEHC level (Fig. (G)), and EHC
The temperature of 16 starts rising ((i) in the same figure). here,
The EHC control voltage VC2 is feedback-controlled so that the detected supply voltage (voltage of the connecting line 30 in FIG. 2) matches the determined VEHC value.

【0036】そして図3のステップS3で決定した時間
TON後の時刻t4にレギュレータ制御電圧VCをVC
HG値に戻して発電モード1に戻る(同図(f)
(h))。これによりオルタネータ出力電圧VALT
は、通常のバッテリ充電電圧VCHGとなる(同図
(g))。ECU5は、時刻t4から時間ΔT経過後の
時刻t5にスイッチ23を端子23c側から23b側に
切り換える制御信号を出力し、エンジン始動時の制御を
終了する(同図(e))。
Then, at time t4 after the time TON determined in step S3 of FIG. 3, the regulator control voltage VC is set to VC.
Return to HG value and return to power generation mode 1 ((f) in the figure)
(H)). As a result, the alternator output voltage VALT
Becomes the normal battery charging voltage VCHG ((g) in the same figure). The ECU 5 outputs a control signal for switching the switch 23 from the terminal 23c side to the side 23b at time t5 after the time ΔT has elapsed from time t4, and ends the control at the engine start ((e) in the figure).

【0037】なお、本実施例では、空気ポンプのモータ
27は、EHC16をオン作動させるのと同じタイミン
グで作動させるようにしている。
In this embodiment, the air pump motor 27 is operated at the same timing as when the EHC 16 is turned on.

【0038】また、上述した実施例ではEHC16へ供
給する電圧及び通電時間を、ともにエンジン水温TW及
び吸気温TAに応じて設定するようにしたが、通電時間
は一定としてもよい。また、エンジン水温TW又は吸気
温TAのいずれか一方に代えて、触媒温度センサ19に
よって検出される触媒温度TCATを用いて、電圧VE
CH及び通電時間TONを設定するようにしてもよい。
あるいは、エンジン水温TW、吸気温TA又は触媒温度
TCATのいずれか1つ又は2つに応じて、電圧VEC
H及び通電時間TONを設定するようにしてもよい。さ
らに、触媒温度TCATに代えて、排気ガス温度等の排
気系の温度を代表するパラメータを用いてもよい。
In the above-described embodiment, the voltage supplied to the EHC 16 and the energization time are both set according to the engine water temperature TW and the intake air temperature TA, but the energization time may be constant. Further, instead of either the engine water temperature TW or the intake air temperature TA, the catalyst temperature TCAT detected by the catalyst temperature sensor 19 is used to calculate the voltage VE.
CH and energization time TON may be set.
Alternatively, the voltage VEC may be changed in accordance with any one or two of the engine water temperature TW, the intake air temperature TA, and the catalyst temperature TCAT.
H and energization time TON may be set. Further, instead of the catalyst temperature TCAT, a parameter representing the temperature of the exhaust system such as the exhaust gas temperature may be used.

【0039】[0039]

【発明の効果】以上詳述したように本発明によれば、オ
ルタネータから電気加熱式触媒に電力が供給され、検出
したエンジン運転状態に応じてオルタネータの発電電圧
が制御されるので、電気加熱式触媒に供給するエネルギ
(積算電力量)を精度よく制御し、無駄なエネルギ消費
を抑制することができる。また、オルタネータの発電電
圧をバッテリ電圧より高く設定することにより、電気加
熱式触媒への供給電流を低減して周辺部品のコストダウ
ンを図ることができる。
As described in detail above, according to the present invention, electric power is supplied from the alternator to the electrically heated catalyst, and the generated voltage of the alternator is controlled according to the detected engine operating state. The energy (integrated electric energy) supplied to the catalyst can be accurately controlled, and wasteful energy consumption can be suppressed. Further, by setting the power generation voltage of the alternator higher than the battery voltage, it is possible to reduce the supply current to the electrically heated catalyst and reduce the cost of peripheral parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる内燃エンジン及びそ
の制御装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control system therefor according to an embodiment of the present invention.

【図2】電気加熱式触媒のヒータ抵抗等の接続状態を示
す回路図である。
FIG. 2 is a circuit diagram showing a connection state of a heater resistance and the like of an electrically heated catalyst.

【図3】電気加熱式触媒に供給する電圧及び通電時間を
制御する処理のフローチャートである。
FIG. 3 is a flowchart of a process for controlling the voltage supplied to the electrically heated catalyst and the energization time.

【図4】図3の処理で使用するテーブルを示す図であ
る。
FIG. 4 is a diagram showing a table used in the processing of FIG.

【図5】図3の処理で使用するテーブル等を示す図であ
る。
5 is a diagram showing a table and the like used in the processing of FIG.

【図6】本実施例における制御動作例のタイミングチャ
ートである。
FIG. 6 is a timing chart of a control operation example in the present embodiment.

【符号の説明】[Explanation of symbols]

1 内燃エンジン 5 電子コントロールユニット 9 吸気温センサ 10 エンジン水温センサ 16 電気加熱式触媒 18 三元触媒 21 オルタネータ 22 レギュレータ 23 切換スイッチ 1 Internal Combustion Engine 5 Electronic Control Unit 9 Intake Air Temperature Sensor 10 Engine Water Temperature Sensor 16 Electric Heating Catalyst 18 Three-Way Catalyst 21 Alternator 22 Regulator 23 Changeover Switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 手代木 哲 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 青木 琢也 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 加藤 裕明 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 小松田 卓 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 古元 秀夫 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Teshirogi 1-4-1 Chuo, Wako-shi, Saitama Inside Honda R & D Co., Ltd. (72) Inventor Takuya Aoki 1-4-1 Wako-shi, Saitama Incorporated company Honda R & D Co., Ltd. (72) Inventor Hiroaki Kato 1-4-1 Chuo, Wako, Saitama Prefecture Incorporated Honda R & D Co., Ltd. (72) Inventor Taku Komatsuda 1-1-4 Wako-Chu, Saitama Incorporated Honda Technical Research Institute (72) Inventor Hideo Furumoto 1-4-1 Chuo, Wako, Saitama Incorporated Honda Technical Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃エンジンにより駆動され、電力を発
電するオルタネータと、 該オルタネータの発電電圧を制御するレギュレータ手段
と、 前記エンジンの排気系に設けられ、前記オルタネータに
より発電された電力により電気的に加熱される電気加熱
式触媒と、 前記エンジンの運転状態を検出する運転状態検出手段
と、 該運転状態検出手段の出力に応じて前記電気加熱式触媒
に供給する発電電圧を制御するレギュレータ制御手段と
を備えることを特徴とする内燃エンジンの排気ガス浄化
装置。
1. An alternator driven by an internal combustion engine to generate electric power, regulator means for controlling a generated voltage of the alternator, and an electric power generated by the alternator, which is provided in an exhaust system of the engine. An electrically heated catalyst to be heated, an operating state detecting means for detecting an operating state of the engine, and a regulator control means for controlling a power generation voltage supplied to the electrically heated catalyst according to an output of the operating state detecting means. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
【請求項2】 前記レギュレータ制御手段は、さらに前
記発電電圧を前記電気加熱式触媒に供給する時間を前記
検出したエンジン運転状態に応じて制御することを特徴
とする請求項1記載の内燃エンジンの排気ガス浄化装
置。
2. The internal combustion engine according to claim 1, wherein the regulator control means further controls a time for supplying the generated voltage to the electrically heated catalyst according to the detected engine operating state. Exhaust gas purification device.
【請求項3】 前記運転状態検出手段は、前記エンジン
の温度、吸入空気温度及び前記エンジンの排気系の温度
の少なくとも1つであることを特徴とする請求項1又は
2記載の内燃エンジンの排気ガス浄化装置。
3. The exhaust gas of an internal combustion engine according to claim 1, wherein the operating state detection means is at least one of a temperature of the engine, an intake air temperature, and a temperature of an exhaust system of the engine. Gas purification device.
JP12064895A 1995-04-21 1995-04-21 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3550215B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12064895A JP3550215B2 (en) 1995-04-21 1995-04-21 Exhaust gas purification device for internal combustion engine
US08/634,507 US5791140A (en) 1995-04-21 1996-04-18 Exhaust gas-purifying system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12064895A JP3550215B2 (en) 1995-04-21 1995-04-21 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH08296431A true JPH08296431A (en) 1996-11-12
JP3550215B2 JP3550215B2 (en) 2004-08-04

Family

ID=14791434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12064895A Expired - Fee Related JP3550215B2 (en) 1995-04-21 1995-04-21 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
US (1) US5791140A (en)
JP (1) JP3550215B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818119A (en) * 1996-02-14 1998-10-06 Honda Giken Kogyo Kabushiki Kaisha Alternator control system
JP2019152113A (en) * 2018-03-01 2019-09-12 マツダ株式会社 Control method and control device for engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509426B2 (en) * 1996-05-24 2004-03-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19639150C2 (en) * 1996-09-24 1998-07-02 Daimler Benz Ag Central heating device for a gas generation system
US6752125B2 (en) 2001-12-19 2004-06-22 Caterpillar Inc Method and apparatus for controlling an engine
US8727050B2 (en) * 2009-02-25 2014-05-20 GM Global Technology Operations LLC System and method for controlling an electrically heated catalyst for a hybrid vehicle
US7792627B1 (en) * 2009-04-14 2010-09-07 Gm Global Technology Operations, Inc. Hybrid vehicle exhaust control strategy
US8322472B2 (en) * 2009-05-04 2012-12-04 GM Global Technology Operations LLC Hybrid vehicle exhaust control strategy
US9458812B2 (en) * 2009-09-02 2016-10-04 GM Global Technology Operations LLC Engine control systems and methods for minimizing fuel consumption
US9410458B2 (en) * 2009-10-01 2016-08-09 GM Global Technology Operations LLC State of charge catalyst heating strategy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500287B1 (en) * 1991-02-20 1995-04-26 Hitachi, Ltd. Catalyzer control apparatus
JP2913868B2 (en) * 1991-03-08 1999-06-28 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US5390493A (en) * 1992-01-30 1995-02-21 Hitachi, Ltd. Apparatus for controlling the electric heating of catalyst
US5404720A (en) * 1993-08-16 1995-04-11 Ford Motor Company Alternator powered electrically heated catalyst
DE4335771C2 (en) * 1993-10-20 1999-11-04 Daimler Chrysler Ag Automotive electrical system with electrical machine with on-board electrical system function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818119A (en) * 1996-02-14 1998-10-06 Honda Giken Kogyo Kabushiki Kaisha Alternator control system
JP2019152113A (en) * 2018-03-01 2019-09-12 マツダ株式会社 Control method and control device for engine

Also Published As

Publication number Publication date
JP3550215B2 (en) 2004-08-04
US5791140A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP3550216B2 (en) Exhaust gas purification device for internal combustion engine
JP3602612B2 (en) Idle speed control device for internal combustion engine
JPH094502A (en) Detection device of exhaust system atmospheric temperature of internal combustion engine
JP3425279B2 (en) Exhaust gas purification device for internal combustion engine
US6050086A (en) Exhaust emission control apparatus for internal combustion engine
JP3550215B2 (en) Exhaust gas purification device for internal combustion engine
JP3364063B2 (en) Electric load abnormality detection device for vehicles
US5732550A (en) Current supply control system of electrically heated catalytic converter of internal combustion engine
JPH07243324A (en) Exhaust gas purifier of internal combustion engine
JP2816393B2 (en) Electric heating type catalyst controller
JPH1150900A (en) Control device for spark ignition engine
JP2000220443A (en) Control device for internal combustion engine
US5908019A (en) Intake air amount control system for internal combustion engines
JP2880118B2 (en) Alternator control device
US5754032A (en) Alternator control system
JP2857704B2 (en) Alternator output switching control device
JP2004116372A (en) Ignition timing control system for engine
JPS59128943A (en) Idle revolution control method
JP3946306B2 (en) Electric heating catalyst controller
JPH06212959A (en) Exhaust emission control device of internal combustion engine
JPH11257060A (en) Power supply control device for vehicle with internal combustion engine
JPH11257059A (en) Catalytic heater power supply control unit
JPH0473099B2 (en)
JPS6282245A (en) Fuel feeding method at starting of internal combustion engine
JPH05172012A (en) Fuel heating control method for engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees